PUBLISHED VERSION

Susan N. Christo, Kerrilyn R. Diener, Akash Bachhuka, Krasimir Vasilev, and John D. Hayball
Innate immunity and biomaterials at the Nexus: friends or foes
BioMed Research International, 2015; 2015:342304-1-342304-23

Copyright © 2015 Susan N. Christo et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

PERMISSIONS

http://creativecommons.org/licenses/by/3.0/

You are free to:

Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material

for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and

indicate if changes were made. You may do so in any reasonable manner, but not in any
way that suggests the licensor endorses you or your use.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

4 September, 2015

http://hdl.handle.net/2440/94070



http://creativecommons.org/licenses/by/3.0/
http://hdl.handle.net/2440/94070
http://creativecommons.org/licenses/by/3.0/

Hindawi Publishing Corporation
BioMed Research International

Volume 2015, Article ID 342304, 23 pages
http://dx.doi.org/10.1155/2015/342304

Review Article

Hindawi

Innate Immunity and Biomaterials at the Nexus: Friends or Foes

Susan N. Christo,' Kerrilyn R. Diener,"“* Akash Bachhuka,’

Krasimir Vasilev,? and John D. Hayballl’4

!Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science,

University of South Australia, Adelaide, SA 5000, Australia

2Robinson Research Institute, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA 5005, Australia
3Mawson Institute, University of South Australia, Adelaide, SA 5095, Australia
4School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia

Correspondence should be addressed to John D. Hayball; john.hayball@unisa.edu.au

Received 22 January 2015; Revised 15 June 2015; Accepted 22 June 2015

Academic Editor: Konstantinos Michalakis

Copyright © 2015 Susan N. Christo et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Biomaterial implants are an established part of medical practice, encompassing a broad range of devices that widely differ in
function and structural composition. However, one common property amongst biomaterials is the induction of the foreign
body response: an acute sterile inflammatory reaction which overlaps with tissue vascularisation and remodelling and ultimately
fibrotic encapsulation of the biomaterial to prevent further interaction with host tissue. Severity and clinical manifestation of the
biomaterial-induced foreign body response are different for each biomaterial, with cases of incompatibility often associated with
loss of function. However, unravelling the mechanisms that progress to the formation of the fibrotic capsule highlights the tightly
intertwined nature of immunological responses to a seemingly noncanonical “antigen.” In this review, we detail the pathways
associated with the foreign body response and describe possible mechanisms of immune involvement that can be targeted. We also
discuss methods of modulating the immune response by altering the physiochemical surface properties of the biomaterial prior to
implantation. Developments in these areas are reliant on reproducible and effective animal models and may allow a “combined”
immunomodulatory approach of adapting surface properties of biomaterials, as well as treating key immune pathways to ultimately

reduce the negative consequences of biomaterial implantation.

1. Introduction

The role of implantable biomaterials is to replace or enhance
biological function or offer structural support in host tissue
[1, 2]. Biomaterials can be used for different lengths of
time within the host depending on the intended purpose.
Temporary biomaterials include contraceptive implants [3-
5], pins for bone reconstruction and bone lengthening [6, 7],
certain dental implants prior to restoration [8], catheters
[9], stents [10], and some dermal fillers used for cosmetics
and facial reconstruction [11, 12]. However, the majority of
implantable biomaterials are intended for the duration of
the host’s lifetime. These biomaterials encompass a range of
applications in many tissue types but are most prominent
in and for orthopaedics [13, 14], dental settings [15, 16],

cardiac pacemakers [17, 18], and glucose biosensors [19-
21]. Unfortunately, invasive implantation methods, such as
surgery, potentiate an unavoidable adverse host response [22]
in which the biomaterial itself determines the duration of the
inflammatory response. These negative consequences may
contribute to the ultimate failure of the device, reducing
the lifespan of the biomaterial and necessitating additional
implantations [23-25]. Therefore, the longevity of the bio-
material is central to the aims of manufacturing and design
whilst upholding maximum biological functionality. The aim
of biomaterial research is to develop biocompatible devices
that can be integrated into tissue and perform their intended
functionality with minimal damage or negative response to
the host [1].
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2. The Foreign Body Response to
Implantable Biomaterials

The utility and function of biomaterial implants can be
compromised by the development of a foreign body reaction
(FBR): an acute sterile innate immune inflammatory reaction
which overlaps with tissue vascularisation and remodelling
and ultimately fibrotic encapsulation to prevent further inter-
action with the host tissue (Figure 1) [26-28]. All biomaterial
implants have the capacity to induce a FBR; however the
severity and clinical manifestation of these responses can
widely differ [29]. Here, the pathways involved in the FBR
are summarised, and the reader is directed to more detailed
accounts of protein and cellular responses reviewed elsewhere
(22, 30].

2.1. Protein Adsorption onto the Biomaterial Surface. The FBR
is initiated within seconds of implantation [31], characterised
by rapid and spontaneous adsorption and deadsorption of
host serum proteins (the Vroman effect [32]) including
albumin, fibrinogen, fibronectin, vitronectin, gamma glob-
ulin, complement, and other immunomodulatory proteins
(Figure 1(a)) [33-37]. The resulting thrombus formation
defines the provisional matrix around the biomaterial [38-
41], leading to the aggregation of activated platelets and
fibrin, which is formed upon thrombin-mediated conversion
of fibrinogen [42]. Fibrinogen has also been shown to activate
platelets [43, 44], and both fibrin and fibrinogen can recruit
additional immune cells to the site of the biomaterial [45, 46].
Biomaterial-adsorbed vitronectin can enhance cell adhesion
[47-49], whereas an additional adhesion protein, fibronectin,
is suggested to partake in the chronic phase of the FBR [50,
51]. Importantly, this highlights how the provisional matrix is
amilieu rich in activating and immunomodulatory molecules
that direct acute inflammatory mechanisms [30].

2.2. Acute Inflammation in the FBR Cascade. Central to acute
inflammation are the recruitment and activation of neu-
trophils (Figure 1(b)), which rapidly localise to the implan-
tation site upon release of chemoattractants by activated
platelets [52, 53] and endothelial cells [54-57]. Neutrophils
attempt to destroy the biomaterial by mechanisms intrinsic
to their function, which include phagocytosis and degran-
ulation for the release of proteolytic enzymes and reactive
oxygen species (ROS) [58-63]. More recently, neutrophils
have been shown to release neutrophil extracellular traps
(NETs) [64], comprised of a “network” of granular proteins,
neutrophil elastase, chromatin DNA, and histones [65]. The
“sticky” nature of these NETs is used to “trap” pathogens and
prevent spread of infection, as well as possessing bactericidal
activity [64]. However, the involvement of NETs, if any,
has not been detailed for implantable biomaterial-induced
inflammation.

In parallel to neutrophil recruitment, circulating mono-
cytes can respond to platelet-derived chemoattractants
localised to the implantation site [30] and bind the protein
layer on the biomaterial via fibrinogen, resulting in their
activation (Figure 1(b)) [51, 66, 67]. At the site of injury, these
monocytes differentiate into classically activated or “M1”
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macrophages [68], defined by their ability to secrete proin-
flammatory cytokines, including interleukin (IL)-1f3, IL-6,
IL-8 and tumour necrosis factor (TNF)a, and chemokines
[68, 69]. Adherent macrophages also attempt to degrade
the biomaterial by releasing ROS and degradative enzymes
[70, 71], before undergoing “frustrated” phagocytosis because
the biomaterial is too large to internalise, ultimately resulting
in an exerted increase in proinflammatory cytokines [72,
73]. Analogous to wound healing events [74], biomaterial-
adherent macrophages eventually transition into an alterna-
tively activated or “M2” phenotype [75], characterised by
reduced degradative capacity, secretion of anti-inflammatory
cytokines, such as IL-10, and gained tissue remodelling func-
tionality. The overlapping events of the phenotypic M1 to M2
switch as well as the mechanisms of frustrated phagocytosis
results in the fusion of macrophages into a foreign body
giant cell (FBGC) on the biomaterial surface in an attempt
to increase their phagocytic functionality 71, 76].

