A New Adaptation of the Method of Invariant Kinetic Parameters and its Application to a Flame Retardant System

Anne Philcox

Thesis submitted for the degree of
Doctor of Philosophy

School of Chemical Engineering
The University of Adelaide
February 2014
Table of Contents

List of Tables ... v

List of Figures ... vii

Abstract .. xi

Declaration ... xiii

Acknowledgements .. xv

1 Introduction .. 1
 1.1 Thesis Content... 3

2 Literature Review: Flame Retardancy .. 5
 2.1 The Combustion Cycle... 5
 2.2 Modes of Action ... 6
 2.2.1 Physical Action ... 6
 2.2.2 Chemical Action... 8
 2.3 Chemical Incorporation.. 10
 2.4 Standard Tests... 11
 2.4.1 Limiting Oxygen Index (LOI) ... 12
 2.4.2 Cone Calorimetry .. 12
 2.4.3 UL 94 .. 14
 2.5 Brominated Flame Retardants ... 15
 2.5.1 Environmental and Health Concerns ... 16
 2.5.2 Specific Mechanisms of Action ... 19
 2.6 Flame Retardant System .. 24
 2.6.1 Thermal Decomposition of Polypropylene ... 26
 2.6.2 Expected Effect of TBBA-BDPE and Sb₂O₃ ... 29
 2.7 Concluding Remarks.. 32

3 Literature Review: Kinetic Analysis ... 33
 3.1 Experimental Considerations .. 34
 3.2 Arrhenius Parameters for Heterogeneous Systems ... 37
 3.2.1 Compensation Effect .. 39
 3.3 Mechanisms for Heterogeneous Systems .. 41
 3.3.1 Sestak-Berggren Generalisation ... 43
 3.3.2 Relevance to a Liquid Phase ... 45
A New Adaptation of The Method of Invariant Kinetic Parameters and its Application to a Flame Retardant System

3.4 Non-Isothermal Data Analysis ... 46
 3.4.1 Approximating the Temperature Integral .. 47
 3.4.2 Isoconversional Methods ... 51
 3.4.3 Kissinger Method ... 56
 3.4.4 Model Fitting .. 57
 3.4.5 Combined Kinetic Analysis ... 64
 3.4.6 The Method of Invariant Kinetic Parameters ... 65
 3.4.7 Complex Kinetics .. 69

3.5 Concluding Remarks .. 76

4 Experimental Methodology .. 79

4.1 Sample Formulations ... 79
 4.1.1 PolyPacific Formulations .. 79
 4.1.2 Additional Formulations Prepared at the CSIRO ... 80
 4.1.3 Flame Retardant Analogues ... 81

4.2 Simultaneous Thermal Analysis ... 82
 4.2.1 TG/DSC Set 1 ... 82
 4.2.2 TG/FTIR ... 83
 4.2.3 TG/DSC Set 2 ... 84
 4.2.4 Experimental Considerations .. 86

4.3 Cone Calorimetry .. 87

5 Kinetic Analysis Method ... 89

5.1 Data Preparation ... 92
 5.1.1 Noise Estimation ... 92
 5.1.2 Initialisation Direct from TG Data ... 92
 5.1.3 Component Conversion Signal Refinement ... 93
 5.1.4 Incomplete Process Accommodation .. 94
 5.1.5 Temperature Signal Adjustment ... 95

5.2 Friedman Isoconversional Analysis .. 97

5.3 IKP Adaptation ... 98
 5.3.1 Limited Computational Ranges .. 98
 5.3.2 Temperature Integral Approximation ... 99
 5.3.3 Functions of Conversion .. 99
 5.3.4 Linear F-Testing .. 104
 5.3.5 Invariant Kinetic Parameters .. 104

5.4 Model Fitting Refinement .. 105
 5.4.1 Shape Classification (Experimental) ... 105
 5.4.2 Kinetic Parameter Initialisation ... 106
 5.4.3 Kinetic Solution Generation .. 106
A New Adaptation of the Method of Invariant Kinetic Parameters and its Application to a Flame Retardant System

5.4.4 Shape Classification (Prediction) .. 108
5.4.5 Shape Assessment ... 109
5.4.6 Pre-exponential Factor Refinement .. 109
5.4.7 Activation Energy Refinement .. 110
5.4.8 Model Convergence/Failure ... 111

