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Abstract

Variation in the serotonin transporter gene (5-HTT; SERT; SLC6A4) has been suggested to pharmacogenetically
drive interindividual differences in antidepressant treatment response. In the present analysis, a ‘pharmaco-
epigenetic’ approach was applied by investigating the influence of DNA methylation patterns in the 5-HTT
transcriptional control region on antidepressant treatment response. Ninety-four patients of Caucasian descent
with major depressive disorder (MDD) (f=61) were analysed for DNA methylation status at nine CpG sites in
the 5-HTT transcriptional control region upstream of exon 1A via direct sequencing of sodium bisulfite
treated DNA extracted from blood cells. Patients were also genotyped for the functional 5-HTTLPR/rs25531
polymorphisms. Clinical response to treatment with escitalopram was assessed by intra-individual changes of
HAM-D-21 scores after 6 wk of treatment. Lower average 5-HTT methylation across all nine CpGs was found
to be associated with impaired antidepressant treatment response after 6 wk (p=0.005). This effect was particu-
larly conferred by one individual 5-HTT CpG site (CpG2 (GRCh37 build, NC_000017.10 28.563.102; p=0.002).
5-HTTLPR/rs25531 haplotype was neither associated with 5-HTT DNA methylation nor treatment response.
This analysis suggests that DNA hypomethylation of the 5-HTT transcriptional control region – possibly via
increased serotonin transporter expression and consecutively decreased serotonin availability – might impair
antidepressant treatment response in Caucasian patients with MDD. This pharmaco-epigenetic approach
could eventually aid in establishing epigenetic biomarkers of treatment response and thereby a more persona-
lized treatment of MDD.
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Introduction

Antidepressive pharmacotherapeutic agents such as
selective serotonin reuptake inhibitors (SSRIs) have pro-
ven to be effective for a large proportion of patients in
the treatment of major depressive disorder (MDD).
However, about 50–60% of all patients fail to respond
sufficiently to the initial treatment (Fava, 2003), which
has been suggested to be partly due to genetic factors
(Pare and Mack, 1971; O’Reilly et al., 1994; Franchini
et al., 1998). Consequently, pharmacogenetic studies
have examined association of response to antidepressants
with variation in several candidate genes (cf. Kato and
Serretti, 2010).

Particularly, the gene coding for the serotonin trans-
porter (5-HTT; SERT; SLC6A4; chromosome 17q11.1–12),
the presumed site of initial action of SSRIs, has attracted
much interest. Numerous pharmacogenetic studies
reported association of a functional insertion/deletion
polymorphism (LPR) in the 5-HTT transcriptional control
region with antidepressant response in mood disorder
patients, with, however, inconsistent findings across
studies partly depending on ethnicity. Two meta-analyses
of 15 and 33 studies, respectively, discerned a significant
association of the less active 5-HTTLPR S allele with
impaired treatment response particularly to SSRIs in
Caucasian, but not in Asian populations (Serretti et al.,
2007; Porcelli et al., 2012). However, there are also contra-
dictory studies of no influence of 5-HTT gene variation
on response to SSRIs in Caucasian patients with MDD
(e.g. Lewis et al., 2011), and in none of the three available
genome-wide association studies (GWAS) on antidepres-
sant treatment response was 5-HTT gene variation
found to be associated with treatment response
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(see meta-analysis by GENDEP Investigators, 2013).
Besides ethnicity, etiological heterogeneity, high com-
plexity of the clinically defined phenotype, environmental
factors, low statistical power of the individual studies
and random error in the absence of a true effect, another
potential confounder of the presently available pharma-
cogenetic studies might be epigenetic processes such as
methylation of the cytosine pyrimidine ring in CpG
dinucleotides, which are flexible, temporally dynamic
and functionally highly relevant mechanisms suggested
to shape disease risk as well as treatment response in
MDD (Menke et al., 2012; Schroeder et al., 2012; Frieling
and Tadic, 2013).