2.3. Chronic Inflammation in the FBR Results in Reduced
Biomaterial Function. The formation of FBGCs is often a
signature component of biomaterial-induced FBR and is
instigated through the activation of mast cells, basophils, and
T helper (Th) cells that secrete IL-4 and IL-13 secretion known
to induce macrophage fusion (Figure 1(c)) [77-79]. Mast cells
are consistently reported at the site of implantation [80-
82] and have demonstrated activation-induced degranulation
and the secretion of pro- and anti-inflammatory cytokines,
albeit at lower concentrations, as well as angiogenic and
profibrotic factors, including vascular endothelial growth
factor (VEGF) and transforming growth factor (TGF)-f
[83-88]. However, the role of mast cells in the FBR has
been recently questioned when Yang et al. (2014) did not
observe reduced or abrogated FBR markers in mast cell-
deficient mice [89]. The role of T cells in the FBR has also
been investigated when Rodriguez et al. (2009) demonstrated
that, similarly, T cell-deficient mice were able to generate
“normal” FBGCs and the FBR [90]. Both studies suggested
the potential of compensatory mechanisms to account for
their observations [91]. The involvement of T cells in the FBR
to nonphagocytosable implants has not been fully elucidated;
however T cells have been shown to attach to the biomaterial
[92] and become activated through noncanonical pathways
[93-96], as well as enhancing macrophage adhesion and
fusion into FBGCs through paracrine actions of secreted
cytokines [97-99].

The concerted action of immune cells results in pathways
directed at isolating the biomaterial from the host tissue
by fibrotic encapsulation [100] by the release profibrogenic
factors such as platelet-derived growth factor (PDGF) [101-
103], VEGF [104, 105], and TGF-f [106, 107] that recruit
fibroblasts to the biomaterial (Figure 1(c)). Whilst the exact
mechanisms of fibroblast recruitment have not been fully
described, it has been suggested that biomaterial-adherent
FBGCs serve as a constant source of fibrogenic mediators;
however this remains to be tested [22]. Activated fibroblasts
deposit collagen in an attempt to repair the damaged tissue;
however excessive secretion results in fibrosis [108] and, in the
case of implantation, forms a capsule around the biomaterial
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FIGURE 1: Foreign body response to biomaterials. The foreign body response is an acute inflammatory reaction which overlaps with tissue
vascularisation and remodelling and ultimately fibrotic encapsulation. (a) Upon implantation, blood proteins are immediately adsorbed and
instigate the formation of a thrombus, which acts as a provisional matrix rich in factors that recruit innate leukocytes. (b) Neutrophils are
recruited to the site of implantation and attempt to degrade the biomaterial. Monocytes are also recruited and mature into macrophages,
which undergo differentiation from an M1 and M2 phenotype and ultimately exhaust their phagocytic capacity. (c) Adaptive leukocytes, such
as T cells and mast cells, are recruited and secrete cytokines that encourage foreign body giant cell (FBGC) formation. Fibroblast recruiting
factors are secreted by FBGCs and result in their activation and collagen deposition, ultimately forming a capsule around the biomaterial to
prevent further interaction with the host tissue.



[109, 110]. In addition to collagen, other extracellular matrix
(ECM) proteins act to scaffold and support tissue repair,
thus presenting as network for signalling molecules and
cell interactions [111, 112]. Following fibrotic encapsulation,
the inflammatory responses may ultimately resolve if no
infection is present; however the implant function may have
been compromised by tissue repair, remodelling, and subse-
quent implant encapsulation processes [113, 114]. This well-
described molecular and cellular iterative process strongly
supports the notion that neutrophils and macrophage recruit-
ment and response to biomaterial implant surfaces arbitrate
the scope and magnitude of the subsequent foreign body
response.

3. Innate Immunological Mechanisms
Underpinning the FBR

The activation of leukocytes throughout the FBR is governed
by controlled mechanisms that underpin innate immu-
nity. Recognition and activation by leukocytes are depen-
dent on surface receptor interactions that can be used to
“sense” harmful situations. Evolutionary mechanisms that
can detect foreign “stranger” pathogens are described by
the interactions of pattern recognition receptors (PRRs)
expressed on leukocytes with pathogen-associated molecular
patterns (PAMPs) found on microorganisms [115]. These
same PRRs can also recognise host “danger,” which may
be induced by cell death, damage, or stress and can evoke
immune responses. These responses are driven by molecules
within the family of damage-associated molecular patterns
(DAMPs). In the context of implantation, biomaterials are
considered to induce “sterile” inflammation; therefore, the
involvement of innate recognition and response mechanisms
to DAMPs, which may be released by cells throughout the
FBR, are described.

3.1. Stranger Danger: Outside the Cell Walls of Comfort. A
subset of DAMPs are “alarmins” [116], which are endoge-
nous molecules constitutively expressed and stored within
intracellular compartments and, upon exposure to extra-
cellular spaces, through passive release or active secretion,
can evoke recruitment and activation of leukocytes [117].
Alarmins can be divided into eight categories, including
cathelicidin, defensins, eosinophil-associated ribonucleases,
heat shock proteins, ion-binding proteins, saposin-like gran-
ulysin, nucleotides/metabolites, and nucleotide-binding pro-
teins [117]. Within the nucleotide-binding proteins category,
high mobility group box 1 (HMGBI) is exemplarily as
it fulfils all the requirements associated with an alarmin,
which include (i) passive or active secretion following
nonprogrammed or apoptotic cell death, respectively; (ii)
production by immune cells without the need for dying;
(iii) the ability to recruit and activate leukocytes; and (iv)
involvement in reconstructing damaged tissue [118, 119].
Originally recognised for its role as a chromatin-associated
protein involved in DNA transcription [120, 121], HMGBI
has since been described to present a role in danger sensing
[122] and has since been associated with several pathologies
including fibrotic diseases [123]. Extracellular HMGBI is
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a result of passive release from necrotic cells [124] or active
secretion from leukocytes [125] and can act on a range of
receptors, including receptor for advanced glycation end
products (RAGE), which instigates its functionality [126]. In
addition, HMGBI has been reported as a chemoattractant for
monocytes, macrophages, and dendritic cells (DCs) [127,128]
which is reliant on forming complexes with other cytokines
[127]. The release of HMGBI from platelets has also demon-
strated the capacity to stimulate neutrophils as detected by
ROS secretion [129]. A growing number of investigations
have implicated a role for HMGBI in fibrotic diseases, with
increased levels of HMGBI in patients that have systemic
sclerosis [123, 130], cystic fibrosis [131, 132], liver fibrosis [133],
or pulmonary fibrosis [134, 135]. In these settings, HMGBI
has been shown to affect fibroblast proliferation [136-138],
migration [138,139], and collagen synthesis [133,137, 138] and
enhance proinflammatory cytokine secretion [138, 140, 141].
Indeed, blocking HMBGI with small interfering RNA in a
murine model of liver fibrosis inhibited collagen production
[133], whereas the injection of recombinant HMGBI into
mice could induce lung pathologies similar to that observed
in cystic fibrosis [132]. There are limited reports investigating
HMGBI in biomaterial-related responses; however one study
that used poly(lactic-co-glycolic acid) scaffolds as a model of
subcutaneous biomaterial implantation could detect HMGB1
at the site of scaffold implantation but not in animals
that underwent surgery without receiving the scaffold. This
suggested that HMGBI1 may be released by necrotic cells
or lymphocytes due to tissue damage at the implantation
site [142]. Ongoing investigation of extracellular HMBGI in
biomaterial-induced inflammation could be of considerable
value as several methods of therapeutic or prophylactic
HMGBI blockade/inhibition have already been established
in various in vivo models, which, with further exploration,
may also be advantageous in situations of surgical biomaterial
implantation where risks of tissue damage are high.