5.5 Final Model Evaluation ... 112
5.5.1 Identifying the Most Probable Model(s) .. 112
5.5.2 Linear F-Testing .. 113
5.5.3 Probabilities Relative to the Most Probable Model .. 114
5.5.4 Finalisation ... 115

5.6 Concluding Remarks ... 116

6 Kinetic Analysis Method Validation .. 117
6.1 Synthetic Data .. 117
6.1.1 Non-Overlapped Models .. 117
6.1.2 Partially Overlapped Models .. 126
6.1.3 Totally Overlapped Models .. 133
6.2 Real Data .. 135
6.2.1 Evaporation of Water .. 135
6.2.2 Calcium Carbonate .. 141
6.3 Concluding Remarks ... 144

7 Flame Retardant System Behaviour ... 147
7.1 Polypropylene Degradation .. 147
7.1.1 Kinetic Analysis .. 149
7.2 TBBA-BDPE Degradation ... 156
7.2.1 Kinetic Analysis .. 156
7.2.2 Thermodynamic Analysis ... 162
7.2.3 Mode of Degradation .. 167
7.3 TBBA-BDPE and Sb2O3 .. 173
7.4 Flame-Retarded Polypropylene .. 176
7.4.1 Thermal Degradation ... 176
7.4.2 Cone Calorimetry ... 183
7.5 Concluding Remarks ... 188

8 Conclusions and Recommendations ... 191
8.1 New Kinetic Analysis Method .. 191
8.1.1 Recommendations .. 195
8.2 Flame Retardant System ... 196
List of Tables

Table 4-1: Compositions (wt%) of the formulations supplied by PolyPacific... 79
Table 4-2: Compositions (wt%) of the formulations prepared at the CSIRO in processing order... 81

Table 5-1: Physical depiction, TG signal shapes, equations and critical assumptions for each model. Note:
\[f(\alpha) = \frac{1}{k} \frac{dt}{d\alpha} \text{ and } g(\alpha) = \int_{0}^{\alpha} f(\alpha) \, d\alpha = k \alpha \text{ where } k = A \exp \left(-\frac{E}{RT} \right) \] ... 100

Table 6-1: Predicted most probable kinetic triplets and weight fraction distributions for the non-overlapped models case study initialised with different kinetic parameters... 119
Table 6-2: Non-linear relative probabilities (for refined averaged apparent kinetic parameters only) and averaged linear \(F \)-statistics for refined and unrefined averaged apparent kinetic parameters for the non-overlapped models case study .. 120
Table 6-3: Non-linear relative probabilities and averaged linear \(F \)-statistics for refined (left) and unrefined (right) IKP for the non-overlapped models case study.. 121
Table 6-4: Maximum linear \(F \)-statistics and the 22 apparent kinetic models for the non-overlapped models case study. Statistics are listed for each heating rate in the order 2, 5, 7, 10, 15 and 20\(^\circ\)C/min with the accompanying active and computational ranges expressed in terms of temperature, and weight fractions ... 124
Table 6-5: Maximum linear \(F \)-statistics and the 22 apparent kinetic models for the non-overlapped models case study compromised with noise. Statistics are listed for each heating rate in the order 2, 5, 7, 10, 15 and 20\(^\circ\)C/min with the accompanying active and computational ranges expressed in terms of temperature, and weight fractions. Note that the L(T) model was deliberately excluded to reduce the computational time, and that 20\(^\circ\)C/min the second model could not be identified.............. 125
Table 6-6: Non-linear relative probabilities for solutions finalised with refined IKP (left) and refined averaged apparent parameters (right) after the first iteration of the partially overlapped models case study.. 128
Table 6-7: Maximum linear \(F \)-statistics and the 22 apparent kinetic models from the first iteration of the partially overlapped models case study. Statistics are listed for each heating rate in the order 3, 6 and 9\(^\circ\)C/min with the accompanying active and computational ranges expressed in terms of temperature, and weight fractions .. 129
Table 6-8: Maximum linear \(F \)-statistics and the 22 apparent kinetic models from the second iteration of the partially overlapped models case study. Statistics are listed for each heating rate in the order 3, 6 and 9\(^\circ\)C/min with the accompanying active and computational ranges expressed in terms of temperature, and weight fractions .. 129
Table 6-9: Predicted most probable kinetic triplets and weight fraction distributions for the partially overlapped models case study initialised with a weight fraction for Model 1 between 36 – 39%. Computation ranges in terms of conversion are shown as well as the status of the finalised kinetic parameters for selected iterations... 131
Table 6-10: Predicted most probable kinetic triplets and weight fraction distributions for the partially overlapped models case study initialised with a weight fraction for Model 1 of 33%. Computation ranges in terms of conversion are shown as well as the status of the finalised kinetic parameters for the first three iterations .. 131
Table 6-11: Non-linear relative probabilities (for refined kinetic parameters only) and averaged linear \(F \)-statistics for both refined and unrefined apparent kinetic parameters (left) and IKP (right) for evaporation of water at 0.5, 1, 2, 3 and 5\(^\circ\)C/min under N\(_2\) using narrow computational limits of 15.5 – 24% and the measured temperature signal... 138
Table 6-12: Maximum linear \(F \)-statistics and the 22 apparent kinetic models for evaporation of 61.8 – 70.8 mg water under 100 mL/min N\(_2\) for a 5 – 95% computational range. Statistics are listed for each heating rate in the order 1, 2, 3 and 5\(^\circ\)C/min with the accompanying active and computational ranges expressed in terms of temperature, and weight fractions 139
Table 6-13: Non-linear relative probabilities (for refined kinetic parameters only) and averaged linear F-statistics for both refined and unrefined apparent kinetic parameters (left) and IKP (right) for evaporation of water at 1, 2, 3 and 5°C/min under N$_2$ using wide computational limits of 5 – 95% and the measured temperature signal ... 140

