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ABSTRACT 

Prokaryotic metal-ion receptor proteins, or solute-binding proteins, facilitate the acquisition of 

metal ions from the extracellular environment. Pneumococcal surface antigen A (PsaA) is the 

primary Mn2+-recruiting protein of the human pathogen Streptococcus pneumoniae and is essential 

for its in vivo colonization and virulence. The recently reported high-resolution structures of metal-

free and metal-bound PsaA have provided the first insights into the mechanism of PsaA-facilitated 

metal binding. However, the conformational dynamics of metal-free PsaA in solution remain 

unknown. Here, we use continuous wave electron paramagnetic resonance (EPR) spectroscopy and 

molecular dynamics (MD) simulations to study the relative flexibility of the structural domains in 

metal-free PsaA and its distribution of conformations in solution. The results show that the crystal 

structure of the metal-free PsaA is a good representation of the dominant conformation in solution, 

but the protein also samples structurally distinct conformations that are not captured by the crystal 

structure. Further, these results suggest that the metal binding site is larger and more solvent 

exposed than indicated by the metal-free crystal structure. Collectively, this study provides atomic-

resolution insight into the conformational dynamics of PsaA prior to metal binding and lays the 

groundwork for future EPR and MD based studies of PsaA in solution. 
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GRAPHICAL ABSTRACT 

 

 

 

 

 

HIGHLIGHTS 

•   PsaA is the Mn2+-recruiting protein of the human pathogen Streptococcus pneumoniae 

•   Metal-free PsA samples structurally distinct conformations not captured by the crystal structure 

•   The metal binding site is larger and more solvent exposed than indicated by the crystal structure 
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mobility 
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INTRODUCTION 

Metal-ion receptor proteins in prokaryotic cells represent a functional dichotomy. They bind metal 

ions from the extracellular environment with nanomolar affinity via thermodynamically favourable 

interactions between the ion and the binding site in the protein [1, 2]. However, efficacious 

scavenging of ions relies upon the subsequent release of the ion from the binding site to facilitate 

transport into the cell. This combination of high-affinity binding followed by ligand release enables 

cellular accumulation of metal ions from the extracellular space, which is essential for a range of 

intracellular processes [3, 4]. Despite this, the metal-free conformations of metal-ion receptor 

proteins have been poorly characterized due to the intrinsic challenge of isolating them without 

contamination by co-purifying metal ions.  

Pneumococcal surface antigen A (PsaA) is the essential Mn2+-recruiting protein of the major human 

pathogen Streptococcus pneumoniae.  S. pneumoniae is a causative agent of bacterial pneumonia, 

meningitis, septicaemia and otitis media [5, 6] and is the foremost bacterial pathogen associated 

with mortality in children less than 5 years old worldwide [7]. Manganese has crucial roles in S. 

pneumoniae virulence, including protection against superoxide stress, capsule production, and 

metabolism [8, 9]. As a consequence, impairment of Psa permease function results in an attenuation 

of the in vivo virulence of S. pneumoniae [5, 9-12]. In addition to its role in metal acquisition, the 

P4 region (residues 251-278) of PsaA is immunogenic [13-15]. The P4 region has also been 

implicated in mediating PsaA adhesion to nasopharyngeal epithelial cells [11-16], although the in 

vivo relevance of this adhesin property remains contentious. The reduced efficacy of current 

vaccine regimes, together with the spread of multidrug resistant strains, highlights an urgent need to 

develop new therapeutic strategies for the management of pneumococcal infections [17]. Due to the 

central role of PsaA in the establishment of S. pneumoniae infections, understanding how the 

structure and conformational dynamics of PsaA is related to its physiological function can form an 

important contribution to the development of new strategies to prevent and treat pneumococcal 

disease.  
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PsaA belongs to the Cluster A-I subgroup of solute-binding proteins (SBPs) associated with ABC 

permeases. It has a two-lobed organization comprising of N- and C-terminal (β/α)4-domains 

linked by a rigid helix, and bisected by a cleft in which the Mn2+ ion binds [18, 19] (Figure 1a). 

This overall fold is conserved amongst SBPs in the cluster A group that interact directly with metal 

ions [17, 20], or bind chelated metals [21] or vitamins [22]. Recent structural advances have 

revealed that the length and flexibility of the linking helix in the SBPs plays a crucial role in the 

mechanism of ligand binding. The role of the linking helix is well defined in cluster B SBPs, such 

as the amino acid binding SBP LivJ, which has a considerably shorter helical linker region 

permitting large domain movements (up to 60°) upon ligand binding. This ligand binding 

mechanism in cluster B SBPs is commonly referred to as a ‘Venus flytrap’ binding mode [23]. The 

lack of high-resolution structural information on the conformational landscapes of SBPs from other 

clusters has precluded conclusions about the generality of this mechanism. Furthermore, the length 

of the helical linker domain suggested that other SBPs were unlikely to undergo such extensive 

domain rearrangements.  

