Tako-Tsubo (Stress) Cardiomyopathy: Pathophysiology and Natural History.

By

Christopher James Alan Neil

Professor John Horowitz, Advisor

A Thesis Submitted In Fulfillment Of The Requirements
For The Degree Of Doctor of Philosophy

Faculty of Health Science
School of Medicine
The University of Adelaide

December 2012
Abstract

Introduction. Tako-Tsubo cardiomyopathy (TTC), also known as apical ballooning syndrome, is a recently described form of acute cardiac dysfunction of uncertain pathogenesis, which occurs with greatest frequency among post-menopausal women. Presentation generally mimics that of an acute myocardial infarction (AMI) but is independent of the presence of fixed coronary artery disease and is classically preceded by severe stress. While patients with TTC with ST elevation are typically diagnosed at emergent cardiac catheterization, the majority does not exhibit initial ST elevation. It is not known whether TTC can be reliably distinguished for AMI non-invasively on the basis of clinical and laboratory tests. Although there is considerable uncertainty about the pathogenesis of TTC, pronounced catecholamine release and an acute inflammatory process are implicated. Systolic dysfunction most commonly affects the apex of the left ventricle and has generally been considered self-limiting and fully reversible. Although obvious hypokinesis resolves and left ventricular ejection fraction tends to return to normal, data that challenge this view include abnormal elevation of natriuretic peptide concentrations, 3 months from the index event, together with the late persistence of some inflammatory cells on LV biopsy.

Methods. In three experimental chapters, this thesis examines aspects of (a) diagnosis (b) pathogenesis and (c) recovery, in a cohort of 125 TTC patients (mean age 67 years; 95% female). As regards diagnosis, it was hypothesized that an arbitrarily derived ‘TTC score’, incorporating NT-proBNP levels, might facilitate early differentiation from a cohort of females with AMI (n = 56; mean age 70 years). The primary comparison was based on data available at 24 hours post-admission. In a subset of 49 TTC patients, acute multisequential
cardiac magnetic resonance imaging was performed and repeated at 3 months. **Pathogenetic investigations:** Extent of oedema was quantified both regionally and globally from T₂ weighted images, with comparison to data from 10 age-matched female controls. Correlations were sought between oedema and the extent of hypokinesis, catecholamine release, N-terminal proBNP release and markers of systemic inflammatory activation. **Functional recovery** was assessed via 2D speckle-tracking echocardiography (n = 36) and 15 patients, ≥1 year from their index TTC admission, underwent T₁ mapping via CMR in order to address the question of whether residual fibrosis is present after TTC.

Results.

A. **Diagnosis:** TTC scores were significantly different (TTC group median was 4, vs. 2 in the ACS group; P < 0.0001). Receiver operator curve analysis demonstrated an area under the curve (AUC) of 0.74 (P < 0.0001), with 62% sensitivity and 75% specificity for a score ≥4; when stressor exposure was scored in both groups, AUC was 0.89 (P<0.0001), with 78% sensitivity and 82% specificity (TTC score ≥4). The TTC score separated groups when haemodynamic compromise was absent (AUC 0.80, P<0.0001), but not when hypotension or heart failure were evident (P = NS).

B. **Pathogenesis:** In the acute phase of TTC, T₂-weighted signal intensity was greater at the apex than at the base (P < 0.0001) but was nevertheless significantly elevated at the base (P < 0.0001), relative to control values; over three months, T₂-weighted signal decreased substantially but remained abnormally elevated (P = 0.02). Regional extent of edema correlated inversely with radial myocardial strain. There were also direct correlations between global T₂-weighted signal and plasma normetanephrine (r=0.33, p=0.028), peak NT-proBNP (r=0.40, p=0.0045), C-reactive protein (r=0.34, p=0.023) and troponin T release (r=0.29, p=0.045).