The 5-HTT transcriptional control region contains a
CpG island, which has been found to be variably methyl-
ated and to functionally influence 5-HTT mRNA levels
with increased methylation, resulting in decreased 5-HTT
expression depending on the 5-HTTLPR (Philibert et al.,
2007). Four studies available so far have identified
increased 5-HTT promoter methylation to be associated
with lifetime diagnosis of depression (Philibert et al.,
2008), with family history and severity of depression
(Kang et al., 2013), with post-stroke depression at 2 wk
and particularly at 1 yr after stroke (Kim et al., 2013),
as well as with more severe depressive symptoms in
a sample of monozygotic twins (Zhao et al., 2013a). In con-
trast, increased depressed mood in the second trimester
of pregnant women was found to be associated with
decreased 5-HTT promoter methylation in mothers as
well as in their infants shortly after birth (Devlin et al.,
2010).

To date, only one study explicitly investigated the
impact of 5-HTT promoter methylation on antidepressant
treatment response. In a sample of 108 Korean patients
with MDD, Kang et al. (2013) failed to discern a sig-
nificant influence of 5-HTT promoter methylation on
response after 12 wk of naturalistic antidepressant treat-
ment after correction for multiple testing, reporting,
however, a trend toward higher methylation at CpG2
conferring less improvement on the Hamilton Depression
scale (HAM-D). So far, only two other studies have
investigated the impact of methylation patterns in other
candidate genes on antidepressant treatment response
(brain derived neurotrophic factor, BDNF (Tadic et al.,
2014); interleukin-11, IL11 (Powell et al., 2013)).

Against this background, and given that the only
available study on 5-HTT methylation and antidepressant
treatment response was performed in an Asian popu-
lation (Kang et al., 2013), the present pharmaco-epigenetic
analysis was performed to further elucidate potential
effects of 5-HTT promoter methylation on treatment
response in a sample of Caucasian patients with MDD
treated with escitalopram for 6wk. We hypothesized
that SSRI treatment would be less successful in patients
with decreased 5-HTT promoter methylation, presumably
counteracting SSRI action by increasing 5-HTT activity
and thereby lowering available serotonin levels.

Method

Sample

The overall sample comprised 94 German patients treated
for major depressive disorder (f=61; age: 47.4±1.7 yr).
Patients were selected for this analysis retrospectively
from a larger patient cohort consecutively and naturalisti-
cally treated for MDD at the Department of Psychiatry,
University of Muenster, Germany, between 2004 and
2006 (cf. Baune et al., 2008a,b; Baffa et al., 2010), when
they met the criteria of treatment with escitalopram
over a period of 6wk initiated after admission for inpati-
ent treatment. Co-medication with other psychopharma-
cological agents was permitted and recorded. Patients’
diagnoses were ascertained by experienced psychiatrists
on the basis of medical records and structured clinical
interviews (SCID-I) according to the criteria of DSM-IV
(Wittchen, 1997), with 12 patients meeting the criteria
for melancholic depression and eight patients for
atypical depression. Two participants had a comorbid
anxiety disorder, which is considerably less than the
expected rate of comorbidity based on epidemiological
studies (Kessler et al., 1998, 1999). Patients with bipolar
disorder (as retrospectively ascertained, which does not
rule out conversion of pseudo-unipolar depression into
bipolar disorder after the present study period),
psychotic disorders including schizo-affective disorder,
comorbid substance abuse disorders (apart from nicotine
abuse), intellectual disability, neurological or neuro-
degenerative disorders impairing psychiatric evaluation
and pregnant patients were not included in this analysis.
Clinical characteristics were furthermore evaluated by
the Hamilton Depression (HAM-D-21) scale, the Beck
Depression Inventory (BDI) and the Global Assessment
of Functioning (GAF) scale (see Table 1). The clinical
course of depression was assessed using the HAM-D-21
scale on a weekly basis. The clinical assessment and ascer-
tainment of HAM-D, BDI and GAF scores at admission
and during the course of treatment, respectively, were
done by experienced psychiatrists. Side effects were
not systematically assessed in detail. Since smoking
has been shown to potentially influence methylation
status (Lee and Pausova, 2013; Zhao et al., 2013a,b),
smoking status was ascertained in the present sample.
In order to minimize the risk of ethnic stratification,
Caucasian descent was ascertained by Caucasian back-
ground of both parents. The analysis was approved by
the ethics committee of the University of Muenster,
Germany. Written informed consent was obtained from
all participating subjects, and the analysis was conducted
according to the ethical principles of the Helsinki
Declaration.