The recent elucidation of a set of high-resolution structures of metal-free PsaA in the open state 

enabled the first comparison of the open and closed conformations of the cluster A-I subgroup of 

SBPs [24]. Based on these crystal structures, it was proposed that the helical linking region restricts 

the extent of conformational movement within PsaA. In contrast to the large movements observed 

in the LivJ structures, the metal-free and metal-bound structures of PsaA only showed a relatively 

minor (~13°) rotation of the C-terminal domain, in which the pivoting was centered on the last 

segment of the linking helix (residues 190 -194). As such, this distinct conformational transition, 

which suggests a relatively rigid protein, was likened to a ‘spring-hammer’ binding mechanism 

[24]. However, crystal structures represent static snapshots of proteins, usually captured in a single 

conformation within the crystal lattice. Consequently, the metal-free PsaA structure represents one 

stable conformation of the protein, and may not reveal the full extent of conformational dynamics 

of metal-free PsaA in solution. Therefore, it remains to be ascertained how the crystallographic 
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structure of metal-free PsaA compares to its conformational flexibility in solution. Previous MD 

studies of PsaA have examined the structural changes that are induced by removing the metal ion 

from the metal-bound protein [24]. The series of 50 ns simulations from that work showed that the 

observed structural changes were consistent with the proposed spring-hammer mechanism [24]. 

However, they did not converge to the metal-free crystallographic conformation, suggesting that the 

conformational flexibility of PsaA is greater than suggested by the metal-free and metal-bound 

crystal structures. Here, the aim of this study was to combine molecular dynamics (MD) 

simulations and continuous wave (cw) electron paramagnetic resonance (EPR) spectroscopy to 

characterize the mobility of the structural domains of metal-free PsaA, and determine the 

conformations sampled by the protein in the absence of the metal ion. The combined results from 

EPR spectroscopy and MD simulations show that, while the high-resolution structure of metal-free 

PsaA is a good representation of the predominant conformation of PsaA in solution, the protein also 

samples structurally distinct conformations that are not captured by the crystal structure. 

Furthermore, in all simulations of metal-free PsaA, the metal binding site was more solvent exposed 

than in the crystal structure. The unwinding of the linking helix, characteristic of all metal-bound 

structures crystallised thus far, [24] was not observed in our simulations of metal-free PsaA, 

suggesting that this conformational change is only induced upon metal binding. This study 

characterizes the intrinsic flexibility of metal-free PsaA in solution, providing additional structural 

information that cannot be obtained from the available crystal structures. These results contribute to 

a greater understanding of the structure-function mechanisms of metal-receptor proteins in S. 

pneumoniae and other prokaryotes.  

METHODS 

Expression and purification of PsaA and variants 

Recombinant PsaA was cloned from S. pneumoniae D39 genomic DNA, gene SPD_1463, into 

pCAMcLIC01-PsaA as previously described [19]. The recombinant sequence of PsaA 
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(Supplementary Table 1) is the mature soluble portion of the protein (residues 32-309) and does not 

contain any endogenous cysteine residues. Site-directed mutagenesis (Quikchange Lightning Kit, 

Agilent Technologies) was used to introduce the cysteine mutations in the coding sequence of 

pCAMcLIC01-PsaA to generate Cys-PsaA mutant variants (all primers are listed in Supplementary 

Table S2). Protein expression was performed in E. coli LEMO21(DE3), by growing the cells in an 

autoinducing TB medium (Overnight Express, Merck) for 18 hours at 303 K. Cells were harvested 

and disrupted at 30 kPSI by a Constant Systems cell disruptor and the soluble supernatant isolated 

by centrifugation at 277 K for 60 min at 120,000 × g. PsaA was isolated in a Histrap HP column on 

an AKTA Purifier and was further purified on a Superdex 200 10/300 gel filtration column (GE 

Healthcare). The dodecahistidine tag was removed by enzymatic digestion by the human rhinovirus 

3C protease and the protein purified further on a Histrap HP column.  

 

Generation of metal-free PsaA 

Purified metal-free PsaA and mutant variants were prepared by dialyzing the protein with the 

polyhistidine-tag removed (10 mL) in a 20 kDa molecular weight cut-off membrane (Pierce) against 

4 L of sodium acetate buffer, pH 3.7, with 20 mM EDTA at 300 K. The sample was then dialyzed 

against 4 L of 20 mM Tris-HCl, pH 7.2, 100 mM NaCl, at 277 K and centrifuged at 18,000 × g for 

10 min to remove any insoluble material. The Cys-PsaA variants were purified using essentially the 

same procedure with 5 mM dithiothreitol (DTT) or 5 mM tris(2-carboxyethyl)phosphine (TCEP) 

included in all buffers. Protein samples were analysed for metal content by heating 10 µM protein at 

370 K for 30 min in 3.5% HNO3. Samples were analysed by inductively-coupled plasma mass 

spectroscopy (ICP-MS) on an Agilent 7500cx ICP-MS (Adelaide Microscopy, University of 

Adelaide).  
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Protein assays 

Metal-loading assays were performed on purified metal-free PsaA variants (30 µM) by mixing with 

300 µM MnSO4 (10-fold excess) in a total volume of 2 mL into the assay buffer (20 mM MOPS, pH 

7.2, 100 mM NaCl) for 60 min at 277 K. The sample was desalted on a PD10 column (GE 

Healthcare) into the assay buffer and the protein concentration was quantitated. The protein was 

then analysed by ICP-MS. 5-10 µM solutions of control (metal-free) and metal-loaded protein were 

prepared in 3.5% HNO3 and boiled for 30 min at 370 K. Samples were then cooled and centrifuged 

for 20 min at 14,000 x g. The supernatant was then analysed ICP-MS and the protein-to-metal ratio 

determined.  