An additional nucleotide-binding alarmin, IL-33, may
also be of interest for biomaterial investigations [117]. In a
similar manner to HMGB], IL-33 can act as both a cytokine
and a nuclear factor and has been linked to fibrosis through
the actions of leukocyte recruitment and modulation of
ECM genes [143, 144]. Expression of IL-33 has also been
shown to be increased in patients with idiopathic pulmonary
fibrosis and liver fibrosis [145-147]. In murine models,
overexpression of IL-33 in hepatocytes caused an excessive
local immune cell infiltration and increased hepatic collagen
deposition. This was however abrogated in IL-33/" mice,
suggesting that IL-33 has a role in driving ECM deposition
[148]. Furthermore, systemic administration of IL-33 to
mice resulted in increased mRNA levels of IL-13 and the
development of skin fibrosis [143]. In a manner relevant to
its alarmin function, IL-33 is constitutively expressed and is
released during necrosis as an active protein [145]. If IL-33
release is accompanied by the presence of neutrophils at a
local injury site, serine proteases, cathepsin G, and elastase
can cleave IL-33 to generate a “superactive” form of the
protein [149, 150]. Upon secretion, IL-33 has been found to
be a chemoattractant for Th2 cells [151], as well as acting
directly on Th2 cells via constitutively expressed (protein
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of growth stimulation gene 2) ST2 receptor [152, 153] to
induce the secretion of IL-13 [153, 154], an important cytokine
detailed in FBGC formation. There are currently no studies
that directly assess the involvement of IL-33 in biomaterial-
induced inflammation; however the emerging links between
IL-33 and fibrotic disorders might suggest that release of IL-
33 at the biomaterial implantation site by necrotic cells may
encourage the cytokine milieu that results in FBGC release
and collagen deposition. Further assessment may qualify IL-
33 as an additional candidate for therapeutic blockade to
reduce the FBR.

3.2. Integrin Receptors. Traditionally viewed as adhesion
receptors, integrin receptors have demonstrated their capac-
ity to independently recognise DAMPs to induce immune
responses. There are 22 integrin receptors in mammals
based on the combinations of different o and f chain
subtypes (17 « subunits and 8 3 subunits) which form
noncovalent heterodimers [155, 156]. The observation that
integrin receptors can mediate proinflammatory cytokine
release upon activation by bacterial components [157-159]
was instigated by a study in 2005 that reported on how inte-
grin ligands could prompt recognition by leukocytes [160].
Vorup-Jensen and colleagues demonstrated that the integrins
a,f3, (CD11c¢/CD18) and «yf3, (Mac-1; CD11b/CDI8) could
recognise acidic residues exposed on proteins that were
degraded by the action of bacteria-derived proteases [160].
The significance of this study was that misfolded or degraded
proteins could be recognised by leukocyte-expressing recep-
tors, which is not only engendered by bacterial challenges, but
present in ECM remodelling processes [160]. In particular,
fibrinogen is commonly investigated because it can bind
several integrins through its arginine-glycine-aspartic acid
(RGD) sequence [161], which is also found in other integrin
ligands [155, 162] such as fibronectin [163] and vitronectin
[164]. Interestingly, fibrinogen absorbed onto the biomaterial
may alter its conformation due to chemical and physical
properties, exposing RGD for leukocyte recognition via Mac-
1, and initiate integrin signalling [165-167]. Therefore, the
susceptibility of fibrinogen to lose structural integrity and
bind leukocyte receptors may suggest that fibrinogen acts as
a sentinel of tissue damage [160].

3.3. Toll-Like Receptors. Pattern recognition receptors are tra-
ditionally divided into five main families: toll-like receptors
(TLRs), nucleotide-binding oligomerization domain- (NOD-
) like receptors (NLRs), absent in melanoma- (AIM-) like
receptors (ALRs), retinoic acid-inducible gene I- (RIG-I-)
like receptors (RLRs), and the C-type lectin receptors (CLRs)
[115, 168]. For the purpose of this review, TLRs, NLRs, and
ALRs in the context of biomaterial-induced responses will be
discussed.

There are 10 TLRs in humans [169, 170] and 12 TLRs in
mice [169, 171], but both present as transmembrane receptors
found on the plasma membrane and endosome/lysosome
membranes [115] for PAMP and DAMP detection. Toll-
like receptors are characterised by an extracellular leucine-
rich repeat (LRR) and an intracellular toll/IL-1 receptor
(TIR) domain [172]. Upon recognition of their distinguished

ligands (reviewed elsewhere [173]), TLR signalling pathways
can induce the secretion of proinflammatory cytokines or
type one interferons, as mediated by the myeloid differen-
tiation primary response gene 88 (MyD88) or TIR-domain-
containing adapter-inducing interferon-f (TRIF) adaptor
proteins, respectively [174].

Despite the predominant investigation of TLRs in inflam-
mation and infection, reports of TLR involvement in the
context of biomaterials are now being described, mostly
for phagocytosable particles, including implant aseptic and
septic loosening due to wear debris. It has been extensively
demonstrated that TLR2 and TLR4 play a role in recognising
the subclinical levels of bacterial contamination that drive
implant loosening [175-178]; however it has also been shown
that in vivo oxidised alkane polymers can directly induce
TLR1/2 signalling [179]. In a subsequent in vitro model,
oxidised alkanes were shown to have 140 times greater
binding affinity to soluble TLR2 than the nonoxidised poly-
mer [179]. These results begin to detail the innate response
following the degradation of common materials used for
implants; however further investigations are required to
assess TLR interaction with nonphagocytosable biomaterials.
With a focus on DC functionality, Shokouhi et al. (2010)
used MyD88-deficient DCs for an assessment of global TLR
actions in biomaterial responses [180]. The results of the
study demonstrated that in comparison to wild-type DCs,
MyD88-deficient DCs had lower surface marker expression
and decreased cytokine secretion when they were incubated
on a range of biomaterials. Individual TLR-deficient DCs
were also subject to the same analysis and it was revealed that
TLR1, TLR2, TLR4, and TLR6 had a role in recognising and
responding to biomaterials as DC functionality was abolished
or strongly impaired in these cells compared to wild-type
DCs [180]. The importance of TLR4 was also observed by
Rogers and Babensee (2010) in a study highlighting the
effect of TLR4 on leukocyte recruitment, adhesion, and
fibrotic encapsulation [181]. Interestingly, the results of this
study did not define a role for TLR4 in the recruitment of
leukocytes, the TNFa levels in peritoneal exudates, or the
thickness of the fibrotic capsule. Instead, TLR4 deficiency
seemed to impart differences in the profiles of adherent
leukocytes on the biomaterial surface. The TLR4-deficient
mice appeared to have increased neutrophils and decreased
monocytes/macrophages adhered onto the biomaterial, in
comparison to the TLR4-sufficient control mice [181].