Medication

All patients were treated with a selective serotonin re-
uptake inhibitor (SSRI) (escitalopram) in a naturalistic
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setting with the following combinations of antide-
pressant medication: escitalopram only N=61 (64.9%),
or escitalopram plus mirtazapine N=33 (35.1%). In ad-
dition to antidepressants, co-medication such as atypical
antipsychotics (N=40; 42.6% of the sample: quetiapine
(N=18), olanzapine (N=14), risperidone (N=8)) as well
as mood stabilizers (N=29; 30.9% of the sample: lithium
(N=20), lamotrigine (N=6) (cf. Barbosa et al., 2003),
valproic acid (N=3) (cf. Debattista et al., 2005)) was
used as partly off-label augmentation of the antidepres-
sant regimen. Co-medication was started either at the
same time SSRI treatment commenced or later during
the 6 wk period of observation in this study. Benzo-
diazepines were not used. The blood sample was taken
before patients were started on the current medication.
None of the included patients had received electro-
convulsive therapy within 6months before the present
investigation. None of the patients received a specific
psychotherapeutic intervention apart from supportive
medical visits.

Response to antidepressant treatment

As the main outcome variable, clinical response to treat-
ment was measured by the intra-individual relative (%)
change of HAM-D-21 scores after week 6 relative

to HAM-D at week 1. This is in accordance with the
ACNP task force guidelines on response and remission
in MDD, which recommend monitoring of changes
within a subject (for whom initial severity is fixed) rather
than comparing response rates between subjects for
whom initial values range widely (Rush et al., 2006).
The initial changes in HAM-D scores occurring during
week 1 were not included, as HAM-D changes during
this period were most likely not related to the presently
evaluated antidepressant medication (escitalopram),
since in this cohort of inpatients antidepressants have
been regularly switched to medication with escitalopram
at the end of week 1 after initial medical and psychiatric
evaluation following admission. Thus, in the present
naturalistic study design HAM-D score at week 1 is to
be considered the pre-therapy HAMD-21 baseline score
(cf. Baune et al., 2008a; Domschke et al., 2008, 2010).
However, the statistical analysis of the proposed influ-
ence of 5-HTT DNA methylation on HAM-D %-change
scores after 6 wk of treatment relative to HAM-D at
week 1 as the main outcome variable (see above) using
linear regression analyses was adjusted for HAM-D
score at admission (see ‘Statistical analysis’ below).
Clinical remission was defined as subjects having a
HAM-D total score of 7 points or less after 6 wk of
antidepressant treatment.

Table 1. Characteristics of N=94 patients with MDD

Characteristics Sample (N=94)

Age (yr; mean±S.E.) 47.4±1.7
Female (N, %) 61, 64.9%
5-HTTLPR/rs25531 haplotypes LA/LA: N=29; rest1: N=65
Smoking status (yes vs. no; N, %) 21 vs. 73, 22.3% vs. 77.7%
HAM-D scores (mean±S.E.)

Admission 21.2±0.9
Week 1 15.6±0.8
Week 6 10.4±0.6
% change at week 6 relative to week 1 −35.0%±4.6
Discharge 5.4±0.5

BDI (mean±S.E.)
Admission 26.5±1.0
Discharge 10.8±0.9

GAF (mean±S.E.)
Admission 42.9±1.8
Discharge 68.6±2.2

Lifetime episodes of MDD (No., mean±S.E.) 3.1±0.4
Lifetime hospitalization (No., mean±S.E.) 3.2±0.3
Lifetime duration of MDD (yr, mean±S.E.) 12.4±1.2

Co-medication (yes; N, %)
Antidepressant plus antipsychotics (SGA) N=40; 42.6%
Antidepressant plus mood stabilizer N=29, 30.9%

MDD=major depressive disorder; N=sample size; No.=number; S.E.=standard error;
HAM-D=Hamilton Depression Scale (HAM-D-21); BDI=Beck Depression Inventory;
GAF=Global Assessment of Functioning; yr=years; SGA=second generation antipsychotics.
1 The category ‘rest’ contains haplotypes LGLG=2, LASA=36, LASG=14 and SASA=13.
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Isolation of DNA

DNA was isolated from human whole blood using a
FlexiGene DNA Kit (QIAGEN, Germany) according to
the manufacturer’s instructions. In brief, lysis buffer was
added to the samples and cell nuclei and mitochondria
were pelletized by centrifugation. The pellet was resus-
pended and incubated in denaturation buffer, which
contains a chaotropic salt and protease. DNA was preci-
pitated by addition of isopropanol and washed in 70%
ethanol. The dried pellet was resuspended in 25mM

TrisHCl hydration buffer, pH 7.8. DNA concentration
was determined by measuring at 260 and 280 nm
(GENios Pro, Tecan, Germany).