Table 6-14: Non-linear relative probabilities (for refined kinetic parameters only) and averaged linear F-statistics for both refined and unrefined apparent kinetic parameters (left) and IKP (right) for the data extracted from Sanders and Gallagher (2005) for calcium carbonate pyrolysis ... 143

Table 7-1: Non-linear relative probabilities (for refined averaged apparent kinetic parameters only) and averaged linear F-statistics for refined and unrefined averaged apparent kinetic parameters using measured temperature and wide computational limits of 5 – 95% (left) and calculated centreline temperature ($\Delta H_f = 0$) and narrow computational limits of 32 – 78% (right) for polypropylene pyrolysis .. 152

Table 7-2: Non-linear relative probabilities (for refined averaged apparent kinetic parameters only) and averaged linear F-statistics for TBBA-BDPE pyrolysis at six heating rates (2, 3, 5, 7, 15 and 20°C/min) after the fourth iteration .. 158

Table 7-3: Non-linear relative probabilities (for refined averaged apparent kinetic parameters only) and averaged linear F-statistics for TBBA-BDPE pyrolysis at four heating rates (2, 3, 5 and 7°C/min) after the fourth iteration ... 160

Table 7-4: Estimated time to ignition after firing a piezo spark igniter above the sample for each PolyPacific formulation when subjected to an irradiance of 25 kW/m2 .. 183
List of Figures