In 2004, Seong and Matzinger proposed the hydropho-
bicity model to explain mechanisms of alarmin recognition
by TLRs [182], an idea which may be plausible for the
results observed in biomaterial models. The hydrophobicity
model [183] stems from the understanding that hydrophobic
portions or “hyppos” of molecules are usually hidden from
the aqueous environment by conformational folding that
result in functional aggregates. However, in situations when
hyppos are exposed, specifically in damaged tissue, these
regions act as universal signals of homeostatic disruption
due to protein misfolding and potentially toxic and non-
productive aggregates, which are recognised by TLRs [182].
To date, this serves as a good model for justifying TLR
involvement in biomaterial responses in sterile inflammation.



Additionally, the hydrophobicity model may explain the fact
why fibrinogen can act as an alarmin and has been shown
to be a TLR4 ligand, presumably through the exposure of
the RGD domain [184-188]. Other ECM proteins associated
with biomaterial adsorption have also been reported as
TLR ligands [189], including fibronectin [187, 190], as well
as proteins associated with damage such as HMGBI [19],
192]. The significance of understanding the roles of TLRs
in FBRs was recently demonstrated in a study assessing the
therapeutic efficacy of a TLR2/6 agonist. In this study, porous
polyethylene (commercially known as Medpor) is used for
craniofacial reconstructive surgery; however, adequate tissue
integration relies on rapid vascularisation [193]. To this end,
macrophage-activating lipopeptide-2, a TLR2/6 agonist, was
locally injected into preclinical models investigating Medpor.
The treatment was shown to increase vascularisation 14 days
after implantation and did not cause local or systemic side
effects as determined by control animals [193]. This study
highlights the fact that targeting specific TLR pathways can
force a desired response and therefore manipulating TLR
signalling could potentially be used to control the FBR [194].

3.4. Cytosolic Sensors and the Associated Inflammasome That
Control the Release of Potent Proinflammatory Cytokines.
Whilst the TLR family can detect extracellular signals, the
NLRs are soluble proteins located in the cytosol for intracel-
lular monitoring of a broad repertoire of PAMPs and DAMPs
[195]. Structurally, NLRs are composed of three domains: (i)
the C-terminal domain containing LRRs involved in ligand
sensing, (ii) a central nucleotide domain, NACHT domain
(also referred to as NOD), responsible for oligomerization of
NLRs, and (iii) the N-terminal effector domain that differs
based on its exclusive composition of a caspase activation
and recruitment domain (CARD), a pyrin domain (PYD),
or a baculovirus inhibitor of apoptosis repeat (BIR) domain
[196, 197]. The structural and functional diversity of domain
composition classifies NLRs in three subfamilies: (i) NLRPs
(also referred to as NALPs) based on PYD as the N-terminal,
(if) NODs which predominantly express CARD (also referred
to as NLRCs), and (iii) the IPAF/NAIP (IL-1S3-converting
enzyme protease-activating factor/NLR family, apoptosis
inhibitory protein) family whereby IPAF (synonymous with
NLRC4) contains a CARD, and NAIF contains BIR domains
(also referred to as NLRBs) [196]. Together, these cytosolic
sensors can detect ligands from invading sources and initiate
signalling pathways that result in the secretion in cytokines,
interferons, and microbicidal proteins.

A unique feature of some PRRs, including NLRs, is the
ability to form an inflammasome. The term “inflammasome”
was coined by Martinon et al. (2002) to describe high molec-
ular weight complexes due to multiprotein assembly that
activate inflammatory caspases and result in IL-1f3 secretion
(Figure 2) [198]. The pioneering work of the Tschopp labo-
ratory has led to the identification of seven inflammasomes,
each named after their protein scaffold, including the NLRP1,
NLRP3, NLRP6, NLRPI12, IPAF inflammasomes, and, more
recently, the IFI16 and AIM2 inflammasomes [197, 198]. The
AIM2 and IFI16 proteins are two of eight cytosolic sensors in
mice that comprise the ALR family [199], all of which contain
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a HIN200 (hematopoietic interferon-inducible nuclear anti-
gens with a 200-amino acid repeat) domain at the C-terminal
and can directly bind double stranded DNA (dsDNA) from
various sources [200]. In particular, the AIM2 protein is not
as structurally diverse as NLRs, as the C-terminal HIN200
domain is complemented with an N-terminal PYD [201]. The
formation of canonical inflammasomes, regardless of sensor
protein, relies on homotypic interactions between equivalent
domains on target proteins. Therefore, upon activation of the
cytosolic sensors, inflammasome assembly is initiated by the
recruitment and binding of ASC (apoptosis-associated speck-
like protein containing a caspase recruitment domain, also
referred to as PYCARD) via PYD-PYD interactions [200,
202]. The C-terminal CARD of ASC facilitates interactions
with the CARD of procaspase-1, resulting in its self-activation
into caspase 1 by proteolytic cleavage into the active het-
erodimer comprised of 10 and 10 kDa subunits (p10 and p20,
resp.) [203]. Together, the interactions between the cytosolic
sensors, the ASC adaptor protein, and caspase 1 form the
inflammasome (Figure 2). Structurally, inflammasomes may
resemble the “apoptosome” required for caspase 9 activation
based on the potential to form a double-ringed “wheel”
structure of the multiple heterotetramers complexes [204,
205]. The central aggregation of caspase 1 is thought to lock
caspase 1 into an enzymatically active state to facilitate the
cleavage of pro-IL-1f and pro-IL-18 into their biologically
active forms, IL-13, and IL-18, respectively (Figure 2) [206].

Another outcome of inflammasome activation is a form
of nonhomeostatic and lytic mode of cell death, termed
pyroptosis, which requires the activity of caspase 1 or cas-
pase 11 depending on the stimuli [204]. The activation of
caspase 11 has been implicated in inflammasome activation
and, however, is unable to process pro-IL-1f and pro-IL-18
and directly influences inflammasome-mediated pyroptosis
[204, 207]. Interestingly, cytokine production precedes the
induction of pyroptosis, suggesting that the cell inflicts
maximal inflammation to promote immune activation prior
to its death. It is thought that pyroptosis serves to prevent
intracellular pathogen replication by eliminating the infected
cell and also enhancing pathogenic recognition by exposing
the pathogen to circulating neutrophils and phagocytes [204].
Consequently, cells that have undergone pyroptosis may also
release endogenous molecules into the extracellular milieu
as danger signals, of which HMGBI and IL-1& have shown
to be passively secreted [208-211], further perpetuating the
inflammatory response. Considering the potent nature of
IL-18 and IL-18, it is understandable that inflammasomes
require regulators to control activation and efficiently subside
inflammatory signals. The two major types of inflamma-
some regulators are proteins that contain either a CARD
to prevent ASC recruitment or PYD-containing proteins to
disrupt sensor-ASC interactions [212, 213]. Together, PRRs
and inflammasomes present an impressive and controlled
mechanism for alerting the host of stranger and danger
signals.