Bisulfite sequencing

Treatment of DNA with sodium bisulfite converts non-
methylated cytosine to uracil, whereas methylated cyto-
sine remains unaltered. Aliquots of isolated DNA were
treated with sodium bisulfite using the EZ-96 DNA
Methylation TM Kit (Zymo Research, HiSS Diagnostics
GmbH, Germany) according to the manufacturer´s
protocol for all samples in one batch. Briefly, 450 ng
of DNA were submitted to bisulfite treatment for 16
cycles at 95 °C for 30 s and 50 °C for 60min in a thermal
cycler (Mastercyler ep, Eppendorf, Wesseling-Berzdorf,
Germany). DNA was eluted after desulphonation and
purified using Zymo-Spin IC columns (Zymo Research,
HiSS Diagnostics GmbH, Germany). As a control, com-
mercially available fully methylated and fully non-
methylated DNA was used in all experiments.

One amplicon in the 5-HTT transcriptional control
region just upstream of exon 1A (Lesch et al., 1994) was
chosen for further analysis in analogy to previous studies
on 5-HTT DNA methylation with regard to stress-related
measures and depression (Devlin et al., 2010; Alasaari
et al., 2012; Kim et al., 2013), as well as to the only
other study available so far pharmaco-epigenetically
investigating 5-HTT methylation status and antidepres-
sant treatment response (Kang et al., 2013) (see Fig. 1).
The amplicon was PCR-amplified using the following
set of oligonucleotide primers recognizing bisulfite
modified DNA (F: 5′ TAAGGGTTTTTAAGTTGAGTTTA-
TATTTTA 3′ and R: 5′ CTAATCCCRAACTAAACAAAC-
RAACTAA 3′ (R coding for A or G), length: 635 bp,
(Philibert et al., 2007)) under the following PCR condi-
tions using Hot Start Taq polymerase (Zymo Research,
HiSS Diagnostics GmbH, Germany): denaturation at
94.5 °C for 1min, annealing at 53 °C for 1min and exten-
sion at 72 °C for 2min (40 cycles). Amplified PCR pro-
ducts were purified with Multi Screen HTS Filter Plates
(Millipore GmbH, Germany). DNA sequencing was
performed using Big Dye Terminator chemistry (v.3.1,
Applied Biosystems by Life Technologies, Germany) on
a 3730xl DNA analyser sequencing platform (Applied
Biosystems by Life Technologies, Germany). The result-
ing electropherograms allowed the robust identification

of methylation status of nine individual CpG sites
(CpGs 1–9, further CpGs not readable due to technical
sequencing failure at 5′ and 3′ ends of the amplicon; see
Fig. 1) using Chromas (Technelysium Pty Ltd) and
Sequence Scanner software (Applied Biosystems by Life
Technologies, Germany). To account for run variability,
all samples were tested in duplicate, yielding a mean in-
dividual methylation score for each CpG. These 9 CpGs
– comprising the 5 CpGs analysed in the study by
Alasaari et al. (2012), 9 CpGs analysed by Devlin et al.
(2010) and all 7 CpGs analysed by Kang et al., and Kim
et al., respectively (Kang et al., 2013; Kim et al., 2013)
(see legend to Fig. 1) – were included in further analyses.

The obtained sequences were quantitatively analysed
by determining relative peak heights (C/C+T) from the
normalized sequence trace files using Epigenetic
Sequencing Methylation analysis software (ESME) spe-
cifically designed and evaluated for artificially generated
SNPs (C/T and G/A). This performs quality control, nor-
malizes signals, corrects for incomplete bisulfite con-
version and aligns generated bisulfite sequence and
reference sequence to compare C to T peak heights at
CpG sites (Lewin et al., 2004) It has been successfully
used to analyse DNA methylation profiles in psychiatric
phenotypes (e.g. Muschler et al., 2010; Alasaari et al.,
2012; Domschke et al., 2012, 2013; Heberlein et al., 2013;
Tadic et al., 2013).