Figure 2-1: Standard cone calorimetry experimental setup provided in AS/NZS 3837:1998 (Leonard et al., 2000) ... 13
Figure 2-2: Tetrabromobisphenol A (TBBA) and deca-bromodiphenyl ether (Deca-BDE) ... 16
Figure 2-3: Irreversible C-Br bond cleavage induced by phenol-cyclohexadiene tautomerisation .. 23
Figure 2-4: Hydrogen bromide elimination via condensation .. 23
Figure 2-5: Scission of the isopropylidene bridge to energetically favourable fragments ... 23
Figure 2-6: Tetrabromobisphenol A bis(2,3-dibromopropyl ether) (TBBA-BDPE) ... 24
Figure 2-7: Isotactic (a) and syndiotactic (b) polypropylene. One chain from the four-chain unit cell of isotactic polypropylene (c) (Gaur and Wunderlich, 1981) .. 25
Figure 2-8: Available thermal decomposition pathways for polypropylene (Nyden et al., 2003) ... 27
Figure 2-9: 2,3-dibromopropyl pentabromophenyl ether ... 30
Figure 2-10: Polymerised diglycidyl ether of tetrabromobisphenol A ... 31
Figure 2-11: Tetrabromobisphenol S bis(2,3-dibromopropyl ether) (TBBS-BDPE) ... 31
Figure 3-1: Relative errors in four common temperature integral approximations as a function of x. Cross-references to the defining equations are included (Starink, 2003) ... 49
Figure 3-2: Illustration of the ellipsoidal confidence intervals associated with three compensation effects (light purple lines) and how they combine to reduce the confidence intervals associated with the invariant kinetic parameters (yellow area) (Lesnikovich and Levchik, 1983) .. 67
Figure 3-3: Representation of the actual $E(\alpha,\beta)$ surface and the projection $E(\alpha)$ for two overlapping first order reactions with activation energies 80 kJ/mol and 120 kJ/mol (Vyazovkin, 2000) .. 70
Figure 4-1: (a) A sample of polypropylene exiting the extruder. (b) Colour variation between samples with different PE-68 loadings ... 80
Figure 4-2: Synthesis scheme for (tetrabromo)bisphenol A propyl ether .. 81
Figure 4-3: (a) Bisphenol A dipropyl ether (b) Tetrabromobisphenol A dipropyl ether (c) Bisphenol A diglycidyl ether 82
Figure 4-4: Horizontal dual-beam arrangement of the TA Instruments SDT Q600 .. 83
Figure 4-5: Modified cone calorimetry experimental setup at the CSIRO (cf. Figure 2-1) (Leonard et al., 2000) 87
Figure 4-6: A 50 x 50 x 6 mm PolyPacific sample plaque undergoing combustion in the cone calorimeter .. 88
Figure 5-1: Flow chart for the algorithm “Data Preparation and Invariant Kinetic Parameter Determination”. Each rectangle and diamond is colour coded to indicate how many times its block of code must be run (key supplied) ... 90
Figure 5-2: Flow chart for the algorithm “Model Fitting and Kinetic Solution Evaluation”. Each rectangle and diamond is colour coded to indicate how many times its block of code must be run (key supplied in Figure 5-1) .. 91
Figure 5-3: The probability density function and doubled cumulative distribution for an F-distribution with four degrees of freedom (i.e. five experiments). Any model with F-statistic between the dotted yellow lines ($1 < F_i < 9.6$) is within the 95% confidence interval of the most probable model $j*$.. 114
Figure 6-1: Overall conversion fraction and rate for the non-overlapped models simulated at 15°C/min .. 118
Figure 6-2: Conversion rate at 2°C/min illustrating the error arising from the IKP solution set. Regenerated conversion rates using the apparent kinetic parameters and refined IKP (Table 6-1) coincide with the simulation exactly ... 119
Figure 6-3: Friedman analysis for the non-overlapped models case study over heating rates of 2, 5, 7, 10, 15 and 20°C/min showing 95% confidence intervals. Activation energies for the three highest conversions exclude data for 20°C/min .. 119
Figure 6-4: Overall conversion fraction and rate for the non-overlapped models simulated at 15°C/min compromised with noise . 122
Figure 6-5: Super correlations used to derive IKP for Model 1 and Model 2 without noise (a) and with noise (b). Approximate 95% confidence intervals are shown for the compensation parameters

Figure 6-6: Overall conversion fraction and overall correctly weighted component rates for the partially overlapped models simulated at 6°C/min. “Separation points” in terms of overall conversion as either the true weight fraction for Model 1 (30%), or that derived from the minimum conversion rate (~37%) are marked in yellow

Figure 6-7: Friedman analysis for the partially overlapped models case study over heating rates of 3, 6 and 9°C/min showing 95% confidence intervals

Figure 6-8: Regenerated kinetic solutions for all 10 iterations at 3°C/min for the partially overlapped models case study. The first solution was computed from an incorrect weight fraction specification for Model 1 of 36 – 39%

Figure 6-9: Overall conversion fraction and overall correctly weighted component rates for the totally overlapped models simulated at 0.5°C/min

Figure 6-10: Friedman analysis for the totally overlapped models case study over heating rates of 0.5, 1 and 2°C/min showing 95% confidence intervals

Figure 6-11: Normalised weight loss rate for a 68.9 mg sample of water heated at 5°C/min under 100 mL/min N₂, and the predicted kinetic solution using $E = 50$ kJ/mol, $A = 3 \times 10^5$ min⁻¹ and an R1, P1, F0 mechanism

Figure 6-12: Temperature measured by the thermocouple for evaporation of 68.9 mg of water at 5°C/min under 100 mL/min N₂. Centreline temperature calculated from Equation 5-4 assuming the measured temperature is that of the water at the inside surface of the crucible at each time step (j = 0). Illustrates the greatest discrepancy between these temperature signals at 24% conversion

