Imaging Investigations of the Ruthenium(III) Anti-Cancer Drugs, NAMI-A and KP1019, and Novel Analogues

Sumy Antony
(M.Sc. Chemistry)

Supervised by Associate Professor Hugh H. Harris

School of Chemistry and Physics
The University of Adelaide
March 2014

A thesis submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy
General Declaration

I, Sumy Antony, certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

…………………………………………..
Sumy Antony

………..28/03/2014…………………………
Date
Acknowledgements

First and foremost, I would like to thank Assoc. Prof. Hugh H. Harris, The University of Adelaide for giving me an opportunity to do PhD under his guidance. I acknowledge his motivation, patience, constant support and optimistic outlook whilst my PhD and I could not imagine a better advisor and mentor to pursue my PhD. I sincerely appreciate his guidance and willingness to show faith and drive me back on right track when needed.

I have been fortunate enough to work under the guidance of Prof. Leone Spiccia, Monash University and I am indebted to him for giving me an opportunity to continue my research in his group. I would like to thank him wholeheartedly as he was excessively kind with his time and profound feedback.

I would like to thank Dr. Ian Musgrave, The University of Adelaide and Assoc. Prof. Tracey Brown, Monash University, for their time, tremendous support and for authorising access to their cell culture laboratory as well as for their willingness to discuss research. I am extremely grateful to Dr. Jade Aitken for her valuable teachings in synchrotron-related work. I would like to express my sincere thanks to Dr. Aviva Levina and Assoc. Prof. Paul Witting, University of Sydney, for the constant guidance and support with cell culture studies.

My PhD journey could not have been completed without the support from the staff of School of Chemistry and Physics, University of Adelaide and School of Chemistry, Monash University. I am thankful to Dr. Chris Sumby, The University of Adelaide and Prof. Jonathan C. Morris, The University of New South Wales, for their prerequisite help to endure my research. I would like to thank all the staff of Monash University especially, Dr Peter Nicholas for the help with NMR measurements, Ms Sally Duck for mass spectrometry and Dr. Craig Forsyth for X-ray crystallography. I also would like to thank all the staff
Acknowledgements

of Adelaide Microscopy and Monash Micro Imaging for their enormous support and guidance whilst fluorescent microscopy experiments.

A big thank you to all my friends in The University of Adelaide, members of the Harris group especially Claire M. Weekly – I have been lucky enough to work in her company and friendship. I am also thankful to Dr. Ashok Pehere for his generous help and suggestions with synthetic techniques, Dr. Marcus and all other members of Prof. Abell’s group for sharing their lab facilities in the beginning of my PhD. Members of the past and present Spiccia group – Jenny, Dominique, Michelle, Yan, D’Souza, Leena, Archana, Tanmaya, Monica, Bopha, Solmas and all others – thank you all for your company while working in the lab, office and making this PhD journey a great learning experience. I would like to express my sincere gratitude towards Vera and Andrian, for their help and support in cell culture studies.

Last but not least, I am indebted to my whole family for their constant support and encouragement. My great motivation was my mom and dad, I am thankful for their blessings and love which uphold me when obstacles came to my passage throughout my education. I may not be achieving this higher degree without their prayer support, sacrifices and dedication. I do not have enough words to express my gratitude towards Vino and Angie for their unwavering support – emotional and moral – during PhD and this thesis would certainly not have existed without them. My deepest gratitude to my siblings – Smitha, Julie, Anto, Anoop – for their unconditional love and support, which gave me enough inspiration to complete my studies. I would like to dedicate this thesis to my beloved Parents, Vino and Angie.