Genotyping of 5-HTTLPR/rs25531

5-HTTLPR (S/L) (Lesch et al., 1996) and rs25531 (A/G)
crucially modifying 5-HTTLPR functionality (Hu et al.,
2006; Wendland et al., 2006) variants were genotyped
according to published protocols with minor modifica-
tions (Baune et al., 2008b; Baffa et al., 2010). DNA was
amplified by PCR (60 s at 94 °C, 60 s at 64 °C, 120 s
at 72 °C for 35 cycles) using oligonucleotide primers
F: 5′-GGCGTTGCCGCTCTGAATGC and R: 5′-GAGGG-
ACTGAGCTGGACAACCAC. PCR products were
digested with HpaII at 37 °C overnight, separated for
3.5 h on 15% polyacrylamide gels and visualized by silver
staining. To minimize the risk of genotyping errors, ran-
domized probands were additionally genotyped by direct
automated sequencing, which resulted in concordance
rates of 100%. Genotypes were determined blind for
phenotypes and independently by two investigators.
Hardy–Weinberg criteria were fulfiled for genotype
distributions of both investigated polymorphisms in
the overall sample (5-HTTLPR: SS=13, SL=43, LL=38,
p(Exact) =1.00; 5-HTT rs25531: AA=78; AG=14; GG=2,
p(Exact) =0.19). For further analyses and in analogy to
preceding studies (e.g. Konneker et al., 2010; Klauke
et al., 2011; Costafreda et al., 2013; Odgerel et al., 2013),
5-HTTLPR/rs25531 haplotypes were grouped according
to functionality (high-activity LA/LA=29 vs. low-activity
‘rest’: LGLG=2, LASA=36, LASG=14, SASA=13), since the
rs25531 G allele reportedly results in reduced
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transcription levels similar to those of the 5-HTTLPR S
allele rendering only the A variant of the L allele (desig-
nated LA) as yielding high 5-HTT mRNA levels (Hu
et al., 2006; cf. Wendland et al., 2006). Genotype and hap-
lotype frequencies in the present sample were comparable
to published frequencies in European/Caucasian popula-
tions (e.g. Wendland et al., 2006; Goldman et al., 2010;
Odgerel et al., 2013).

Statistical analysis

The pharmaco-epigenetic investigations of the pro-
posed influence of 5-HTT DNA methylation on HAM-D
%-change scores after 6 wk of treatment relative to
HAM-D at week 1 as the main outcome variable (see
above) were performed using linear regression analyses
adjusted for age, gender, smoking status, lifetime duration
of depression, lifetime hospitalizations, lifetime number
of MDD episodes, HAM-D score at admission and
co-medication with antipsychotics and mood stabilizers,
which have previously been related to treatment response
or DNAmethylation alterations, respectively.Methylation

analyses were conducted using methylation data as con-
tinuous variables. In addition and for graphical purposes
only, a median split was employed to illustrate response
to antidepressant treatment depending on high vs. low
methylation status (see Fig. 2).All covariateswere included
simultaneously in one model (no stepwise approach).
Initially, average methylation across all 9 CpGs was used
as an independent variable. Given a significant effect of
average methylation on overall treatment response (per-
centage change ofHAM-D, see above) surviving correction
for multiple testing, individual CpGs within the amplicon
were investigated for their effects on treatment response
after 6 wk. Post-hoc Bonferroni correction formultiple com-
parisons regarding the main outcome variable (see above)
set the significance level to p≤0.005 (one amplicon and nine
CpGs were tested; p=0.05:10). The impact of 5-HTT DNA
methylation on remission status after 6 wk was evaluated
in a subsequent exploratory analysis. The present sample
of 94 patients, with an assumed α error of 0.05, two-tailed
test, and a low effect size of 0.15 for a single predictor in
a linear multiple regression model (fixed model), achieved
a post-hoc power of 96%.

Amplicon

(a)

(b)