Figure 6-13: Super correlation from which the IKP were derived for evaporation of 61.8 – 70.8 mg water. Heating rates of 0.5, 1, 2, 3 and 5°C/min under 100 mL/min N₂ and a computational range of 15.5 – 24% were used. The lower limit for the computational range had to be raised; data below this conversion at 0.5°C/min were compromised

Figure 6-14: Friedman analysis for evaporation of 61.8 – 70.8 mg water over heating rates of 0.5, 1, 2, 3 and 5°C/min under 100 mL/min N₂ showing 95% confidence intervals. Conversions below 15% at 0.5°C/min were inconsistent with the rest of the data and were excluded

Figure 6-15: Friedman analyses of the data for calcium carbonate pyrolysis extracted from Brown et al. (2000) and Sanders and Gallagher (2005) (over various heating rates) showing 95% confidence intervals

Figure 6-16: Conversion rate computed with filter length $N = 5$ from data extracted from Sanders and Gallagher (2005) for calcium carbonate at 2°C/min under argon. The rate regenerated from the optimised kinetic triplet reported by Sanders and Gallagher (2005) ($E = 192$ kJ/mol, $A = 7.73 \times 108$ min⁻¹; R3.7 mechanism) is shown, and the predictions obtained using this algorithm. Kinetic parameters were initialised as their averaged apparent values

Figure 7-1: Heat flow and weight signals for a 16.7 mg polypropylene sample at 5°C/min under 100 mL/min N₂

Figure 7-2: Normalised weight loss rate at heating rates 5 – 20°C/min for 12.8 – 16.7 mg polypropylene samples under 100 mL/min N₂

Figure 7-3: Discrepancy between the temperature measured during the pyrolysis of a 12.8 mg polypropylene sample at 20°C/min under 100 mL/min N₂ and the centreline temperature calculated using a reaction enthalpy of 400 J/g ($C_p = 1.9$ J/molK and $\rho = 1150$ kg/m³) $j = 5$

Figure 7-4: Friedman analyses for polypropylene pyrolysis over heating rates of 5, 7, 10, 15 and 20°C/min showing 95% confidence intervals utilising both measured and calculated centreline temperatures. The large error bars computed for non-zero reaction enthalpies (in brackets) are omitted for clarity

Figure 7-5: Conversion rate and selected unrefined averaged apparent models for a 15.5 mg polypropylene sample at 15°C/min under 100 mL/min N₂ using measured temperature and wide computational limits of 5 – 95%. Savitzky-Golay filter length was set to $N = 11$
Figure 7-6: Conversion rate and selected models for a 15.5 mg polypropylene sample at 15ºC/min under 100 mL/min N₂ using calculated centreline temperature (\(\Delta H_R = 0 \)) and narrow computational limits of 32 – 78%. Savitzky-Golay filter length was set to \(N = 11 \)..154

Figure 7-7: Conversion rate implied by the two first order models proposed by Chan and Balke (1997b) with \(E_1 = 98.3 \text{ kJ/mol} \) and \(A_1 = 2 \times 10^9 \text{ min}^{-1} \) (20 wt%) and \(E_2 = 327.9 \text{ kJ/mol} \) and \(A_2 = 5.5 \times 10^{12} \text{ min}^{-1} \) (100 wt%) and the experimental conversion rate for a 16.7 mg polypropylene sample at 5ºC/min under 100 mL/min N₂..155

Figure 7-8: Conversion rate implied by an A1, F1 model with \(E_1 = 236 \text{ kJ/mol} \) and \(A_1 = 2.5 \times 10^{17} \text{ min}^{-1} \) (15 wt%) and an L2 model with \(E_2 = 260 \text{ kJ/mol} \) and \(A_2 = 2.6 \times 10^{16} \text{ min}^{-1} \) (79 wt%) and the experimental conversion rate for a 15.5 mg polypropylene sample at 15ºC/min under 100 mL/min N₂..156

Figure 7-9: Conversion rate and conversion (inset) of reactive weight for a 14.2 mg TBBA-BDPE sample at 5ºC/min under 100 mL/min N₂. The A3 model with \(E = 129 \text{ kJ/mol} \) and \(A = 1.5 \times 10^{11} \text{ min}^{-1} \) selected as the best fit for the rapid stage of weight loss after four iterations using data at six heating rates (2, 3, 5, 7, 15 and 20ºC/min) is shown. This first process (73 wt%) is not shown explicitly and the latter two processes are not scaled by their respective weight fractions (21 wt% and 4 wt%) for clarity...158