C. **Recovery:** Patients exhibited lower global longitudinal strain than controls [mean 17.9 ± 3.1 (SD)%, versus 20.3 ± 1.6; P = 0.0057], but did not differ significantly from controls in values of apical twist. Three month global longitudinal strain correlated with the extent of residual NT-pro-BNP elevation (r=0.38, P=0.027), but did not correlate with markers of the acute severity of the TTC attack. Finally, patients with a remote history of TTC,
demonstrated significant intramyocardial fibrosis ($V_e = 0.24$), versus controls ($V_e = 0.21$, $P = 0.013$), but extent of which was not correlated with global longitudinal strain.

Conclusions. (1) The TTC score, while not of itself diagnostic, may facilitate the differentiation of TTC in patients with presumed ACS, but with diminished efficacy in the presence of haemodynamic compromise. (2) TTC is associated with slowly resolving global myocardial edema, the acute extent of which is correlated with regional contractile disturbance and acute release of both catecholamines and NT-proBNP. (3) Imaging data after TTC indicate that, at 3 months, recovery is substantial, but not complete; at ≥1 year there is evidence of diffuse interstitial myocardial fibrosis. Further efforts to expedite diagnosis, delineate pathogenesis and evaluate residual disability may assist in the development of appropriate treatment regimens.
Declaration

This thesis is the result of my own investigation, except where otherwise stated. It contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed:

Christopher J. A. Neil, 17th December 2012
Acknowledgements

I am truly indebted and thankful to Professor John Horowitz for his help in generating ideas, support and guidance throughout. I would also like to acknowledge A/Prof Christopher Zeitz, who, as well as co-supervising this project, took a leading role among cardiologists at The Queen Elizabeth and Lyell McEwen Hospitals in recruiting patients for this study.

My colleagues, Dr Thanh Ha Nguyen, Dr Yuliy Chirkov, Ms Jeanette Stansborough and Ms Angela Kucia have all been of great assistance in the TTC project, with both intellectual contributions as well as involvement in the day-to-day work of the study.

This thesis relied heavily on cardiac imaging personnel: in this regard, notable thanks goes to Ms Sue Collings, Mr David Lockyer, Ms Kerry Williams, Ms Tharshy Pasupathy, Mr Matthew Chapman, Mr Brett Stocker, Dr Betty Raman, Dr Devan Mahadevan, Professor John Beltrame and Dr Ewan Choo.

I would like to thank the National Health and Medical Research Council and for funding this work and, similarly, the generosity of numerous patients and controls in giving their time for the studies described herein.

Finally, I would like to thank my wife, Sally, and children, Ella, Jonah, Daisy and Shiloah, for their support, patience and understanding.
Statement of contribution to research

The studies were conceived and designed jointly by Professor Horowitz and myself.

Execution

I performed all the recruitment and organization of patients into the studies, with the assistance of Ms Jeanette Stansborough (research nurse). I collected all clinical data, also with assistance from Ms Stansborough. I performed echocardiographic studies and cardiac magnetic resonance scans at The Queen Elizabeth Hospital. Dr Yuliy Chirkov performed the platelet aggregometry studies. Metanephrine assays were performed by Dr Malcolm Whiting at SA Pathology, Adelaide. Collagen biomarker assays was performed by Dr Michael Metz at ClinPath, Adelaide.

Analysis

All data were collated and analyzed by myself. Inter-observer analyses were performed with Dr Thanh Ha Nguyen, Mr Matthew Chapman and Ms Tharshy Pasupathy.
List of published studies

This thesis is based in part on the following original studies, which exist in published form:

Table of Contents

Abstract ... 2
Declaration .. 5
Acknowledgements .. 6
Statement of contribution to research ... 7
List of published studies ... 8
List of Tables ... 15
List of Figures .. 16
List of abbreviations used .. 17