 

Labelling of PsaA variants with MTSL 

The Cys-PsaA variants were spin-labelled using the cysteine-specific label MTSL (S-(1-oxyl-

2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)methyl methanesulfonothioate) (Toronto 

Chemicals). A ~10-fold excess of DTT was added prior to labelling to reduce any disulfide bonds 

and then removed after 1 hour using a PD-10 column and Chelex-100 treated 20 mM MOPS, pH 

7.2, 100 mM NaCl. Samples were then immediately labelled using a 10-fold molar excess of MTSL 

to PsaA, from a 50 mM MTSL-DMSO stock, and left to react for 3 hours in the dark with mild 

shaking. Unbound MTSL was removed by buffer exchange (4×) with Chelex-100 treated 20 mM 

MOPS, pH 7.2, 100 mM NaCl and concentrated using spin concentrators (10 kDa molecular weight 

cut-off).   

 

Continuous wave electron paramagnetic resonance measurements 



	
  

	
   10	
   	
  

Room-temperature X-band cw EPR spectra were acquired using a Bruker eleXsys E500 

spectrometer fitted with a Bruker ER4123D loop-gap resonator. The total active sample volume 

was 10 µl. Experimental parameters for the cw EPR spectra were: microwave power, 0.6315 mW; 

field modulation amplitude, 1 G; field modulation frequency, 100 kHz; sweep width, 9 mT; number 

of scans, 32 scans.  The spectra were quantified by double integration against a known 

concentration of MTSL to give concentrations between 100 to 300 µM MTSL-labelled PsaA, which 

were comparable to the concentrations calculated by a standard protein assay.  

Simulations of the cw-EPR spectra were performed using the program Easyspin [25]. Random 

rotational motion of the spin probe was assumed, and the corresponding correlation time, τc, was 

an adjustable parameter. All five spectra were simulated using parameters typical for a nitroxide 

spin probe with gz ~ 2 and Azz =34-38 Gauss. The spectra of the L56C, S58C, I125C and S266C 

PsaA variants were simulated using a single component, whereas the spectrum of the I236C PsaA 

variant required simulation with two components. For the two-component simulation, the τc of 

both components is given. 

 

MD simulations of wild-type and spin-labelled PsaA 

All MD simulations were performed using the GROMACS (Groningen Machine for Chemical 

Simulation) package version 3.3.3 [26], in conjunction with the GROMOS 54A7 force field [27] for 

proteins. The metal-free PsaA crystal structure (PDB-ID 3ZK7) was used as a starting point for all 

simulations. The crystallographic water molecules were retained. Water was described using the 

simple point charge (SPC) water model [28]. All simulations were performed under periodic 

boundary conditions using a rectangular box with at least 1.2 nm between the protein and the box 

wall. The van der Waals interactions were evaluated using a 0.8 nm cut-off. To minimize the effect 

of truncating the electrostatic interactions beyond the 1.4 nm long-range cut-off, a reaction field 
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correction was applied using a relative dielectric constant of εr = 78.5.  Note that the GROMOS 

54A7 forcefield has been specifically parameterised for use with a reaction field and the given cut-

off values [27]. The SHAKE algorithm [29] was used to constrain the lengths of the covalent bonds. 

The SETTLE algorithm [30] was used to constrain the geometry of the water molecules. In order to 

extend the timescale that could be simulated, explicit hydrogen atoms in the protein were replaced 

with dummy atoms, the positions of which were calculated at each step based on the positions of 

the heavy atoms to which they were attached. This eliminates high frequency degrees of freedom 

associated with the bond-angle vibrations involving hydrogen atoms, allowing a time step of 4 fs to 

be used to integrate the equations of motion without affecting thermodynamic properties of the 

system significantly [31]. The simulations were carried out in the NPT ensemble at T = 300 K and 

P = 1 bar. The temperature and pressure were maintained close to the reference values by weakly 

coupling the system to an external temperature and pressure bath using a relaxation time constant of 

0.1 ps and 0.5 ps, respectively. The compressibility was 4.5 × 10-5 bar and the pressure coupling 

was isotropic. Configurations were saved every 40 ps for analysis. Images of the protein were 

produced using VMD [32].  

For simulations of wild-type PsaA, the metal-free PsaA crystal structure was placed in a box of SPC 

water. As the primary sequence of wild-type PsaA has a net charge of -10 e, 10 Na+ counter-ions 

were added to ensure the overall charge neutrality of the system. Further ions were added to adjust 

the concentration of the solution to 200 mM NaCl. Three independent sets of 50 ns unrestrained 

MD simulations were performed. The end structures from the wild-type PsaA simulations were 

used as the starting structures for the simulations of spin-labelled Cys-PsaA variants. A single point 

mutation of cysteine covalently bound to the MTSL probe was incorporated into each of the PsaA 

systems, at residues L56, S58, I125, I236 and S266, as shown in Figure 1. The MTSL spin label 

was parameterized using the Automated Topology Builder (ATB)  as described previously [33]. 

The optimised geometry and the topology for the MTSL is available from the ATB webserver [34]. 

Each PsaA variant underwent 1000 steps of energy minimization using a steepest descent 
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algorithm, followed by 0.5 ns of unrestrained MD simulation to allow the conformation of the 

cysteine-linked spin-label to respond to the local environment of the protein. Each of the five PsaA 

variants was solvated in a box of SPC water and Na+ counter-ions were added to ensure the overall 

charge neutrality of the system. Further ions were added to adjust the concentration of the solution 

to 200 mM NaCl. For each of the five MTSL-labelled PsaA systems (referred to as L56C, S58C, 

I125C, I236C and S266C), three independent sets of 300 ns unrestrained MD simulations were 

performed.  