Thank you all once again, for making this PhD a great success.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aq</td>
<td>aqueous</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>br</td>
<td>broad (spectroscopic)</td>
</tr>
<tr>
<td>calcd</td>
<td>calculated</td>
</tr>
<tr>
<td>conc</td>
<td>concentrated</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>DMF</td>
<td>dimethyl formamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>d</td>
<td>doublet</td>
</tr>
<tr>
<td>ESI</td>
<td>electrospray ionisation</td>
</tr>
<tr>
<td>eV</td>
<td>electron volt</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared</td>
</tr>
<tr>
<td>g</td>
<td>gram(s)</td>
</tr>
<tr>
<td>h</td>
<td>hour(s)</td>
</tr>
<tr>
<td>HPLC</td>
<td>high-performance liquid chromatography</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>J</td>
<td>coupling constant</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>m/z</td>
<td>mass-to-charge ratio</td>
</tr>
<tr>
<td>MP</td>
<td>melting point</td>
</tr>
<tr>
<td>mg</td>
<td>milligram(s)</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>mL</td>
<td>millilitre(s)</td>
</tr>
<tr>
<td>mmol</td>
<td>millimole(s)</td>
</tr>
<tr>
<td>M</td>
<td>molarity</td>
</tr>
<tr>
<td>m</td>
<td>multiplet</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>q</td>
<td>quintet</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rf</td>
<td>retention factor</td>
</tr>
<tr>
<td>RT</td>
<td>room temperature</td>
</tr>
<tr>
<td>s</td>
<td>singlet</td>
</tr>
<tr>
<td>SAR</td>
<td>structure activity relationship</td>
</tr>
<tr>
<td>SRIXE</td>
<td>synchrotron radiation induced X-ray emission</td>
</tr>
<tr>
<td>t</td>
<td>triplet</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>TMS</td>
<td>tetramethyl silane</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>XRF</td>
<td>X-ray fluorescence</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>δ</td>
<td>chemical shift (in ppm)</td>
</tr>
<tr>
<td>μM</td>
<td>micromolar</td>
</tr>
</tbody>
</table>
Abstract

The success of platinum-based anti-cancer agents, such as cisplatin, has led to further investigation of the utilisation of other non-platinum metal compounds in cancer therapy. The research has generated particular interest in ruthenium-based chemotherapeutics, as ruthenium species display numerous characteristics which make them appropriate for drug design. Numerous small-molecule ruthenium complexes e.g., NAMI-A (new anti-metastatic inhibitor; ‘A’ stands for first compound in the series; [ImH][(trans-RuCl₄(DMSO))(Im)]; Im = imidazole) and KP1019 (Keppler compound 1019; [IndH][(trans-RuCl₄Ind₂]); Ind = indazole), have been discovered and found to exhibit promising anti-cancer properties without complete knowledge about the mechanism of their activity.

To develop more targeted drugs with reduced toxicity, it is important to have an accurate knowledge about the mechanism of anti-metastatic activity of these drugs in a complete biological system. Our specific interest in this research has been concerned with the investigation of anti-metastatic activity of analogues of NAMI-A and KP1019 by advanced techniques such as synchrotron-based X-ray fluorescence imaging (XRF) and fluorescent microscopy imaging.

A series of ruthenium(III) complexes, which are analogous to either NAMI-A or KP1019, have been synthesised and structurally characterised and their pharmacological activities have been investigated in vitro. The intracellular uptake and distribution of these complexes in human lung cancer cell line (A549) was explored by synchrotron-based X-ray fluorescence microscopy and optical fluorescent microscopy. The intracellular distribution of ruthenium in individual A549 cells treated with KP1019 was revealed by XRF and the results demonstrate an accumulation of ruthenium inside the cytosol and the nucleus. On the contrary, NAMI-A treated cells are devoid of any alteration in intracellular distribution of elements, indicating a membrane-binding mechanism for the cytotoxic activity of NAMI-A. The results in turn
Abstract
demonstrate a different cellular destiny for the complexes, NAMI-A and KP1019.

The selective aggregation or intracellular speciation of ruthenium inside the cancer cells, treated with iodine substituted KP1019 analogues, was investigated by synchrotron-based μ-XRF studies. The addition of an iodinated ligand to the parent complex significantly altered the overall distribution of ruthenium across the cell from that observed for the parent complex. The ‘double-tag’ approach, tagging the N-heterocyclic ligand on KP1019 analogues with iodine and then tracking the cellular distribution of both ruthenium and iodine, demonstrated that the Ru-N bond in the treatment compound remained intact inside the cells. A significant increase in the concentration of both ruthenium and iodine inside the nucleus compared to that of control cells proved that the complexes selectively targeted and aggregated inside the nucleus of the treated cells.