5′ 5-HTTLPR /
rs25531

Exon
1A

Exon
1B 3′

Fig. 1. Localization of analysed CpG sites in the 5-HTT transcriptional control region. (a) The schematic 5-HTT transcriptional
control region on chromosome 17q11 is shown with exon 1A (Lesch et al., 1994), alternative exon 1B approximately 11 kb
downstream (Mortensen et al., 1999), 5-HTTLPR/rs25531 and the presently analysed amplicon (not to scale; cf. Philibert et al., 2007).
(b) The sequence is displayed as per GRCh37 build, National Center for Biotechnology Information (NCBI) reference sequence
NC_000017.10 (28.563.286–28.562.652) and encompasses the presently analysed amplicon (primer pair binding sites double
underlined) with exon 1A shadowed in grey, the presumptive TATA box in bold (Philibert et al., 2007) and CpG sites 1–9 analysed
in the present study and numbered: CpG1=Alasaari CpG1 (Alasaari et al., 2012)=Devlin CpG1 (Devlin et al., 2010)=Kang/
Kim CpG 1 (Kang et al., 2013; Kim et al., 2013)=28563090 (NC_000017.10), CpG2=Alasaari CpG2=Devlin CpG2=Kang/Kim CpG 2=
28563102, CpG3=Alasaari CpG3=Devlin CpG3=Kang/Kim CpG 3=28563107, CpG4=Alasaari CpG4=Devlin CpG4=Kang/Kim CpG 4
=28563109, CpG5=Alasaari CpG5=Devlin CpG5=Kang/Kim CpG 5=28563120, CpG6=Devlin CpG6=28563139, CpG7=Devlin
CpG7=Kang/Kim CpG 6 [sic]=28563144, CpG8=Devlin CpG8=Kang/Kim CpG 7 [sic]=CpG872 (Philibert et al., 2007)=28563160,
CpG9=Devlin CpG9=28563175.
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Results

Sample characteristics

The mean (±S.E.) HAM-D score at admission was
21.2±0.9, and at discharge it was 5.4±0.5. Clinical im-
provement was also observed on the BDI and GAF scores
between admission and discharge. The overall percentage
change of the HAM-D score after 6 wk of treatment rela-
tive to HAM-D at week 1 was 35.0% (see Table 1). About
52.1% of the patients achieved remission after 6 wk of
antidepressant treatment. 5-HTTLPR/rs25531 haplotype
groups (LA/LA vs. ‘rest’) neither influenced clinical charac-
teristics nor had an effect on antidepressant treatment
response (data not shown).

DNA methylation status of 5-HTT

In the whole sample, only minor average methylation
across all nine CpGs was discerned in the investigated
amplicon (mean±S.D.: 0.036±0.013, individual min:
0.012, individual max: 0.083), with levels of methylation
at single CpGs varying considerably with a range (indi-
vidual min–max) between 0.0 and 0.185 (CpG1: mean±
S.D.: 0.071±0.035, min: 0.0, max: 0.165; CpG2: mean±
S.D.: 0.059±0.027, min: 0.0, max: 0.135; CpG3: mean±S.D.:
0.006±0.010, min: 0.0, max: 0.045; CpG4: mean±S.D.:
0.045±0.022, min: 0.0, max: 0.130; CpG5: mean±S.D.:
0.004±0.011, min: 0.0, max: 0.075; CpG6: mean±S.D.:
0.005±0.019, min: 0.0, max: 0.145; CpG7: mean±S.D.:
0.036±0.036, min: 0.0, max: 0.185; CpG8: mean±S.D.:
0.043±0.019, min: 0.01, max: 0.105; CpG9: mean±S.D.:
0.052±0.038, min: 0.0, max: 0.180). Correlations between

individual methylation levels in all nine CpG residues
calculated by pairwise correlations including Bonferroni
correction ranged between 0.05 and 0.53 reaching statisti-
cal significance (p<0.05) for correlation between CpG1
and CpGs 2, 3, 4 and 5 as well as between CpGs 2 and 4.

Influence of gender, age, smoking status, medication
and 5-HTTLPR/rs25531 on 5-HTT methylation

Overall 5-HTT methylation in the analysed amplicon
showed no association with gender (p=0.71), smoking
status (p=0.56) or intake of medication (SSRI vs. SSRI
plus mirtazapine: p=0.96; co-medication antipsychotics:
p=0.68; co-medication mood stabilizers: p=0.49). In
addition, average 5-HTT DNA methylation (p=0.19) or
methylation at any individual CpG site (p=0.2–0.9)
were not associated with 5-HTTLPR/rs25531 haplotype
(LA/LA vs. ‘rest’). Only age was significantly associated
with average methylation status (p=0.005) indicating
that an increase in age was related to an increase in
DNA methylation.