 

Analysis of MD simulations  

Cluster analysis of wild-type and variant PsaA: The trajectories from all independent simulations of 

the wild-type PsaA and the five MTSL-labelled Cys-PsaA variants were concatenated to a single 

trajectory containing 840 structures from PsaA variant simulations and 80 structures from wild-type 

PsaA simulations. Cluster analysis was preformed on the backbone structure of the PsaA protein 

using the clustering algorithm described by Daura and co-workers [35], using cut-offs between 0.1 

nm and 0.3 nm. In this work, two conformations were considered to fall within the same cluster if 

the backbone RMSD between the conformations was less than the specified cut-off. 

Root mean squared deviation (RMSD): As a measure of the difference between configurations 

extracted from the trajectories or clusters, the RMSD was calculated using the method of Maiorov 

and Crippin[36] after first performing a rotational and translational fit of each frame of the 

trajectory to a reference structure or domain.  

Orientation and rotational mobility of the MTSL label: For each of the five MTSL-labelled PsaA 

variants, the trajectories from the 3 independent runs were combined. To remove rotational and 

translational motion from the system, the protein was aligned to the starting structure using all 

backbone atoms except atoms in the spin label. To estimate the motion of the MTSL spin label its 
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Root Mean Square Fluctuation (RMSF) was calculated for each of the five MTSL-labelled PsaA 

variants. The RMSF value was calculated using all non-hydrogen atoms in the MTSL molecule and 

averaged over all frames in the respective trajectory. To de-couple the motion of the spin label from 

the conformational changes of the protein, the rotational angle of the probe relative to the Cα of the 

covalently bound cysteine was calculated. For this, the vector between the MTSL pyrrole nitrogen 

and the Cα of the covalently bound cysteine was calculated as a function of simulation time and the 

rotational angle of the probe was then calculated as the arccosine of the vector dot product, as 

described previously [33]. For each of the five MTSL-labelled PsaA variants, the time-dependent 

data of the rotational angle was binned into histograms and plotted as radial plots. Volumetric maps 

prepared in VMD showing the occupancy of probe throughout the simulation were used to visualize 

the mobility of the probe in the different PsaA variants.  

Flexibility of the PsaA protein: The mobility of the different domains in the PsaA protein was 

determined by calculating the RMSF of the Cα of each residue in PsaA. The RMSF was calculated 

using a trajectory containing 840 structures from PsaA variant simulations and 80 structures from 

wild-type PsaA simulations and the RMSF values were averaged over all atoms in each residue to a 

single RMSF value per residue.  
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RESULTS  

Cys-PsaA variants interact with Mn2+ in vitro 

PsaA has a single metal-binding site located ~1.5 nm beneath the solvent accessible surface of the 

protein (Figure 1a), which is able to bind ~1 mol of Mn2+ per mol of protein [24, 37]. As shown in 

Figure 1, the cysteine substitutions used for MTSL spin-labelling are located outside of the metal 

binding site; nevertheless an equilibrium-binding assay was used to verify that incorporation of the 

point mutations did not affect Mn2 -binding. We observed that the metal-free variants showed Mn2+ 

binding comparable to wild-type PsaA (Table 1), indicating that the cysteine substitutions had not 

altered the metal-receptor properties of PsaA. Therefore, it can be inferred that the metal-free Cys-

PsaA variants adopted a tertiary structure that was compatible with metal-ion interaction equivalent 

to the wild-type protein [24]. 

 

Cys-PsaA variants are structurally equivalent to wild-type PsaA  

Unrestrained MD simulations of metal-free wild-type PsaA and the five metal-free MTSL-labelled 

Cys-PsaA variants (each incorporating a single point mutation) were carried out. For the wild-type 

PsaA, three independent sets of simulations were performed, each lasting 50 ns, giving a combined 

simulation time of 150 ns. For each of the five MTSL-labelled Cys-PsaA variants, three 

independent sets of 300 ns simulations were performed, giving a combined simulation time of 900 

ns for each variant. Thus in total, 4.65 µs of unrestrained MD simulations of metal-free PsaA were 

carried out. The longer simulation time of the spin-labelled Cys-PsaA variants was to ensure 

sufficient sampling of the MTSL spin label. 

To further ensure that the incorporation of MTSL-labelled cysteine has not resulted in large 

structural changes of metal-free PsaA a cluster analysis [35] was performed. For this, the 

trajectories from simulations of wild-type PsaA and all five MTSL-labelled Cys-PsaA variants were 
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combined into a single data set. Using a backbone Root Mean Square Deviation (RMSD) cut-off of 

0.30 nm, all structures from simulations of the five PsaA variants and the wild-type PsaA were 

grouped into a single cluster, showing that within this cut-off, the mutant variants and wild-type 

PsaA can be considered as structurally equivalent. Note that two structures from a protein of 

between 200 and 300 amino acids in length that show a backbone RMSD of 0.30 nm can be 

considered similar and indicates the absence of large structural rearrangements [38, 39]. 

Collectively, the cluster analysis and the metal-binding assays confirmed that introducing a cysteine 

and labelling with MTSL does not perturb the overall structure of the protein and that the Cys-PsaA 

variants can be considered functionally and structurally equivalent to wild-type PsaA in solution.  

 

Conformational dynamics of metal-free PsaA in solution  

To investigate the conformational dynamics of metal-free PsaA in solution, the cluster analysis of 

the combined trajectory was repeated using progressively smaller cut-offs. Analysis with a 0.25 nm 

RMSD cut-off identified 13 clusters, of which 11 contained 2 or more structures. These clusters 

capture the most frequently occurring localized motions of metal-free PsaA in solution. Repeating 

the cluster analysis with lower cut-offs produced more clusters, but did not identify any additional 

subpopulations with distinct structural features. Figure 2 shows the assignment of structures from 

the combined trajectory to the four main clusters and also illustrates the characteristic motions that 

distinguish the structures in each cluster.  