3.5. Activating the NLRP3 and AIM?2 Inflammasomes. Tra-
ditionally, inflammasomes are concerned with the control
of invading pathogens such as bacteria [214, 215], viruses
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FIGURE 2: Activation of the inflammasome results in the secretion
of IL-1f and IL-18. Inflammasomes are activated when sensors
proteins detect stimulatory ligands. The AIM2 sensor binds double
stranded DNA via the HIN200 domain. The NLRP3 sensor requires
two signals for activation, instigated through TLR activation (signal
1) and followed by an indicator of homeostatic disruption (signal
2). Inflammasome formation is based on homotypic interactions
of the components, whereby AIM2 and NLRP3 sensors proteins
recruit ASC through their PYD, allowing ASC interactions with
procaspase-1 via CARD-CARD associations. This multiprotein
complex forms a spherical “wheel” structure to encourage prote-
olytic cleavage of procaspase-1 into caspase 1. Caspase 1 functions
to cleave pro-IL-1f3 and pro-IL-18 into their active IL-1f and IL-18
forms, respectively.

[216, 217], or fungi [218, 219] by secreting IL-1f3, which is
a potent proinflammatory cytokine. It is recognised that
NLRP3 inflammasome activation requires two signals. The
first signal is a “priming” step and results in the produc-
tion of pro-IL-1§ via transcription factor NFxB-mediated
regulation, commonly achieved by TLR stimulation [220].
Interestingly, TLR-induced NF«B activation has also been
implicated in the transcriptional control of NLRP3 and

can increase NLRP3 expression to potentiate intracellular
sensing [221, 222]. Unlike pro-IL-1 transcription, pro-IL-
18 is constitutively expressed in macrophages and does not
rely on NFxB-mediated transcription [223, 224]. The second
signal required for NLRP3 activation consists of a broad
range of infection or stress-associated signals, and due to
the diverse nature of these signals, it is unlikely that direct
interactions with NLRP3 would induce its activation [197].
Instead, NLRP3 activation has been implicated to occur
through the induction by three main methods: (i) ion flux, (ii)
ROS, and (iii) lysosome rupture [197]. In the ion flux method,
changes to cytosol concentrations of hydrogen (H"), calcium
(Ca®"), or potassium (K*) ions disrupt intracellular home-
ostasis and activate NLRP3. In particular, extracellular ATP
released from damaged or stressed cells can act on the P2X7
ion channel to trigger K" efflux [225-227]. Endothelial and
epithelial cells have been shown to release ATP in situations
of mechanically induced stress such as compression [228],
stretching [229], and changes in blood flow [230] and may
result in K" efflux [196]. Similarly, H" efflux or toxic levels
of cytosolic Ca** can activate the NLRP3 inflammasome
(220, 231, 232].

The second method is defined by the release of ROS as
an indicator of oxidative stress, which is induced by many
NLRP3 stimuli such as ATP, alum, uric acid, or nigericin
[226, 233, 234]. However the role of ROS in NLRP3 acti-
vation remains controversial. Contradicting reports suggest
that ROS solely acts to upregulate NLRP3 and pro-IL-183
expression in an NFxB-dependent manner [235], and other
studies demonstrated how ROS can be sensed by a complex
of Thioredoxin (TXN) and TXN interacting protein (TXNIP)
which binds to NLPR in conditions of oxidative stress [236].
Recently, Shimada et al. (2012) proposed a unified model
of NLRP3 activation and suggested that, in the presence
of signal one, the NLRP3 stimuli can cause mitochondrial
dysfunction, resulting in apoptosis and NLRP3 activation
[237]. This study also demonstrated that apoptosis results in
the release of ROS and mitochondrial DNA and that oxidised
mitochondrial DNA could directly interact with NLRP3 as
observed by immunoprecipitation [237].

The third method for NLRP3 activation is based on the
detection of lysosome rupture during frustrated phagocytosis
caused by large particulates, including uric acid crystals,
alum, silica, and asbestos [233, 238]. It was demonstrated
that frustrated phagocytosis could alter the cytoskeleton, and
upon disruption of the actin filaments with cytochalasin
D, the secretion of IL-1§3 was inhibited [238]. Furthermore,
NLRP3 activation can be subsided with the treatment of
cathepsin B, a lysosomal protease inhibitor [233]. Despite
the understanding of downstream responses of phagocytosis
of particulates, the exact molecular links that connect these
events to NLRP3 activation remain to be elucidated [233].

Originally documented as a cytosolic HIN200 family
protein for binding dsDNA, AIM2 was recently identified as
an inflammasome-inducing sensor that could aggregate with
caspase 1 and ASC [200]. The activation mechanisms of the
AIM2 inflammasomes have not been detailed to the same
extent as NLRP3 but do not appear to rely on a two-hit signal
model, most likely due to the unambiguous HIN200 domain



directly binding foreign dsDNA from viruses, bacteria, or
self-dsDNA from cells that have undergone apoptosis [216,
239]. Upon DNA binding, AIM2 undergoes a conformational
change and oligomerises around the DNA [240], recruiting
ASC and caspase 1 for inflammasome formation, thus IL-13
and IL-18 secretion, and pyroptosis [200, 241, 242]. Recently,
mitochondrial contributions to AIM2 inflammasomes were
implicated as mitochondrial ROS was shown to potentiate
AIM2 inflammasome activation in response to bacterial
challenge [243] and mitochondrial DNA could directly
bind AIM2 in its oxidised and nonoxidised form [237].
Interestingly, HMBGI in complex with DNA was shown to
induce AIM2 inflammasome activation, but upon induction
of autophagy, HMGBI-DNA complexes were no longer able
to trigger IL-1p3 release, suggesting an autophagy-mediated
negative feedback pathway [244].