Figure 7-10: Super correlations used to derive IKP for the first stage of weight loss for TBBA-BDPE pyrolysis from six heating rates (a) and four heating rates (b) on the fourth iteration. Approximate 95% confidence intervals are shown for the compensation parameters..159

Figure 7-11: Conversion rate and conversion (inset) of reactive weight for a 16.0 mg TBBA-BDPE sample at 7ºC/min under 100 mL/min N₂. The A2 model with \(E = 194 \text{ kJ/mol} \) and \(A = 1.7 \times 10^{17} \text{ min}^{-1} \) selected as the best fit for the rapid stage of weight loss after four iterations using data at four heating rates (2, 3, 5, and 7ºC/min) is shown. This first process (75 wt%) is not shown explicitly and the latter two processes are not scaled by their respective weight fractions (21 wt% and 4 wt%) for clarity..160

Figure 7-12: Friedman analyses for TBBA-BDPE pyrolysis for all six and the slower four heating rates showing 95% confidence intervals...161

Figure 7-13: Numerical functions of overall conversion (with respect to reactive weight) derived from the differentiated overall conversion signals and the kinetic parameters \(E = 129 \text{ kJ/mol} \) and \(A = 1.5 \times 10^{11} \text{ min}^{-1} \). The range of overall conversion encompassing the maxima is highlighted ..162

Figure 7-14: Heat flow and weight signals for a 12.2 mg TBBA-BDPE sample at 10ºC/min under 100 mL/min N₂ (baseline corrected; closed crucibles). The small exotherm at ~400ºC is an artefact caused by the aluminium foil..163

Figure 7-15: Heat flow and weight signals for a 29.1 mg TBBA-BDPE sample at 10ºC/min under 33 mL/min air (baseline corrected; open crucibles)..164

Figure 7-16: Heat flow and weight signals for an 11.0 mg TBBA-BDPE sample at 10ºC/min under 100 mL/min N₂ (not baseline corrected; open crucibles)..165

Figure 7-17: Heat flow signals for open crucibles and an effectively closed sample crucible for TBBA-BDPE samples 44.5 mg/100 mL/min N₂ and 44.8 mg/33 mL/min N₂ respectively at 10ºC/min (baseline corrected)..165

Figure 7-18: Heat flow signals for TBBA samples with (10.9 mg) and without (11.2 mg) foil coverings on both sample and reference crucibles at 10ºC/min under 100 mL/min N₂ (baseline corrected). The weight signal for closed crucibles is shown......................166

Figure 7-19: Heat flow (solid lines) and weight (dashed lines) signals for 10.7 – 14.7 mg samples of structural analogues of TBBA-BDPE at 10ºC/min under 100 mL/min N₂. The evaporation of BA-DPE is not shown for clarity (baseline corrected; closed crucibles)..170

Figure 7-20: A series of FTIR spectra for a 16.0 mg TBBA-BDPE sample at 10ºC/min under 50 mL/min N₂ highlighting P- and R-branches for the diatoms HBr, HCl and CO. A slice at 33 mins (peak HBr absorbance) is shown in grey and depicts the distinct P- and R-branches for HCl and the small R-branch for CO..172
A New Adaptation of The Method of Invariant Kinetic Parameters and its Application to a Flame Retardant System

Figure 7-21: Weight loss rate (black line) recorded for the same 16.0 mg TBBA-BDPE sample (Figure 7-20) with the arbitrarily scaled time-absorbance slice for the HBr P- and R-branches overlayed (purple line). A small baseline error exists in the weight signal at ~140°C that corresponds to the switch in heating rate from 20°C/min to 10°C/min ... 172

Figure 7-22: A series of FTIR spectra for the 29.0 mg “PE-68/Sb2O3 Mixture” sample (Sb/Br atom ratio of 0.093) at 10°C/min under 50 mL/min N2. Emission of CO is shown to precede HBr ... 174