The four most populated clusters contained 82% (cluster 1), 5% (cluster 2), 4% (cluster 3) and 3% 

(cluster 4) of the conformations, representing 94% of the combined trajectories. The assignment of 

structures to the full set of clusters can be found in Supplementary Figure S1. It is important to note 

that structures from both wild-type and all five Cys-PsaA variants are found in the dominant cluster 

(cluster 1) and that structures from WT simulations are also found in most of the other clusters (see 

also Supplementary Figure S1). Further analysis showed that clusters 1 and 3 contained 55% and 
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17.5% of the 80 structures from simulation wild type PsaA, respectively. The remainder of the wild 

type conformations were distributed across 4 more clusters. This further confirms that WT and Cys-

PsaA variants can be considered structurally equivalent and that the mutations and introduction of 

the spin labels did not result in significantly increased sampling of conformations that are not 

present in the wild-type protein.   

The most populated cluster, cluster 1 in Figure 2, represents the major PsaA conformation. Here the 

orientations of the N- and C-terminal lobes were found in positions analogous to that of the metal-

free PsaA crystal structure (PDB ID 3ZK7). The backbone RMSD between the central 

conformation of cluster 1 and that of the solvated PsaA crystal structure used to initiate the 

simulations is 0.17 nm. As can be seen in Figure 2, clusters 2, 3 and 4 represent conformations in 

which there was a lateral splaying of the C-terminal lobe, characterized by an outward motion of the 

P4 domain (residues 250 – 280, orange) and the ‘mobile helix’ (residues 220 – 250, red) away from 

the longitudinal axis of the protein. This motion is accompanied by an increased mobility of the 

loop adjacent to the metal-binding site (residues 120 – 130, purple). The relative extent of these 

motions is the main difference between the conformations of clusters 2, 3 and 4. It should be noted 

that the distribution of the backbone RMSD of PsaA conformations identified lay within a 0.3 nm 

cut-off and are consistent with the RMSDs previously reported by Couñago et al. [24]. From the 

structures in each of the 4 most dominant clusters seen in Figure 2, it is evident that the C-terminal 

lobe of PsaA exhibits the highest conformational fluctuations. Further analysis of the concatenated 

trajectories showed that the splaying of the C-terminal lobe is reversible, and that there is inter-

conversion between the conformations of the structures found in the four dominant clusters, as can 

be seen in the cluster assignment in Figure 2 and Figure S1 in the Supplementary Material, as well 

as Figure S2 that illustrates the transitions between clusters.  

To quantify the relative flexibility of the different structural domains of metal-free PsaA, the per-

residue Root Mean Square Fluctuation (RMSF) was calculated using the combined trajectory. 

Figure 3a shows the per-residue RMSF with regions of high, intermediate and low RMSF values 
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shaded in red, orange and blue, respectively. The protein domains that correspond to these regions 

are shown in the same colours in Figure 3b. The linking helix that connects the C- and N-terminal 

lobes (residues 150-220) showed the lowest RMSF values with a slight increase in mobility towards 

the C-terminal half. The P4 domain in the C-terminal lobe (residues 250-280) and the two helix-

loop domains in the N-terminal lobe (residues 50-75 and 90-110) showed intermediate RMSF 

values. The regions of highest mobility were the short loop between the C- and N-terminal lobes 

(residues 120-130) and the helix-loop domain of the C-terminal lobe preceding the antigenic P4 

region (the mobile helix).  

Given that the lateral splaying of the C-terminal lobe and the loop flanking the metal binding site 

was observed in many of the conformations of PsaA in solution, a more detailed structural analysis 

of the metal binding residues in the PsaA crystal structures and the solution model was carried out. 

Comparison of the metal binding residues, His67, His139, Glu205 and Asp280, in the Mn-bound 

and metal-free PsaA crystal structures showed that these residues are further apart in the absence of 

the metal ion [24]. In the simulations of metal-free PsaA in solution, the inter-residue distance 

between His67 and Glu205 was significantly larger than observed in the metal-free crystal structure 

(see Supplementary Figure S3 and Supplementary Table S3). A similar increase was observed in 

the simulations reported by Couñago et al. [24]. Furthermore, it is notable that the partial 

unwinding of the linking helix observed crystallographically on metal binding [24] was not sampled 

in any of the conformations from the MD simulations.   

Mobility of protein domains based on EPR spectroscopy  

To complement the MD simulations, the cw EPR spectra for the five MTSL-labelled Cys-PsaA 

variants were collected. The spectral line-shapes, shown in Figure 4, provide information about the 

motion of the spin-label on the picosecond (ps) to microsecond (µs) time scale and are a result of 

the paramagnetic relaxation of the MTSL spin-label. Fast protein backbone motion on the 

nanosecond (ns) time scale can also affect the line-shape. The characteristic MTSL spectrum arises 
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from interaction of the unpaired electron with the nitroxide 14N nucleus (nuclear spin, I = 1) to give 

three dominant spectral features that correspond to hyperfine coupling in the mI (0, ±1) states. The 

detailed spectral line-shape of MTSL is dependent on the mobility of the nitroxide spin-label. A 

very sharp EPR line-shape is characteristic of a highly mobile spin-label with fast inter-conversion 

between the different rotameric states, while peak broadening results from immobilized labels with 

slow or no inter-conversion between states. Thus, the comparison of line-shapes and the relative 

peak broadening in the spectra can be used to calculate the relative mobility of the MTSL attached 

to different parts of the PsaA protein. Typical reorientational correlation times (τc) are <1 ns for 

highly mobile, > 4 ns for slow tumbling and approaching 1 µs for immobilised nitroxide spin-labels. 