The distinct cellular pathways of the ruthenium(III) complexes have been investigated by the functionalisation of the imidazole ligand of NAMI-A with other optically fluorescent functionalities. With the aim of eliminating the fluorescence arising from the counter cations, tetramethylammonium analogues were synthesised and characterised. The observed optical properties thus reflected the contribution from the metal complex anion only. The in vitro investigation of the synthesised complexes in lung cancer cells (A549) demonstrated that the functionalisation of NAMI-A does not significantly change the cytotoxic properties of the synthesised analogues. Numerous analogues of NAMI-A with enhanced imaging and targeting functionalities could be synthesised to investigate the biotransformation of ruthenium containing metabolites inside the cancer cell.

In general, a number of new biologically active ruthenium(III) complexes, which are analogous to the model complexes NAMI-A and KP1019, have been synthesised and characterised. Their intracellular speciation, aggregation and the optical fluorescent properties have been investigated. The acquired knowledge on the cytotoxicity, intracellular distribution and speciation of treated NAMI-A
and KP1019 analogues can contribute to the investigation of the mechanism of anti-metastatic activity of these drugs inside the cancer cells. It may lead to the further development of new ruthenium chemotherapeutics having wide spectrum of activity when compared to platinum-based drugs.
Table of Contents

Chapter 1. Introduction

1. Cancer – A general overview...1
 1.1. Cancer...1
 1.2. Treatment of cancer..3
 1.3. Targeted therapy...3
 1.4. Challenges of drug discovery and current cancer therapies...5

2. Metal-based drugs...6
 2.1. Platinum-based anti-cancer agents.................................7
 2.2. Ruthenium-based anti-cancer agents.............................10
 2.2.1. Platinum to ruthenium......................................10
 2.2.2. Ruthenium(III) complexes................................11
 2.2.3. Ruthenium(II) arene complexes............................13
 2.2.4. Ruthenium multinuclear complexes.......................15
 2.3. Challenges of ruthenium-based drugs............................17
 2.4. Importance of this study...18

3. Mechanism of action of Ru-based drugs..............................18
 3.1. Activation by reduction..19
 3.2. Iron mimicking..20
 3.3. Hydrolytic pathway..21
 3.4. Need for further studies...23

4. Ruthenium complexes as anti-cancer agents.........................24
 4.1. Ru-based drugs can act as prodrugs.............................24
 4.2. Anti-metastatic activity of NAMI-A analogues...............25
5. Aim..27
6. Significance of the project...28
 6.1. Anti-neoplastic property...28
 6.2. Protein binding ability...30
 6.3. Rate of ligand exchange..31
 6.4. Contribution to the discipline...33
7. Methodology..34
 7.1. Cell culture studies...34
 7.1.1. Finite cell line...34
 7.1.2. Continuous cell line..35
 7.1.3. Cell culture conditions...35
 7.1.4. Advantages of cell culture..36
 7.2. X-ray fluorescence spectroscopy (XRF).................................37
 7.2.1. Theory behind XRF...37
 7.2.2. Synchrotron-based XRF technique..................................38
 7.3. Si₃N₄ membranes as growth substrates for imaging.............39
7.4. Fluorescent microscopy – live cell imaging techniques..........41
8. Capabilities of the techniques...42
 8.1. Elemental distribution in single cells by XRF.........................42
 8.2. Linking results with bio-chemical assays...............................44
 8.3. Average spectra of the bulk cells...45
 8.4. Identifying biological targets by fluorescent microscopy......46
9. Summary of the present work...48
10. References...51