Figure 7-23: Weight loss rate (black line) recorded for the same 29.0 mg “PE-68/Sb2O3 Mixture” sample (Figure 7-22) with the arbitrarily scaled time-absorbance slice for the HBr P- and R-branches overlayed (purple line). The time scale was adjusted assuming the same delay between the Q600 and FTIR sampling as assigned to TBBA-BDPE (Figure 7-21). The weight signal for the 16.0 mg TBBA-BDPE sample (Figure 7-20) is shown for comparison ... 174

Figure 7-24: Heat flow and weight signals for the 29.0 mg “PE-68/Sb2O3 Mixture” sample (Sb/Br atom ratio of 0.093) at 10°C/min under 100 mL/min N2 .. 175

Figure 7-25: Heat flow, conversion rate and weight signals for 4.3 – 7.1 mg samples of the PolyPacific formulation with 10.4% TBBA-BDPE (1707-8) at heating rates 2 – 20°C/min under 100 mL/min N2 .. 177

Figure 7-26: Heat flow and weight signals for samples of polypropylene loaded with 31.2% TBBA-BDPE (Sample 12) at 10°C/min under 100 mL/min N2. Signals collected under the same conditions for a 4.5 mg sample of polypropylene and the summation of this and the correct weighting of 4.0 mg TBBA-BDPE to simulate a 31.2% loading are shown. All heat flow signals were re-zeroed after melting (baseline corrected; open crucibles) ... 177

Figure 7-27: Conversion rate for a 7.1 mg sample of the PolyPacific formulation with 10.4% TBBA-BDPE (1707-8) at 5°C/min under 100 mL/min N2 (baseline corrected; open crucibles) with the kinetic prediction for pure TBBA-BDPE pyrolysis scaled by 10.4% overlayed ... 178

Figure 7-28: Weight signals for samples of the PolyPacific formulation with 10.4% TBBA-BDPE (1707-8) ranging from 5.4 mg to 21.0 mg at 20°C/min under 100 mL/min N2 (baseline corrected; open crucibles) ... 179

Figure 7-29: Friedman analysis for the pyrolysis of the PolyPacific formulation with 10.4% TBBA-BDPE (1707-8) over heating rates of 2, 5 and 20°C/min showing 95% confidence intervals for two different ordinate scales ... 180

Figure 7-30: Heat flow, conversion rate and weight signals for 7.0 – 7.1 mg samples of the PolyPacific formulations with 5.2%, 10.4%, 15.6% and 20.8% TBBA-BDPE (1707-7, 8, 9 and 10 respectively) at 5°C/min under 100 mL/min N2 ... 181

Figure 7-31: Heat flow, conversion rate and weight signals for 6.9 – 7.3 mg samples of the PolyPacific formulation with 5.2% TBBA-BDPE (1707-7) and an additional 1.5% (1707-11) or 2.5% (1707-12) Sb2O3/LDPE at 20°C/min under 100 mL/min N2 ... 182

Figure 7-32: Weight loss rate measured by the cone calorimeter operating at 25 kW/m² for all the PolyPacific sample plaques ... 184

Figure 7-33: Heat release rate inferred from the modified version of Equation 2-1 for all the PolyPacific sample plaques from measurements taken with the cone calorimeter operating at 25 kW/m² ... 184

Figure 7-34: Rate of smoke formation inferred from laser attenuation for all the PolyPacific sample plaques measured by the cone calorimeter operating at 25 kW/m² ... 185

Figure 7-35: Effective heat of combustion calculated according to Equation 2-2 for all the PolyPacific plaques from measurements taken by the cone calorimeter operating at 25 kW/m² ... 186

Figure 7-36: Carbon dioxide emission inferred from the CO/CO₂ analyser for all the PolyPacific sample plaques from measurements taken by the cone calorimeter operating at 25 kW/m² ... 186

Figure 7-37: Carbon monoxide emission inferred from the CO/CO₂ analyser for all the PolyPacific sample plaques from measurements taken by the cone calorimeter operating at 25 kW/m² ... 187
Abstract

This thesis treats a particular flame retardant (FR) system with a new kinetic analysis method derived from the method of Invariant Kinetic Parameters (IKP). The IKP method is one of many techniques available that extract a kinetic triplet (activation energy, pre-exponential factor and function of conversion) from non-isothermal, constant heating rate thermogravimetric (TG) data. The principles and advantages of the IKP method are discussed within a broad context, as are its limitations that are shared by most other methods. Such a consolidated and critical literature review is uncommon and is designed to help the novice researcher navigate through the kinetic analysis “minefield”. Each and every step for all solid-state mechanism derivations are explained for the same purpose: To encourage the adoption of an informed and circumspect approach to often complex heterogenous kinetic analysis.