As motion becomes faster, exchange between spin-label orientations leads to averaging of the 

anisotropic hyperfine contributions to the line-shape of the spectrum[40]. The outer extrema 

hyperfine splitting in the nitroxide spectrum, anisotropic at the rigid limit (2Azz’ ≈ 6.8 mT), become 

narrower as they become isotropic in highly mobile spin-labels (2Azz’ =2Aiso ≈ 3.0 mT) (shown in 

Figure 4).  

The 5 MTSL-labelled Cys-PsaA variants gave X-band EPR spectra that are typical for spin-labelled 

proteins with τc varying between ~1 to 10 ns. EPR simulations of the spectra were performed, under 

the assumption of isotropic rotational motion of MTSL, to obtain τc, for the motion of the nitroxide 

spin-label of each of the PsaA variants (Figure 4, dotted lines). The EPR spectrum of the S266C 

variant, located within the antigenic P4 region of PsaA, showed the sharpest line-shape, indicating 

the label was highly mobile with a τc of 970 ps (Figure 4e). By contrast, the L56C (Figure 4a) and 

S58C variants (Figure 4b) variants, from the N-terminal domain, and the I236C variant (Figure 4d) 

isoform, from the C-terminal domain, showed extensive peak broadening, concordant with slow 

spin-label tumbling and τc’s of 7-10 ns. The spectrum of the I236C variant also showed the presence 

of a small percentage (13 %) of more mobile spin-label (τc of 1.2 ns). The I125C variant showed 

only some broadening with a τc of 2.7 ns (Figure 4c) indicative of intermediate mobility. 

Collectively, the results from the cw EPR spectroscopy experiments showed an order of relative 



	
  

	
   19	
   	
  

mobility, from least to greatest, of: S58C < L56C < I236C (87% of spin-label) < I125C < S266C ≈ 

I236C (13 % of spin-label) (Figures 4 a-e). 	
  

 

Mobility of spin-labels from MD simulations 

MD simulation techniques enable the tracking of spin-label motion with atomic resolution in the ps 

to ns timescales. As the temporal resolution of MD simulations corresponds to those of EPR 

spectroscopy, they can provide a complementary means of examining both the motion and local 

environment of the paramagnetic probe [41-44]. MD simulations are increasingly used to aid in the 

interpretation and analysis of EPR data, as it enables the de-convolution of probe motion from the 

underlying motion of the protein [41-48]. It is important to note that the comparison between spin 

mobility form MD simulations and the line shapes from the cw EPR spectra were compared on a 

qualitative basis. The mobility of the spin-labels for the 5 MTSL-labelled Cys-PsaA variants was 

first estimated by calculating the RMSF of the incorporated MTSL-cysteine for each point mutation 

in PsaA (Figure 5). For this, the protein was aligned to its starting structure to remove the rotational 

and translational motion of the entire system. The RMSF was then calculated using all non-

hydrogen atoms in the Cys-MTSL and averaged over all frames in the simulation of the respective 

Cys-PsaA variant. Therefore, the RMSF provides a measure of the deviation of the cysteine-linked 

MTSL spin-label from its initial position, as the simulation evolves over time. The RMSF values 

indicate that the spin labels attached to residues in the N-terminal lobe (L56 and S58) are 

significantly less mobile than the ones attached to residues in the C-terminal lobe (I236 and S266) 

or the loop flanking the metal binding site (I125). To visualize the relative mobility of the five spin-

labels, volumetric maps based on the occupancy of the Cys-MTSL label over the entire simulation 

were generated (see Supplementary Figure S4). 

While the time-averaged RMSF provides information on the relative mobility of the probe in the 

different Cys-PsaA variants, it does not report on the probe’s rotational motion. This was calculated 
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as the rotational angle of the probe relative to the Cα�of the covalently bound cysteine after again 

removing the rotational and translational motion of the system. This captures the rotational motion 

of the spin label independent of the underlying motion of the protein. Figure 6 shows the radial 

distribution plots of the rotational angles for each variant. The data shows that L56C-MTSL 

samples a very narrow rotational motion in comparison to the other variants. It also exhibited the 

lowest RMSF of all the Cys-MTSL probes and produced a high degree of spectral broadening in 

EPR (τc = 7.6 ns), indicating that L56C-MTSL is highly immobilized. This can be explained by its 

local environment. L56 is located in the β-sheet region of the N-terminal (β/α)4-domain, consisting 

of four parallel β-strands. The β-sheet hydrogen-bonding network between the backbone carbonyl 

and amide groups of residues Val35, Ala37, Asp55, His57 and Ile59 constrain the L56C-MTSL 

backbone to the plane of the β-sheet. Hence, the side chain of L56C-MTSL is sterically constrained 

by the side chains of Lys47 and Asp52, which severely restricts its rotational motion.  