Chapter 1: Literature review ... 18
 1.1 Acute myocardial injury: ischaemic and non-ischaemic causes ... 19
 1.2 Tako-Tsubo cardiomyopathy as a non-ischaemic acute cardiac injury 20
 1.2.1 Historical aspects .. 22
 1.2.2 Differentiation from myocardial infarction: early studies ... 23
 1.2.3 Evolution of definition ... 23
 1.2.3.1 The problem of ‘mandatory’ cardiac catheterization ... 24
 1.2.3.2 Is exclusion of fixed coronary disease enough? ... 25
 1.2.3.3 Can TTC coexist with CAD, phaeochromocytoma or myocarditis? 25
1.2.3.4 Excluding an ischaemic basis for regional contractile dysfunction in TTC27

1.3 **Tako-Tsubo cardiomyopathy: clinical aspects** ... 28

1.3.1 Epidemiology ... 28

1.3.2 Acute presentation ... 29

1.3.2.1 Gender disparity ... 29

1.3.2.2 Age and cardiometabolic risk profile ... 30

1.3.2.3 Antecedent psychological and physiological stress in TTC ... 31

1.3.2.4 TTC complicating medical/surgical illness ... 31

1.4 **Associated abnormalities** ... 34

1.4.1 ECG changes and arrhythmogenicity .. 34

1.4.1.1 ST-T wave abnormalities: specificity for TTC .. 34

1.4.1.2 QT prolongation and torsade de pointes ... 34

1.4.2 Laboratory findings .. 36

1.4.2.1 Markers of myocardial necrosis .. 36

1.4.2.2 Natriuretic peptide elevation .. 36

1.4.2.3 Elevation of catecholamine levels .. 38

1.4.3 Echocardiography ... 42

1.4.3.1 Doppler echocardiography ... 43

1.4.3.2 Diastolic function ... 44

1.4.3.3 Advanced echocardiography/myocardial mechanics ... 45

1.4.4 Cardiovascular magnetic resonance imaging ... 48

1.4.4.1 Evaluation of myocardial necrosis or scar .. 48

1.4.4.2 Oedema imaging .. 49

1.4.5 Nuclear imaging findings ... 50

1.4.5.1 Nuclear perfusion imaging ... 50

1.4.5.2 Cardiac sympathetic neuroimaging ... 51

1.4.5.3 “Metabolic” imaging findings .. 51

1.5 **Pathogenesis** ... 52

1.5.1 Anatomical and histological descriptors ... 52

1.5.1.1 Anatomical problems .. 52

1.5.1.2 Evidence from histology and ultrastructural analysis ... 56

1.5.2 Is there a problem with myocardial perfusion? .. 56

1.5.2.1 Diffuse or multivessel epicardial coronary spasm .. 57

1.5.2.2 Coronary reserve and microvascular dysfunction .. 57

1.5.3 Biochemical bases of hypokinesis: calcium, energetics and *stunning* 59

1.5.4 Does catecholamine exposure “cause” TTC? ... 61

1.5.4.1 “Non-classical” actions of catecholamines: oxidative stress 62
1.5.5 Other potential biochemical effectors ...64
 1.5.5.1 Neuropeptide Y ...64
 1.5.5.2 Nitric oxide ..64
 1.5.5.3 Potential proadrenergic effect of BNP65
1.5.6 Factors engendering rapid recovery: biochemical determinants66
1.5.7 Relevance of postulated animal models ...67
 1.5.7.1 Observations from rodent models of catecholamine cardiotoxicity...67
 1.5.7.2 Application to TTC: rodent models ..68
 1.5.7.3 A non-human primate model of TTC73
1.5.8 Key unanswered questions ..73
 1.5.8.1 Insights into predisposition in females73
 1.5.8.2 What underpins individual susceptibility to TTC?75
 1.5.8.3 Basis for acute hemodynamic heterogeneity77
1.5.9 Potential links to other forms of acute cardiomyopathy78
1.6 Natural history of Tako-Tsubo cardiomyopathy 81
 1.6.1 Short-term complications and outcomes81
 1.6.1.1 Acute complications of TTC ...81
 1.6.1.2 Haemodynamic status in TTC ..82
 1.6.2 Long term outcome ..83
1.7 Therapeutic considerations .. 84
1.8 Scope of the current studies ...85
1.9 Tables ..86
1.10 Figures ..93