Influence of 5-HTT methylation on treatment response

Influence of 5-HTT methylation status on treatment re-
sponse after 6 wk was initially investigated by running
linear regression analyses with HAM-D-21%-change
after 6 wk (see above) as dependent variable, average
methylation across all nine CpGs in the analysed ampli-
con as independent variable and various covariates
(age, gender, smoking status, lifetime duration of de-
pression, lifetime hospitalizations, lifetime number of
MDD episodes, HAM-D score at admission, and
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a p=0.005 after 6 wk

Fig. 2. Intraindividual %-change of HAM-D-21 scores during antidepressant treatment in N=94 patients with MDD dependent
on 5-HTT methylation. DNA methylation status ‘high’ (dotted line) includes values above and ‘low’ (continuous line) includes
values below median split of average 5-HTT methylation across all nine CpGs in the investigated transcriptional control region (low
methylation group: N=49, mean=0.026, S.E.=0.008; high methylation group: N=45, mean=0.046, S.E. =0.001). Main outcome variable:
Intraindividual %-change of scores on the Hamilton Depression Scale (HAM-D-21) after 6 wk of treatment relative to week 1.
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co-medication with antipsychotics and mood stabilizers).
Average methylation showed a significant association
with antidepressant treatment response after 6 wk, with
lower methylation status being associated with impaired
treatment response and higher methylation with better
treatment response, respectively (β, S.E. 1542.7±528.5;
p=0.005; surviving Bonferroni correction for multiple test-
ing) (see Fig. 2). An exploratory analysis of 5-HTT average
methylation on remission status after 6 wk showed an
only nominally significant result in the same direction
(β, S.E. 11.1±5.3; p=0.042).

Subsequently, we extended the analyses into possible
effects of methylation status at individual CpGs sites
on treatment response. Among the 9 CpGs readable in
this amplicon, CpG1 (GRCh37 build, NC_000017.10
28.563.090; β, S.E. 458.3±225.8; p=0.048), CpG2 (GRCh37
build, NC_000017.10 28.563.102; β, S.E. 797.1±244.3;
p=0.002; surviving Bonferroni correction for multiple test-
ing) and CpG4 (GRCh37 build, NC_000017.10 28.563.109;
β, S.E. 611.2±271.7; p=0.029) exerted (nominally) sig-
nificant effects on treatment response as measured by
HAM-D-21%-change after 6 wk. The results suggest that
lower DNA methylation might drive worse treatment
response as indicated by a lower relative reduction in
HAM-D-21 score.

Discussion

The present data provide support for average DNA
hypomethylation in the 5-HTT transcriptional control
region – particularly conferred by CpG2 (GRCh37 build,
NC_000017.10 28.563.102) – to drive impaired response
to SSRI treatment in Caucasian patients with MDD.
Given that in general DNA methylation of a gene’s pro-
moter region has been shown to mainly exert a silencing
effect on transcriptional activity (Brenet et al., 2011)
and, more specifically, increased methylation of the re-
gion encompassing the CpGs analysed in this study
has been reported to be associated with decreased
5-HTT mRNA levels when controlling for 5-HTTLPR
influence (Philibert et al., 2007), the presently observed
detrimental effect of 5-HTT promoter hypomethylation
on antidepressant treatment response could be hypo-
thesized to be due to subsequently increased 5-HTT tran-
scription, i.e. 5-HTT activity, and thereby decreased
availability of serotonin in the synaptic cleft, which
might counteract the serotonergic effects of escitalopram.
In general, it is duly noted that DNA methylation pat-
terns in peripheral biomaterial most certainly do not
allow for direct conclusions regarding the respective
DNA methylation patterns in brain tissue. However,
rodent, rhesus monkey and human studies provide
some support for a certain comparability between DNA
methylation in peripheral blood cells/saliva and several
brain regions (Ursini et al., 2011; Davies et al., 2012;
Provencal et al., 2012; for detailed discussion see
Domschke et al., 2012). Particularly with regard to

5-HTT, a recent study has demonstrated that 5-HTT pro-
moter methylation in peripheral white blood cells was
associated with lower in vivo measures of brain serotonin
synthesis in the lateral orbitofrontal cortex as analysed by
positron emission tomography ([11C]AMT), which sug-
gests peripheral 5-HTT methylation as a biomarker of
central serotonin function (Wang et al., 2012). However,
given the primarily hypothesis-generating nature of the
present pilot data, the functional consequence of 5-HTT
methylation status remains highly speculative and war-
rant thorough investigation on mRNA and protein level
in future studies.