The bimodal distribution for S58C-MTSL suggests the spin-label at this position has two preferred 

orientations, both with low mobility. The mobility of S58C-MTSL is comparable to that of the 

L56C-MTSL spin-label, in agreement with the peak broadening in the EPR spectra (τc = 9.3 ns, 

Figure 4). S58C-MTSL is located within the same N-terminal β-sheet region, two residues away 

from L56C, but has higher solvent accessibility. The backbone mobility of S58C-MTSL is again 

constrained by the rigid β-sheet motif. However, the S58C-MTSL side chain has a greater degree of 

mobility and switches between a preferred orientation, in which the MTSL nitroxide oxygen 

interacts with the primary amine of Lys47, and a second more mobile orientation that lacks specific 

interactions. The low RMSF of S58C-MTSL suggests that there is only a slow interchange between 

the two preferred angular rotations. 

The radial distribution of the I125C-MTSL, along with its RMSF value, suggests an intermediate 

mobility, albeit lower than expected from the EPR spectra. I125C-MTSL is located in the extended 

loop region flanking the metal-binding site. The I125C-MTSL backbone carbonyl forms a β-sheet 
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hydrogen bond with the backbone amide of Asp137. The short stretch of β-sheet is also H-bonded 

between the backbone amide of Leu96 and backbone carboxyl of Lys104. Further interactions 

between the side chains of Asp137 and Tyr210 (in the C-terminal lobe) contribute to the 

coordination of this region of the protein.  

I236C-MTSL and S266C-MTSL, both of which are located in the C-terminal domain, show very 

broad angular distributions and high RMSF values, indicating these labels have increased mobility 

compared to labels in other domains of the protein. In the MD simulations, both I236C-MTSL and 

S266C-MTSL are highly solvent-accessible and do not form any stable contacts with surrounding 

residues. Consequently, these labels are not restricted in their mobility. In particular, S266 shows 

very broad radial distribution suggesting almost complete free rotational motion, consistent with the 

sharp peaks in the EPR spectra. The peak broadening in the EPR spectra of I236C-MTSL suggests 

lower mobility than indicated by the MD simulations. Overall, the RMSF values and the rotational 

motion analyses indicate a relative mobility profile, from least to greatest, of: L56C < S58C < 

I125C < I236C ≈ S266C. Collectively, based on the qualitative comparison of the spin mobility and 

peak broadening, the cw EPR and MD simulations showed acceptable agreement in the prediction 

of relative mobility for the restricted (L56C, S58C) and very mobile (I236C, S266C) labels.  

 

DISCUSSION 

PsaA is a part of the primary Mn2+ uptake pathway of S. pneumoniae, and facilitates the acquisition 

of this essential trace element from the extracellular environment. Our recent studies have also 

shown that PsaA has a vital role in S. pneumoniae virulence [4-6], and blocking PsaA with zinc or 

cadmium, impairs bacterial growth due to disruption of Mn2+ acquisition [37, 49]. Understanding 

the molecular details that underpin the PsaA-facilitated process of metal-binding and subsequent 

release is fundamental to expanding our knowledge of S. pneumoniae virulence and, more 

generally, the acquisition of essential transition metal ions at the host-pathogen interface. The 
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crystal structures of the metal-free and metal-bound PsaA were a first step towards understanding 

the metal binding, indicating that the C-terminal domain of PsaA undergoes a rigid body motion of 

the C-terminal domain via a “spring-hammer” mechanism to facilitate metal binding [24]. 

However, these crystal structures only provide static snapshots of the most stable conformations 

and cannot provide information on the conformational dynamics of proteins in solution. Thus, the 

aim of this study was to characterize the conformational flexibility of metal-free PsaA in solution 

using a combination of MD simulations and cw EPR spectroscopy. For this, five Cys-PsaA variants 

that were labelled with the spin-label MTSL at positions L56, S58, I125, I236 and S266 were used 

to collect cw EPR spectra and the relative mobility of the spin-labels in the five variants was 

determined from the EPR spectra as well as from MD simulations. In addition, a cluster analysis on 

the structures from the MD simulations was used to find the most common conformations that PsaA 

adopts in solution in the absence of a metal ion.  

The results from the MD simulations and the cw EPR experiments clearly indicate that the C-

terminal lobe is more flexible than the N-terminal lobe. The per-residue RMSF further showed that 

the C-terminal helical residues 220 to 250, referred to, as the “mobile helix”, and the loop flanking 

the metal binding site are the most flexible regions of the protein, while the linking helix is the most 

structurally rigid domain. This result is consistent with prior structural observations [18, 24, 37]. 

The flexibility of the mobile helix is notable, as it contains the negatively charged residues 

predicted to be essential for recognition by the transmembrane domain of the ABC transporter, 

PsaC. It is important to note that the secondary structure of the mobile helix is always maintained in 

simulations, while its orientation with respect to the rest of the protein varies, increasing the 

conformational states sampled by PsaA in solution. Thus, we hypothesise that the increased 

flexibility and variability in orientation of this region of PsaA could act as a mechanism by which to 

abrogate potential non-productive interaction with PsaC in the absence of the metal-loaded form of 

the SBP. The results from the cw EPR line shapes show reasonable agreement with the relative 

mobility from MD simulations, except for the case of I236C in the flexible C-terminal domain. The 
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complex line shape of I236C suggests a dynamic conformational exchange between two states that 

are related to each other by the outward movement of the C-terminal lobe. The major rotamer is less 

mobile than predicted by the MD simulations and has a characteristic broad line shape that suggests 

the motion of the MTSL nitroxide is restricted by the C-terminal helix. Rotation of the C-terminal 

helix increases the relative mobility of the nitroxide, producing a sharp spectral cw EPR line shape, 

as seen in the MD simulations. The two components are proportional to the frequency of sampling 

of each respective population, which differs in the MD and the cw EPR, likely due to insufficient 

statistics on the relative occurrences of the two states in the MD simulations.  