Chapter 2: Clinical Studies in TTC: Towards Expedited Diagnosis 96
2.1 Background ..97
 2.1.1 Towards expedited diagnosis: rationale98
 2.1.2 Potential components of a diagnostic algorithm: candidates99
 2.1.3 A summative “TTC score” for early diagnosis of TTC102
 2.1.4 Development of a ‘TTC score’ ..102
 2.1.5 Aims and Hypotheses ...103
2.2 Methodology ..103
 2.2.1 Patient selection: TTC group ...103
 2.2.2 Patient selection: ACS/acute MI ...104
 2.2.3 Patient management in hospital ...104
 2.2.4 Investigations ...105
Chapter 3: Inflammatory activation during the acute phase of Tako-Tsubo cardiomyopathy: information from cardiac magnetic resonance

3.1 Introduction ... 136

3.2 Methodology ... 137

3.2.1 Patient selection ... 137

3.2.2 Clinical protocol ... 138
Chapter 4: Recovery from TTC: short and long-term aspects. 160

4.1 Introduction .. 161
 4.1.1 Evaluation of subtle LV dysfunction and fibrosis: imaging tools 162
 4.1.2 Aims and hypotheses .. 163

4.2 Methodology ... 164
 4.2.1 Patient/subject selection ... 164
 4.2.2 Echocardiographic methodology (Study 1 and 2) .. 165
 4.2.2.1 Serial protocol and analysis ... 165
 4.2.2.2 Multidirectional deformation and rotational parameters 166
 4.2.2.3 Non-2DS echocardiographic parameters ... 167
 4.2.3 Additional biological investigations (Study 1) .. 168
 4.2.4 CMR methodology ... 168
 4.2.4.1 Scanning protocol .. 168
 4.2.4.2 Derivation of T_1 and V_e values ... 170
List of Tables

Table 1.1 Conditions associated with raised cardiac troponins ... 86
Table 1.2 Mayo Clinic diagnostic criteria for Tako-Tsubo cardiomyopathy 87
Table 1.3 Common or salient stressors/precipitants* of TTC ... 88
Table 1.4 Major pathogenetic theories in TTC ... 89
Table 1.5 Important seven-transmembrane-spanning receptors ... 90
Table 1.6 Histological and ultrastructural findings in patients with acute TTC 90
Table 1.7 Case-control studies examining sympathetic responsiveness in TTC 91
Table 1.8 Cases of TTC/shock, with rapid improvement on Levosimendan 92
Table 1.9 Precipitation of TTC with dobutamine: selected case reports 92
Table 2.1 Comparison of acute clinical and angiographic features ... 124
Table 2.2 Classification of identified antecedent stressors in TTC group 125
Table 2.3 Haemodynamic and imaging characteristics of TTC patients 126
Table 2.4 Comparison of acute biochemical and ECG features ... 127
Table 2.5 Evolution of selected ECG findings in TTC ... 128
Table 2.6 Contribution of extent of NT-proBNP elevation to potential discrimination between TTC and ACS .. 129
Table 3.1 Patient and control characteristics, Studies 1 and 2 .. 152
Table 3.2 CMR findings: LV volumes and functional indices ... 153
Table 4.1 Phantom manufacture according to specified T1 and T2 times 184
Table 4.2 Clinical and laboratory features in patients and controls ... 185
Table 4.3 Non-deformational parameters of LV function .. 186
Table 4.4 Longitudinal and rotational parameters of LV function ... 187
Table 4.5 Radial and circumferential deformational indices ... 188
Table 4.6 CMR indices for Study 2 .. 189
List of Figures