3.6. The Role of Inflammasomes in Biomaterial-Induced Inflam-
mation. The observation that phagocytosable particles, such
as asbestos and silica, could activate NLRP3 inflammasomes
was investigated to understand the fibrotic diseases they
caused [238]. Asbestos is an insulating material that was
widely used in construction around the 1970s and was later
discovered to cause several lung-related diseases including
mesothelioma, lung cancer, and asbestosis [245]. Crystalline
silica (silicon dioxide) is the most abundant mineral world-
wide and is commonly encountered in areas of mining,
construction, and farming. Inhalation of silica is associ-
ated with numerous pathologies including tuberculosis, lung
cancer, chronic obstructive pulmonary disease, and silicosis
[246]. The observation that alveolar macrophages could
secrete IL-1f3 upon asbestos or silica exposure naturally led
to the discovery that NLRP3 was involved in their related
pathologies [238, 247]. The mechanisms of NLRP3 activation
by asbestos and silica particles are similar to those described
for invading pathogens. Both asbestos and silica can induce
the generation of ROS [247-249] and, in the case of asbestos,
works to indirectly activate NLRP3 by irreversibly oxidising
TXN, resulting in the dissociation of TXN-TXNIP and
subsequent binding of TXNIP with NLRP3 [250]. Thus, the
roles of asbestos and silica seem to be indirect, whereby
particle phagocytosis results in lysosomal swelling and dam-
age, allowing NLRP3 to “sense” this perturbation [233]. The
activation of the NLRP3 inflammasome has been implicated
in driving inflammatory responses to nanoparticular carbon
[251] and polystyrene [252], as well as nanodebris typically
derived from implants [253] including amorphous silica and
titanium dioxide (TiO,) [254], CoCrMo [255], and silver
[256] (reviewed in [257]). However, it is unclear whether the
NLRP3 activation mechanisms induced by these materials are
consistent amongst the various phagocytosable particles.
The involvement of the inflammasome has also been
implicated for large biomaterials that cannot be phagocytosed
or do not generate wear debris or particulates. Detection of
IL-1/3 at the local implant site [258] and in vitro quantification
of IL-18 secretion by biomaterial-adherent macrophages
[259, 260] suggest, at least in part, a role for the inflam-
masome in biomaterial-induced inflammation, although
inflammasome-independent pathways of IL-13 secretion
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have recently been described [261-263]. The proposed
models of NLRP3 inflammasome activation also overlap
with certain events described within the FBR, such as ROS
production by neutrophils and frustrated phagocytosis by
macrophages. The associated tissue damage of implantation
may also result in ATP release through mechanically induced
cell stress leading to K* efflux; however this has not been
directly shown in the FBR and further investigation is
required to decipher if there are any correlative relationships
between these events and NLRP3 inflammasome activation.
Malik et al. (2011) were the first to demonstrate the direct
involvement of ASC and caspase 1 in the progression
of FBR events, with mice deficient in these components
exhibiting thinner fibrotic capsules around silicone disk
implants at 4 weeks after implantation [264]. Interestingly,
the absence of NLRP3 or NLRC4 sensors did not affect
capsule thickness compared to controls, and this may suggest
the involvement of another ASC-dependent inflammasome
or, alternatively, inflaimmasome activation-independent
mechanisms [215, 265, 266] that can indirectly affect the
FBR. However, when assessing “acute” stages of FBR with
the injection of PMMA beads of ~153 ym diameters, NLRP3,
ASC, and caspase 1 were involved in leukocyte recruitment
within 24 hrs [264]. The results of this study also supported
a recently described method of inflammasome activation,
independent of phagosomal disruption. It was shown that
interactions of solid structures with the cholesterol regions
of lipid rafts of the cell membrane could activate the Syk
kinase [267]. Malik et al. (2011) showed a reduction in
IL-1/3 secretion when macrophages were pretreated with a
cholesterol-depletion agent or a Syk inhibitor, supporting
a membrane affinity triggered signalling (MATS) mode of
inflammasome activation [264]. This was an extension from
a study that investigated how DC activation could be induced
via surface contact with particulates, namely, MSU crystals.
The authors proposed a two-step process: firstly the MSU
crystal lattice is aligned with cholesterol in the DC membrane
to form tight interactions within 30 seconds of contact, which
leads to lipid rearrangement. Secondly this lipid sorting
results in the aggregation of immunoreceptor tyrosine-
based activation motif- (ITAM-) containing receptors
into cholesterol/sphingolipid rich regions of lipid rafts and
initiates Syk kinase pathways [267]. Therefore, understanding
the mechanisms of potential inflammasome components
that are activated by large biomaterials and contribute to the
FBR may result in clinically translatable methods of reducing
inflammatory outcomes, such as kinase inhibitors [268] or
the IL-1 receptor (IL-1R) antagonist, anakinra [269].

A current gap in the literature is the role of the
AIM2 inflammasome in sterile environments, particularly
in biomaterial-induced inflammation. Further investigation
of AIM2 in these pathologies is not unwarranted on the
basis that AIM2 can recognise self-dsDNA as a product of
DAMP-induced cell death and may affirm an indirect role of
alarmins. We have recently begun exploring the role of AIM2
in biomaterial-induced inflammation by adapting the model
of PMMA bead injection [264] to induce pathways of the FBR
in a murine model. Results in AIM2~/~ mice demonstrated a
reduced capacity of neutrophils and macrophages to migrate
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to the injection site, as well as early collagen deposition when
compared to B6 control mice (Christo et al., manuscript in
preparation). The implications of this study are still under
investigation but importantly highlight that, in the absence
of the AIM2 sensor, the innate immune responses are skewed;
however whether this is inflammasome activation dependent
or independent remains to be determined.

4. Shaping and Tuning Innate Immune
Effector Responses to Biomaterial Implants

The modification and derivatization of implant surfaces
are being investigated to improve the biocompatibility of
biomaterials. The ability to “mimick” the biology of the
surrounding tissue or promote wound repair is thought to
improve the integration of biomaterials and thus reduce the
FBR [28, 270-272]. Despite successful attempts to redirect
innate responses to constructive healing processes, mate-
rials such as alginate, collagen, intact, and decellularized
ECM and ECM components are also susceptible to nor-
mal destructive tissue remodelling and unwanted metabolic
breakdown products. Reproducing these materials may also
be unfavourable for regulatory and manufacturing processes,
and therefore synthetic polymers have been explored for
surface coatings. One example of this is hydrogel coatings
(PHEMA, PEG, and PVA), which become swollen with
water, are highly permeable to analytes, and have mechanical
properties akin to soft tissue. However, hydrogels and other
synthetic polymers are limited in their adhesive abilities onto
biomaterial scaffolds and, for this reason, are able to induce
the FBR and, in some cases, are more likely to be degraded
via macrophage and FBGC-mediated responses, ultimately
leading to device failure. Therefore, two heavily investigated
biomaterial modifications are alterations in surface chemistry
and topography.

4.1. Surface Chemistry. The understanding that surface func-
tion alters protein adhesion and directs downstream cell
recruitment has led to the global aim of producing “repellent”
surfaces to moderate protein binding [273]. Methods of
altering surface chemistry are vast but may be achieved
by chemical grafting, self-assembled monolayers, or plasma
polymerisation, and each has been tested for ultimately
controlling the amount and composition of protein adhesion
as well as conformational changes of the bound protein.
It is well accepted that proteins will bind more strongly
to hydrophobic surfaces compared to hydrophilic surfaces;
however poor translation of these observations into in vivo
outcomes have encouraged revised investigation into “ideal”
properties such as, functional groups and wettability, and
surface charge.

The most commonly explored functional groups are
amino (-NH,), carboxyl (-COOH), hydroxyl (-OH), and
methyl (-CH;) groups [273]. Of the hydrophilic surfaces,
-NH, and -OH groups present positive and neutral charges,
respectively, and have been reported to induce the highest
infiltration of inflammatory cells in vivo [274-276] and

thicker fibrotic capsules around the functionalised implant
[276, 277]. However, in a study by Barbosa et al. (2006),
implants functionalised with hydrophobic, neutral ~-CH,
groups formed thicker capsules than -OH groups and
also recruited higher numbers of Mac-1" cells [278]. The
authors suggested that, in their model, there was a directly
proportional relationship between the severity of the acute
inflammatory response and the thickness of the fibrotic
capsule [278]. The implications of this simplistic model
may not be translatable to all systems, and, in fact, there
are contradictory reports on the ability of -CH; groups to
promote cellular adhesion [274, 279, 280]. It is therefore
important to recognise differences between in vitro and in
vivo studies, which may account for this disparity.

In the context of cell differentiation pathways, surfaces
with —OH functionality show the highest capacity to induce
osteoblast differentiation, followed by -NH, and ~-COOH,
and the lowest capacity on —~CHj surfaces [281, 282], although
—-CHj; surfaces seemed to induce moderate myogenic dif-
ferentiation [281]. Blocking antibodies revealed that cell
differentiation was regulated by integrin binding [283] in
alignment with observations of preferential focal adhesions
formation on -OH > -NH, = -COOH > -CHj; surfaces
[282]. Focal adhesions are specialised regions of the cell
that are rich in integrins and signalling molecules that allow
attachment to the ECM and serve as signalling centres to
regulate cell growth, survival, and gene expression [284].
Further evidence of focal adhesion dependence on surface
chemistry was seen on -NH, surfaces that could regulate the
expression of integrins and signalling molecules resulting in
ERK1/2 activation in bone marrow stromal cells, which have
osteogenic differentiation ability [285].