The results from the clustering analysis of the MD simulations indicate that the crystal structure of 

metal-free PsaA provides an accurate representation of the dominant conformation of metal-free 

PsaA in solution. However, the analysis also revealed a number of conformational sub-populations 

that show a lateral splaying of the C-terminal lobe through increased movements of the antigenic P4 

domain, the mobile helix and the small loop connecting the C- and N-terminal lobes. These 

conformations represent a smaller yet distinctly different component of the conformational 

landscape of metal-free PsaA protein in solution that is not captured by the crystal structure. 

Analysis of inter-residue distances suggests that the metal binding site is larger and more solvent 

exposed than indicated by the crystals structure and previous MD simulations [24], increasing the 

accessibility of the metal binding site for metal loading and delivery to the PsaC permease. During 

the combined 4.65 µs of unrestrained simulations, the distance between these residues never 

approached distances short enough to capture a metal ion. Collectively, this indicates in the absence 

of metal ions, PsaA does not dynamically sample the metal-bound crystallographic conformation 

required for binding and recognition by the PsaBC ABC transporter complex [24]. This is 

consistent with the previous simulations reported by Couñago et al., where it was observed that 

PsaA rapidly diverged from the metal-bound crystallographic conformation on removal of the 

bound metal-ion. Overall, the flexibility and the conformational dynamics of metal-free PsaA in 

solution revealed in this study are consistent with the rigid-body movements observed in the 
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transition from the metal-free to the metal-bound structural conformations, i.e. the spring-hammer 

ligand-binding mechanism [24]. This work provides new atomic-resolution insights into the 

conformational flexibility of prokaryotic metal-receptor proteins and the importance of specific 

domains within the cluster A-I SBP PsaA. Furthermore, these findings lay the groundwork for 

future EPR and MD based studies of metal-receptor proteins in S. pneumoniae and other 

prokaryotes.  
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FIGURE CAPTIONS 

Figure 1. Structure of metal-free PsaA. The location of the metal binding site is indicated by a 

shaded circle (a). The Cα atoms of residues that were used for spin-labelling are shown as coloured 

spheres (a,b,c). In each of the five Cys-PsaA variants the corresponding wild-type residues was 

replaced by a Cys residue and labelled with MTSL, as shown in the example of residue S236C (d).  

Figure 2. Clustering of PsaA structures in solution. 840 structures from simulations of the five Cys-

PsaA variants and 80 structures from simulations of wild-type PsaA were combined and clustered 

using a 0.25 nm cut-off.  The 4 largest clusters, containing 94% of all structures, are shown. The N-

terminal helix is shown in cyan. The mobile helix and P4 domain in the C-terminal lobe are shown 

in orange and red, respectively. The loop adjacent to the metal binding site is shown in purple.   

Figure 3. Flexibility of structural domains of metal-free PsaA in solution. Per-residue RMSF 

calculated from MD simulations of metal-free wild-type and Cys-PsaA mutant variants. Regions 

with the highest, intermediate and lowest RMSF values are highlighted in red, orange and blue, 

respectively (a). Structure of the metal-free PsaA protein showing domains with the highest (red), 

intermediate (orange) and lowest mobility (blue) based on RMSF values (b).  

Figure 4. Representative cw EPR spectra of the five Cys-PsaA variants in which a MTSL label was 

introduced at positions a) L56, b) S58, c) I125, d) I236 and e) S266. Simulations were performed 

using Easyspin[25] and are shown as dotted lines with τc indicated. The spectra of the L56C, S58C, 

I125C and S266C PsaA variants were simulated using a single component, whereas the spectrum of 

the I236C PsaA variant required simulation with two components. For the two-component 

simulation of d) I236C, the τc of both components is given and the weighting is 87 % to 13 % for 
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each, respectively. Vertical lines are shown to indicate peak broadening. 2Aiso’ ≈ 3 mT and 2Azz’ ≈ 

6.8 mT show the two extremes of hyperfine splitting when motionally averaged with high spin-label 

mobility and at the rigid limit, respectively. 

Figure 5. Relative mobility of MTSL labels. a) MTSL labels are coloured by relative mobility based 

on MD simulations; least mobile in orange (L56C and S58C), intermediate mobility in green 

(I125C), most mobile in red (S266C and I236C). b) The RMSF values for the MTSL spin labels in 

each of the five Cys-PsaA variants was calculated using all non-hydrogen atoms in the MTSL 

molecule and was averaged over all frames in the simulation. 

Figure 6. Radial distribution plots of histograms for the rotational angle of the MTSL spin-label in 

the five Cys-PsaA variants. The rotational motion of the spin-label is estimated by the distribution 

of the rotational angle of the vector between the MTSL pyrrole nitrogen and the Cα�of the 

cysteine. 

 

TABLES 

Table 1. Binding of Mn2+ by metal-free wild-type PsaA and Cys-PsaA variant proteins. 

Sample Molar Ratio (Mn2+:PsaA)a 

PsaA 10:1 Mn2+ ������ 0.05 

L56C-PsaA 10:1 Mn2+ 0.78 � 0.06 

S58C-PsaA 10:1 Mn2+ 0.84 � 0.05 

I125C-PsaA 10:1 Mn2+ 0.81 � 0.08 

I236C-PsaA 10:1 Mn2+ 0.91 � 0.23 

S266C-PsaA 10:1 Mn2+ 0.80 � 0.10 
a Values shown represent the average and standard deviation from at least 3 independent 

measurements. 
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