This, particularly, as most probably an interactive
effect of 5-HTT genotype and 5-HTT DNA methylation,
has to be taken into account. As mentioned above,
decreased 5-HTT mRNA levels have been observed,
along with increased DNA methylation at 81 CpG sites
in the 5-HTT promoter region against the background
of 5-HTTLPR genotype (Philibert et al., 2007). In the pres-
ent study, no influence of 5-HTTLPR/rs25531 haplotype
on DNA methylation at the nine investigated CpG sites
was discerned. However, exploratory post-hoc analyses
suggested lower average 5-HTT DNA methylation
(β, S.E. 1559.4±652.5; p=0.024) and methylation of CpG2
(β, S.E. 822.0±370.6; p=0.035), respectively, to confer
poorer treatment response, particularly in carriers of the
less active 5-HTTLPR/rs25531 haplotypes (LGLG, LASA,
LASG and SASA). This finding is in line with accumulating
evidence for the less active 5-HTTLPR S allele as a pre-
sumably early developmental, constitutional risk factor
for impaired antidepressant treatment response in
Caucasian populations (Serretti et al., 2007; Porcelli
et al., 2012), and additionally points to 5-HTT DNA
methylation as a potentially acquired, dynamic and
more phasic determinant of serotonin transporter activity
shaping overall serotonergic tone.

The result of decreased 5-HTT methylation being asso-
ciated with impaired antidepressant treatment response
in the present Caucasian sample is somewhat in contrast
to the only other pharmaco-epigenetic study in this re-
spect by Kang et al. (2013), who observed a trend toward
increased 5-HTT methylation at CpG2 – the same CpG
most significantly associated with treatment response in
the present study – to confer less improvement regarding
HAM-D scores in a Korean sample of patients with MDD.
This divergence could be due to several reasons: (1) Asian
and Caucasian populations differ greatly in 5-HTT
allele frequencies (Kunugi et al., 1997; Ng et al., 2006),
and ethnically different genetic association effects have
been described with flip-flop phenomena with regard to
the risk allele (Lin et al., 2007; Serretti et al., 2007;
Porcelli et al., 2012; Myung et al., 2013), which might
also apply to 5-HTT methylation status; (2) pharma-
cotherapy of the sample investigated by Kang et al.,
was considerably more heterogeneous (amitriptyline,
bupropion, escitalopram, fluoxetine, imipramine, mirta-
zapine, paroxetine, sertraline, venlafaxine) than that in
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the present analysis (escitalopram with or without
mirtazapine); and (3) duration of treatment differed
between the two analyses (Kang et al.: 12wk, present
study: 6 wk).

A limiting aspect of the present analysis is the sample
size (N=94), which – while comparable with sample sizes
of the three pharmaco-epigenetic studies in depression
available so far (N=39 (Tadic et al., 2013), N=108 (Kang
et al., 2013), N=113 (Powell et al., 2013)), and obviously
sufficiently large to detect methylation effects surviving
conservative correction for multiple testing – still entails
the need for replication in larger independent samples.
Also, despite the homogeneous primary medication
with escitalopram in the present sample, adjunct therapy
in some cases with mirtazapine, atypical antipsychotics
and mood stabilizers – particularly valproic acid as a
histone deacetylase (HDAC) inhibitor inducing DNA
demethylation (Detich et al., 2003) – as well as the lack
of a standardized dosage regime and standardized control
for plasma drug levels, could have confounded the present
results. Since the present naturalistic study design – like
most pharmacogenetic studies – ethically did not allow
for a placebo arm, medication effects and non-medication
effects on the course of major depressive disorder could
not be dissected. Finally, in the present sample, comorbid-
ity with anxiety disorders was considerably lower than the
expected ca 25–50% based on epidemiological studies
(Kessler et al., 1998, 1999), which precludes generaliz-
ability of the present findings to major depressive disorder
in the general population.

In conclusion, the present analysis applying a
pharmaco-epigenetic approach to investigate the role of
5-HTT DNA methylation in mediating antidepressant
treatment response for the first time in a Caucasian sam-
ple showed hypomethylation of the 5-HTT transcriptional
control region to impair response to SSRI treatment
in patients with MDD, possibly via increased 5-HTT
expression and consecutively decreased serotonin
availability. Given robust replication in larger samples
and determination of the functional relevance of the
present finding, this approach could contribute to the
development of a more individualized treatment concept
of MDD based on epigenetic information.
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