The new method improves kinetic analysis outcomes and reliability by, in part, refining the IKP. Its approach is described in such detail that the inherent complexity of this undertaking can be fully appreciated, and if possible, managed in better ways. Subroutines written in Visual Basic for Applications in Excel to realise the method are validated with synthetic data up to a complexity of two overlapped independent models. Output from the method that pertains to water evaporation and the decomposition of calcium carbonate compares favourably with expectation. Statistical analyses are integrated into the method and allow for the proper treatment of uncertainty in all applications.

Motivation for this study originated from a desire to characterise the commercial FR system, polypropylene/ tetrabromobisphenol A bis(2,3-dibromopropyl ether)/ antimony trioxide. No thorough analyses of this FR system previously existed. TG data nominally for input into the new method is correlated with differential scanning calorimetry and Fourier transform infrared spectroscopy, and the implications of these small-scale analytical techniques are illustrated with larger-scale cone calorimetry.

Benson’s Group Additivity Method applied to a characteristic exothermic weight loss during the thermal decomposition of the pure FR complements the results of the new kinetic analysis method. A proposed degradation pathway is affiliated with the nucleation and nucleus growth model of statistical significance implied as the first of three overlapped independent processes that match the pyrolysis behaviour of the FR. The synergistic effect of antimony trioxide derives from its ability to make bromine from the FR overcome the diffusive resistance of the polypropylene substrate and enter the gas phase prior to ignition. It is concluded that the FR system behaves as might have been expected from a careful interpretation of the literature.
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines.
Acknowledgements

I cannot say that this thesis has been a labour of love. Over the years, I have been able to forcibly transform this work into the narrowly-focused but in depth form in which it now appears, in order for it to marry (perhaps not only figuratively) to my critical sense of precision. This journey has been an emotional one and I am grateful to have this opportunity to thank those who assisted me along the way.

Firstly, I would like to thank Donavan Marney of the CSIRO for proposing this collaboration with our School of Chemical Engineering, and later, the School of Chemistry. His unerring enthusiasm and generosity buoyed my brief visits to Highett. I would also like to thank the many researchers at Highett who assisted me with sample preparation, data collection and the acquisition of research articles that were pivotal to the direction I took this study. I would like to thank the CSIRO itself for the funding in addition to that gratefully received from the University; this support has helped me survive financially in the latter years.

Mark Buntine, originally with the University's School of Chemistry, has my thanks particularly for his help interpreting IR spectra, as does Jonathan Morris, who directed the synthesis of the molecules I requested and made time to speak with me about chemical reactions.

Peter Ashman has been a pillar of support both professionally and personally. I cannot possibly do justice to my feelings of gratitude here. I will always be indebted to Peter for his recommendation that I see Krys Noah, who effectively counselled me out of the doldrums and onto a path that led me to where I am today. I am sad that I could not have walked the whole length of that path with Jon Keatley, who nevertheless was able to help me "see the light at the end of the tunnel", as I put it.

I have enormous gratitude for the painstaking work my friend Alban O'Brien has undertaken to digitise the flow charts and render my crude sketches into the beautiful physical depictions that appear in this thesis. Despite the hundreds of emails he must have from me in his inbox, I can sincerely say that I could not have worked with anyone more suited.

My friends, including my colleagues in the School, have always been there for me whether I've needed assistance, companionship or space and for that I am immeasurably grateful. Despite a relationship with whom I've had many ups and downs, Steve Amos has been unwavering in his desire to help and has certainly borne the brunt of my fouler moods. I thank Phil van Eyk, with whom I discussed heat transfer and the finer points of beer, Michael Roberts and Connell Wood; all shared A303 with me. More recently in A303, I have appreciated the company of Wang Ye and his instruction to maintain a positive attitude no matter the circumstance.

And finally, my heartfelt thanks go to my parents who not only accepted my return home, but actually seemed to enjoy having me around. Mum allowed me to ignore most of the chores of day-to-day living while Dad proofed the review chapters and helped to pluck some of what Mum calls "Anneisms" from my writing. Without my parents' love and support I could never have reached the milestone of thesis submission. I love you both.