Figure 1.1 Selected examples from the cardiac imaging of TTC ... 93
Figure 1.2 Microvascular function in TTC. ... 94
Figure 1.3 Representative haemodynamic findings in "obstructive TTC" ... 95
Figure 2.1 Discriminatory value of extent of NT-proBNP elevation in TTC .. 130
Figure 2.2 Discriminatory value of NT-proBNP in relation to ST-elevation .. 131
Figure 2.3 Discriminatory value of TTC scores ... 132
Figure 2.4 Value of TTC scores with respect to haemodynamic status .. 133
Figure 2.5 Discriminatory value of TTC scores with respect to ST-elevation ... 134
Figure 3.1 Example T2-weighted short axis images ... 154
Figure 3.2 T2-w SI data from normal controls and acute TTC patients ... 155
Figure 3.3 Colour-coded bull’s-eye plots of T2-w SI in TTC versus controls ... 156
Figure 3.4 Acute and 3 month T2-w SI compared by ANOVA ... 157
Figure 3.5 Peak radial strain versus corrected T2-w SI, by region ... 158
Figure 3.6 Acute phase correlations between global T2-w SI and plasma normetanephrine, NT-proBNP, troponin T and C-reactive protein ... 159
Figure 4.1 Phantom validation of MOLLI-derived T1 values ... 184
Figure 4.2 Measurement and reproducibility characteristics of main indices.. 189
Figure 4.3 Recovery of LV functional indices .. 190
Figure 4.4 Comparison of LV function 3-month post-TTC, versus controls ... 191
Figure 4.5 Relationship between global longitudinal strain with LV mass ... 192
Figure 4.6 Relationship between global longitudinal strain and NT-proBNP concentration at 3 months ... 192
Figure 4.7 Comparison of Ve in TTC patients versus age-matched controls ... 193
Figure 4.8 Selected postmortem histological images ... 194
Figure 4.9 Further histological depiction of intramyocardial fibrosis .. 195
List of abbreviations used

MI Myocardial Infarction
STEMI ST-Elevation Myocardial Infarction
NSTEMI Non-ST-Elevation Myocardial Infarction
TTC Tako-Tsubo Cardiomyopathy
ACS Acute Coronary Syndrome
LV Left Ventricle
CAD Coronary Artery Disease
TIA Transient Ischaemic Attacks
ANP Atrial Natriuretic Peptide
BNP; NT-proBNP B-Type Natriuretic Peptide; Amino-Terminal Prohormone Of BNP
ET-1 Endothelin 1
NPR-C Natriuretic Peptide Receptor C
cGMP Cyclic Guanosine Monophosphate
AR; βAR Adrenoceptor; Beta-Adrenoceptor
SR Sarcoplasmic Reticulum
SERCA Sarco(Endo)Plasmic Reticulum Calcium ATPase
NET Norepinephrine Transporter
COMT Catecholamine O-Methyl Transferase
MAO Monoamine Oxidase
VMA Vanillylmandelic Acid
HPLC High Performance Liquid Chromatography
LVEF Left Ventricular Ejection Fraction
WMSI Wall Motion Score Index
PCWP Pulmonary Capillary Wedge Pressure
LGE Late Gadolinium Enhancement
CMR; CE-CMR Cardiovascular Magnetic Resonance; Contrast-Enhanced CMR
SPECT Single Photon Emission Computed Tomography
SNT Sympathetic Nerve Terminal
LVOT Left Ventricular Outflow Tract
LAD Left Anterior Descending
PDA Posterior Descending Artery
NOS Nitric Oxide Synthase
PI3K Phosphoinositide 3-Kinase
PKB Protein Kinase B
PARP Poly-ADP Ribose Polymerase
GRK5 G Protein-Coupled Receptor Kinase 5
LPS Lipopolysaccharide
TNF-α Tumour Necrosis Factor Alpha
IL Interleukin
SPAIR SPectral Attenuated Inversion Recovery
SENSE SENSitivity Encoding
T2-W SI T2-Weighed Signal Intensity
2DS 2D-speckle tracking
Ve Extracellular volume