Not surprisingly, the differential involvement of inte-
grin engagement coincides with the understanding of how
adsorbed proteins can alter their conformation. Protein
studies revealed that the ability to access fibronectin domains,
integrin binding, and cell adhesion followed the order of
-OH > -COOH = -NH, > -CH, surfaces [286, 287].
Interestingly, the complement component C3b can covalently
link to OH [288, 289] and its inactive form, C3bi, is the
receptor for Mac-1 [290], potentially offering an explanation
for increased accumulation of CDI11b" cells (macrophages
and neutrophils) at the implant site [291]. Interestingly,
—-COOH is recognised for imparting minimal inflammatory
damage based on the observations that these hydrophilic and
negatively charged surfaces have consistently thinner fibrotic
capsules and reduce cell infiltrates at the implantation site
[276, 278, 291]. Whilst repulsion of negatively charged cell
membranes may account for some of these observations,
the role of protein binding on these surfaces offers a more
cohesive explanation. It has been found that hydrophobic
surfaces including -CH; can more tightly bind proteins
such as albumin [292, 293] and fibrinogen [293, 294] and
cause conformational changes [292], whereas hydrophilic
surfaces show faster protein desorption [295]. However,
simple distinction of hydrophilicity is not sufficient to predict
the protein binding kinetics of a given surface and, instead,
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a second tier of differentiation by way of surface charge is
required. Sivaraman et al. (2009) showed that proteins on -
OH groups were able to retain their native structure to a much
greater extent than any other functional group including the
equivalently hydrophilic -COOH, which differs on the basis
of its negative charge [292]. The authors suggested that the
internal hydrophobic regions of a given protein are less likely
to unfold in the presence of a hydrophilic surface and instead
form hydrogen bonds with ~OH groups via interactions of
polar and charged amino acid residues presented on the
protein surface. Interestingly, the observation that proteins
adsorbed to ~-COOH surfaces showed greater structural
rearrangement than their native forms was attributed to the
negatively charged ~-COOH groups interacting with posi-
tively charged amino acid residues on the protein, perturbing
the lowest free energy state of that protein, causing it to refold
to the new lowest free energy state conformation. Similar
observations and rationale were described for proteins on the
hydrophilic and positively charged -NH, surfaces, resulting
in greater conformational changes [292]. Together, protein
binding kinetics and conformations on implant surfaces
are dependent on surface chemistry and may contribute to
explaining the FBR results in vivo.

4.2. Surface Topography. Methods of altering topography are
wide and varied, including, but not limited to, particle deposi-
tion, self-assembled monolayers, soft photolithography, blast-
ing, acid etching, and polymer expansion [296-298]. These
techniques result in differential surface geometries in the
micron and nanometre scale, producing “rough” surfaces
based on protrusions, such as pillars, posts, gratings, and
ridges, or dentations, such as pits and dots [104, 299-301].
Comparison of native substrates with modified topography
is assessed by the functionality of cells that are of interest
to the downstream application of the material, which may
include osteoblasts in the case of bone implants but are mostly
concerned with cells involved in the FBR. Interestingly, the
notion of modulating surface “roughness” using micro and
nanopatterns stems from the architectural understanding of
homeostatic cell interactions with components of the ECM
[302]. The ECM is a complex structure of intertwined pores,
fibres, ridges, and protein bands in the nanoscale [303, 304].
The topographical control of cell interactions has inspired
the investigation of synthetically produced disturbances
for modulating implantation outcomes [302]. In general,
“rougher” surfaces have shown altered cell adhesion [305-
307], density and spreading [308, 309], modulated cytokine
secretion [310, 311], motility [312, 313], enhanced proliferation
and differentiation [308, 314], and macrophage fusion [104];
however these responses are cell-specific and dependent on
the method of fabrication.

Additionally, surface roughness is further differentiated
based on modified dimensions such as topography height,
width, rigidity, and spacing and patterns. For example,
Mohiuddin et al. (2012) used nanodots of various diameters
to show that macrophage secretion of IL-6 was doubled on
50 nm nanodots compared to smooth surfaces but increased
3-fold on 200nm nanodots. Interestingly, maximum cell
spreading, focal adhesion, and cell density were seen on
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the 50 nm nanodots [301]. In a similar manner, Hulander
et al. (2013) immobilised nanoparticles of different sizes
and demonstrated that 56 nm particles decreased platelet
activation; however the 36 nm particles allowed platelet
contact with the “flattened” surface, inducing activation and
cell flattening [306]. On the micron scale, Madden et al.
(2010) revealed differences with pillars of different distances,
where larger gratings, that is, 1 um versus 250 nm distances,
reduced macrophage fusion and cytokine secretion. Recently,
differences in macrophage phenotype were shown to be
regulated on surfaces anodised with 5V or 20V, where
surfaces generated with 5V caused macrophages to secret
cytokines of an “M2” phenotype, whereas the rougher 20 V
surfaces were associated with an M1 phenotype. Similar
analysis of macrophage polarity has been described for
porous versus nonporous poly(2-hydroxyethyl methacrylate-
co-methacrylic acid) hydrogels showing that when compared
to the nonporous hydrogels, implanted hydrogels with pores
of 30-40 um have greater neovascularisation and reduced
fibrotic capsule [315]. Furthermore, porous hydrogels had
a significant increase in the proportion of macrophages
expressing macrophage mannose receptor (MMR) and a
significant decrease in MMR™ cells, suggesting a phenotypic
shift into an M2 phenotype [315]. These reports in conjuga-
tion with studies assessing macrophage polarity in the context
of other scaffolds highlight the importance of a deeper
analytical approach to immunophenotyping infiltrates and
resolving proportional contributions of these cells towards
signalling pathways and cytokine responses. Macrophage
responses were assessed in a study by Bota et al. (2010)
that used expanded polymers to create pores with different
intranodal distances. The authors found that the largest
distance of 4.4 ym produced the highest level of macrophage-
derived IL-18 in vitro but, importantly, resulted in a thinner
capsule surrounding implant in vivo [299]. The use of porous
materials has been investigated for several decades and has
been integrated into areas of orthopaedic implants, such as
dental and bone (joint) implants. In general, the porous
nature of these implants is ideal because they allow for tissue
integration, vascularisation, and the transport of nutrients
[316, 317]; however host responses can vary based on the
scaffold material, pore size, and porosity. Although the ideal
pore size for osteoblast functionality in implants for bone
engineering is still disputed [318], pores ranging within 20-
1500 ym [319] have been investigated for cell migration, pro-
liferation, osteogenesis, and angiogenesis [320-322]. Impor-
tantly, the porosity and pore size must also be considered
from the perspective of the implant’s mechanical properties
to ensure that its strength is not comprised [318]. Collectively,
disparity amongst various surface topographies highlights
the importance of using cell types specific to a given implant
function in order to assess the optimal properties that result
in the desired response in vivo.