Chapter 2. Distinct cellular fates for KP1019 and NAMI-A determined by
X-ray fluorescence imaging of single cells..59
(journal page numbers are displayed for published articles)
 Statements of Authorship...61
 Abstract..63 (1051)
 Introduction..63 (1051)
 Experimental...64 (1052)
 Instrumentation..64 (1052)
Table of Contents

Preparation of KP1019 and NAMI-A.........................64 (1052)
Analysis...64 (1052)
Cell culture..64 (1052)
Preparation of whole cells for analysis.....................64 (1052)
Results and discussion..65 (1053)
Conclusions...67 (1055)
Acknowledgements..67 (1055)
Notes and references..67 (1055)

Chapter 2. Supporting information..............................71

Chapter 3. X-ray fluorescence imaging of single human cancer cells reveals that the N-heterocyclic ligands of iodinated analogues of ruthenium anticancer drugs remain coordinated after cellular uptake..97
(journal page numbers are displayed for published articles)

Statements of Authorship......................................99
Abstract...103 (845)
Keywords..103 (845)
Introduction...103 (845)
Materials and methods...104 (846)
Instrumentation...104 (846)
Materials..104 (846)
Syntheses of complexes.......................................105 (847)
Cell culture and in vitro cytotoxicity assays...............105 (847)
Preparation of A549 cells for μ-XRF studies............106 (848)
Results..106 (848)
Cytotoxicity via cell adhesion impedance measurement106 (848)
XRF elemental mapping of single treated cells........107 (849)
Discussion..107(849)
Acknowledgements...110 (852)
References...110 (852)

Chapter 3. Supporting information.............................113
Table of Contents

Chapter 4. Fluorescent analogues of NAMI-A: Synthesis, characterization, fluorescent properties and preliminary biological studies in human lung cancer cells...141
 Statements of Authorship..143
 Abstract...145
 Introduction..146
 Results and Discussion..149
 Syntheses and characterisation...149
 UV-Vis Absorption spectroscopy..151
 Emission spectra and quantum yield.......................................152
 Cytotoxicity assays using real time xCELLigence (IC$_{50}$).........155
 Potential of synthetic approach demonstrated.......................155
 Conclusion..155
 Experimental...156
 Instrumentation...156
 Materials and methods...157
 Syntheses of complexes...157
 Fluorescent Quantum Yield...160
 Cell culture and in vitro cytotoxicity testing.............................160
 Acknowledgements..161
 References..162

Chapter 4. Supporting information..165

Chapter 5. Development of ruthenium NAMI-A analogues by structure-activity relationships: Syntheses, structural characterization, fluorescent properties and preliminary biological studies in human lung cancer cells (A549)...191
 Statements of Authorship..193
 5.1. Abstract..195
 5.2. Introduction..196
 5.3. Results and discussion..201
 5.3.1. Syntheses and characterisation.......................................201
Table of Contents

5.3.2. UV-Vis absorption spectra for the complexes 205
5.3.3. Fluorescent spectra .. 208
5.3.4. Cytotoxicity assays (IC$_{50}$) 210
5.3.5. Fluorescent microscopy 211

5.4. Conclusions ... 214

5.5. Experimental ... 215

5.5.1. Instrumentation .. 215
5.5.2. Materials and methods 216
5.5.3. Syntheses of complexes 216
5.5.4. Fluorescent quantum yield 221
5.5.5. In vitro cytotoxicity studies 221
5.5.6. Fluorescent microscopy and live cell imaging 222

5.6. References .. 224

Chapter 6. Conclusions and Future Directions 227

6.1. Conclusions .. 229

6.1.1. Summary of the submitted work 229
6.1.2. General evaluation ... 231

6.2. Future directions .. 232

6.2.1. Structure-activity relationships (SARs) 233
6.2.2. High affinity drugs for cancer targets 233
6.2.3. Ruthenium-ODM complexes 234

6.3. Concluding summary .. 235

6.4. References .. 236

Appendix I. Miscellaneous experimental data – Chapter 3 239
Appendix II. Miscellaneous experimental data – Chapter 4 249
Appendix III. Experimental data – Chapter 5 261