However, cellular responses are secondary to protein
adsorption in an in vivo setting, and, for this reason, the
effects of nanotopography on protein binding have also been
investigated. Surface roughness was shown to increase serum
protein adsorption by 70%; however inspection of specific
proteins on these gold nanoparticle (58 nm) surfaces revealed
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that the increase in protein was due to IgG antibody binding,
whereas complement C3c decreased by 50% [323]. Further
investigations have detailed the effect of nanotopography
on altered adsorption and conformation of fibrinogen [324,
325] and fibronectin [326, 327], potentially accounting for
differences in cell adhesion and activation on flat versus
rough surfaces. It is suggested that alterations in protein
binding are due to surface “curvature,” which can affect
two main factors: (i) the orientation, unfolding or dis-
tances between adsorbed proteins, and (ii) distortion of the
cytoskeleton upon membrane conformation on the shape of
the curve [302, 328]. Together, these support the involvement
of mechanotransduction as a mechanistic explanation for
cell detection of surface topography. Mechanotransduction
describes a process of how cells can relay a multitude of
mechanical forces into the nucleus through the action of
the cytoskeleton [329, 330]. It has been proposed that, in
response to tension, cytoskeletal filaments reorient, causing
the nucleus to distort and align against the axis of tension,
potentially affecting nuclear scaffolds such as chromatin
[331]. It has also been suggested that focal adhesions are
the initiating site of mechanotransduction [332], offering an
attractive rationale for topography-dependent cell response.
In fact, several studies have shown surface-adherent cells
can extend filopodia [333-335], which are finger-like pro-
trusions of the cell membrane that are rich in actin and
are found to contain integrins [336]. A study by Collie et
al. (2011) used blocking antibodies to demonstrate a direct
role for integrins in macrophages responses to topography,
specifically showing that anti-f2 integrins abrogated IL-13
production, whereas blocking f1 e, 3; integrins had no effect
on macrophage responses [300].

The use of scanning electron microscopy has revealed
unique cell behaviours on nanostructures [337] and provided
insight into different forms of membrane contortion. Cells
on patterned nanopillars have been shown to “bend” the
pillars, most likely due to filopodia contraction; however,
the ability to “tilt” these structures was dependent on the
rigidity and stiffness of the material [338]. In some cases,
cells attempted to phagocytose nanostructures, potentially
utilising the increased surface area to promote greater points
of contact for “grip” [308, 339]. Interestingly, it was recently
observed that nanostructures could penetrate fibroblasts,
which the authors suspected to be due to failed phago-
cytosis, resulting in cell thinning and membrane rupture
[339]. Together, these studies highlight how the multitude
of techniques and topography can differentially affect cell
responses.

4.3. Modulating Inflammasome Components by Biomate-
rial Surface Properties. The goal of shaping innate effector
immune cell responses within FBR pathways has been inves-
tigated in many different contexts from alternating bioma-
terial surface properties through to inhibiting innate effec-
tor cell outputs. However, how surface characteristics can
manipulate innate effector cell signalling pathways requires
further investigation. Currently, the MATS model is the most
plausible hypothesis available. It has been demonstrated that
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membrane curvature as a result of cytoskeletal changes can
reorganise local lipid composition and expose hydrophobic
cavities [340-342]. This may in fact support the independent
observations documented by Malik et al. (2011) that suggested
a role of cholesterol and Syk in macrophage-derived IL-18
when in the presence of PMMA microspheres [264]. More
recently, surface contact between macrophages and MSU
crystals was shown to be sufficient to cause IL-18 secretion
in vitro via the NLRP3 inflammasome. The authors demon-
strated that the release of IL-1f3 upon MSU crystal contact
was a result of K" efflux, offering an additional mechanism
that may result from membrane perturbations. It is known
that K" efflux is one model of NLRP3 activation and was
recently found to be the common outcome amongst NLRP3
stimuli [343]. Therefore, the notion that surface receptor-
independent signalling can be initiated upon changes to
membrane curvature opens the possibility of assessing how
surface topography can be used to modulate these responses.
In this way, biomaterial-adherent cells may conform their
membrane to the curvature of the surface topography, which
may result in membrane lipid sorting and Syk kinase activa-
tion and the opening of ion channels to permit signalling, as
well as inducing mechanosensing pathways, in a concerted
manner that activates the innate effector cell.

The physicality of cell membrane conformations on
various topographies is not to overlook the potential role of
surface chemistry in controlling innate effector cell responses
at a molecular level. Unfortunately, studies that assess the
signalling pathways within biomaterial-adherent cells on var-
ious chemistries are minimal. A recent report comparing two
zwitterionic hydrogels demonstrated that, when compared
to poly(2-hydroxyethyl methacrylate) (PHEMA) hydro-
gels, polycarboxybetaine methacrylate (PCBMA) hydrogels
induced less inflammation in vivo, thinner fibrotic capsule at
4 weeks and 3 months after implantation and supported vas-
cularisation and more macrophages with anti-inflammatory
phenotypes in vivo [344]. Importantly, this study demon-
strated that changes to inflammatory responses were a result
of the hydrogel chemistry and not due to endotoxin con-
tamination, a fact that many other studies often neglect to
mention or do not test for. The authors propose that PCBMA
hydrogels were superior to PHEMA because they could resist
protein adsorption to a greater extent, thereby reducing
recognition by innate effector cells, namely, macrophages
[344]. This then raises the argument that innate effector
cell modulation could be achieved indirectly by controlling
protein adsorption to eliminate receptor-mediated signalling.
How this may in turn affect inflammasome activation is
not yet determined and will require extensive investigations
both in vitro and in vivo. There are many considerations
to account for prior to translating preclinical therapeutic
interventions into strategies for humans. A single approach
may not adequately address clinical complications, and for
this reason targeting different facets of the FBR may improve
patient outcomes, whereby surface modification would alter
protein adsorption and acute cell infiltration, allowing a more
manageable inflammatory response for the administration of
innate cell-targeted therapies.
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5. Future Directions

As the field of biomaterials becomes infiltrated with the
medical and biological sciences, it is evident that a deep
and mechanistic understanding of immunological responses
to implants is at the forefront of biocompatibility and tis-
sue integration. In order to implement rationally designed
implantable biomaterials, it is necessary to quantify the
full breadth and temporal allocation of immune responses
that contribute to downstream FBR events such as fibrotic
encapsulation and biomaterial rejection [345]. Whilst in
vitro methods are important for selecting materials and
designs that may hold promise, the use of culture based
techniques limits the full understanding of complex immune
interactions. To this end the development of more robust
and predictive in vivo models of biomaterial-induced inflam-
mation is required for use with the appropriate genetically
modified stains of mice deficient in key innate immune
effector response pathways to ultimately assess the effect of
physicochemical surface modifications on the initiation and
progression of the FBR. It is important to gain a detailed
understanding of the innate immune inflammatory processes
by which neutrophils and monocytes/macrophages can be
activated by biomaterial surfaces in the absence of any
specific cell surface receptor or cytosolic receptor signalling.
Furthermore, there is potential for exploring whether ASC-
mediated inflammasome assembly is an important driver of
the FBR and whether the surface nanotopography and the
chemical reactive potential of an implant can modulate these
responses. The relationship between how the physical char-
acteristics of the surface of a biomaterial implant can affect
inflammasome-dependent FBR initiation and progression
will be mechanistically resolved using genetically modified
mice made deficient in the key signalling pathways that are
predicted to be the major arbiters in how this occurs and will
also allow definition of the rules by which biomaterial surface
nanotopography and chemical reactive potential change how
the FBR is initiated and progresses.

6. Conclusions

The biggest challenge in the field of biomaterials is the
understanding and, importantly, the prediction of long-term
biological responses in patients receiving implantable bioma-
terials [29]. Deconstructing and detailing these mechanisms
will allow for more targeted approaches and highlights how
immune processes are amenable to manipulation by synthetic
biomaterials. We anticipate that future explorations in this
field of research will ultimately facilitate rationally designed
and manufactured biomedical implants with substrate sur-
face characteristics that will enhance utility, function, and
clinical application.
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