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Observer and Command Filter-based Adaptive
Fuzzy Output Feedback Control of Uncertain

Nonlinear Systems
Jinpeng Yu, Peng Shi, Fellow, IEEE, Wenjie Dong, Member, IEEE, and Haisheng Yu

Abstract—In this paper, observer and command filter-based
adaptive fuzzy output feedback control is proposed for a class
of strict-feedback systems with parametric uncertainties and
unmeasured states. First, fuzzy logic systems are used to ap-
proximate the unknown and nonlinear functions. Next, a fuzzy
state observer is developed to estimate the immeasurable states.
Then, command filtered backstepping control is designed to
avoid the explosion of complexity in the backstepping design
and compensating signals are introduced to remove the effect
of the errors caused by command filters. The proposed method
guarantees that all signals in the closed-loop systems are bounded.
The main contributions of this paper are the proposed control
method can overcome two problems of linear in the unknown
system parameter and explosion of complexity in backstepping-
design methods and it does not require that all the states of the
system are measured directly. Finally, two examples are provided
to illustrate its effectiveness.

Index Terms—Fuzzy control, Output feedback control, Back-
stepping, Observer, Command filter

I. INTRODUCTION

Over the past few decades, backstepping method [1], [2]
has been taken for one of the most popular and effective
control approaches to deal with nonlinear systems with a strict-
feedback form, particularly those systems which do not meet
matching conditions. Many significant results have already
been achieved, see for example [3]–[7], and the references
therein. Nevertheless, the traditional backstepping requires that
the exact knowledge of the model is available and parametric
uncertainties are not considered [8]–[11]. This restriction
limits the application scope of backstepping techniques. As
an alternative, neural networks (NNs) [12]–[15] or fuzzy
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logic system (FLS) [16]–[20] approximator-based adaptive-
control approaches have been developed to deal with non-
linear systems with unstructured uncertainties. Adaptive NN
or fuzzy control combined backstepping technique provides
a systematic methodology to solve the problem of linear in
the unknown system parameters contained in the backstep-
ping design [21]–[25]. But the drawback of explosion of
complexity caused by the repeated differentiations of virtual
input [4], [5] for the adaptive backstepping is not resolved
by approximation-based adaptive NN or fuzzy backstepping
control [26].

Recently, several new techniques are proposed to solve
this problem of explosion of complexity inherent in adaptive
backstepping such as dynamic surface control (DSC) [27]–[29]
and command filtered backstepping control [30]–[32]. A novel
adaptive fuzzy control combined DSC technology proposed
in [33] eliminates the explosion of complexity problem by
introducing first-order filters for the backstepping approach.
But it takes no account of the problem of compensating the
errors caused by the filters, which will add the difficulty to gain
a better control quality. The command filtered backstepping
was proposed in [30] and then was extended to adaptive case
for strict-feedback systems in [31]. By utilizing the output of
a command filter to approximate the derivative of the virtual
control at each step of backstepping approach, the problem of
explosion of terms can be eliminated. And the errors caused by
command filter can be reduced by introducing compensation
signals. But the command filtered backstepping method has
two major limitations for its applications. The first limitation
is that those works only considered the case for systems
without parametric uncertainty or for systems in which the
unknown parameters are constants. Another limitation is that
the proposed above works are all based on an assumption that
the states of the controlled systems are measurable directly.

Motivated by the above investigations, observer and com-
mand filter-based adaptive fuzzy output feedback control is
proposed for a class of strict-feedback systems with parametric
uncertainties and unmeasured states. Compared with the ex-
isting results, the main advantages of the proposed controller
can be summarized as follows: 1) By designing the state
observer, the proposed control method does not require all
the states of the controlled system are measurable; 2) the
proposed method can overcome two problems of linear in
the unknown system parameter and explosion of complexity
in backstepping-design methods; 3) compensating signals are
designed to remove the effect of the errors caused by command
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filters to gain a smaller tracking error; and 4) the proposed
method in this paper only needs the information of the desired
trajectory and its first derivative, which makes it more suitable
for practical applications where higher order derivations of
the desired trajectory cannot be obtained. It is shown that
the proposed control approach can guarantee the semiglobal
uniform ultimate boundedness for all the solutions of the
closed-loop system. Two examples are given to verify the
novelty of the new design method.

The rest of this paper is organized as follows. Section
II formulates the control problem for the nonlinear system
and introduces some related technical assumptions. Section
III gives the fuzzy state observer design. In Section IV,
the command filtered fuzzy adaptive backstepping control is
designed to guarantee the boundedness of all signals in the
closed-loop systems. Section V presents simulation studies.
Finally, Section VI draws some conclusions.

II. PRELIMINARIES

Consider the following SISO strict-feedback nonlinear sys-
tem:

ẋ1 = x2 + f1(x1)

ẋ2 = x3 + f2(x1, x2)

... (1)
ẋn = u+ fn(x1, x2, · · ·xn)

y = x1

where X = (x1, x2 · · · , xn)
T ∈ Rn is the system state vector,

u is the control input, y is the output of system, fi(Xi)(i =
1, 2, · · · , n) are unknown smooth functions of the system, and
only the output variable y = x1 can be measured directly.

For a given reference input xd, the control objective is to
design the control law to realize the trajectory tracking.In this
paper, unless otherwise stated, all norms are the standard 2-
norm. For any a > 0, the symbols Ωa and Ω̄a represent the
standard open and closed level sets : Ωa = {x ∈ Rn| ∥x∥ < a}
and Ω̄a = {x ∈ Rn| ∥x∥ ≤ a}. Superscripts in parentheses
indicate derivatives with respect to the indicated argument.
To facilitate the design, we need the following assumptions:

Assumption 1: The desired trajectory xd and its first
derivative ẋd are smooth, bounded and known.

Remark 1: The adaptive backstepping or approximation
based adaptive backstepping requires the knowledge of x(i)

d (t)
for i = 0, ..., n−1, whereas Assumption 1 only requires xd(t)

and x
(1)
d (t). It implies that Assumption 1 is less stringent,

so that the command filtered backstepping control is more
suitable for some applications in which the higher order
derivatives can’t be obtained such as land vehicle system.

Assumption 2: Let Ωd ⊂ Rn represent an open set that
contains the origin, the initial condition x(0) and the trajectory
xd(t). For the system (1), for i = 1,...,n: f (j)

i (.) are bounded
on Ω̄d for j = 1,...,n− i.

Assumption 3: There exist a set of constant hi, i = 0, ..., n
for ∀X1, X2 ∈ Ri such that the following inequality holds:

|fi(X1)− fi(X2)| ≤ hi ∥X1 −X2∥

where ∥X1 −X2∥ expresses the 2-norm of vector X1 −X2.
By Assumption 2, the function fi is Lipschitz on Ω̄d. And

some useful Lemmas are introduced as follows.
Lemma 1 [34]: Let f(x) be a continuous function defined

on a compact set Ω. Then for any scalar ε > 0, there exists a
fuzzy logic system WTS(x) such that

sup
x∈Ω

∣∣f(x)−WTS(x)
∣∣ ≤ ε

where W = [W1, ...,WN ]T is the ideal constant weight
vector, and S(x) = [p1(x), p2(x), ..., pN (x)]T /

∑N
i=1 pi(x)

is the basis function vector, with N > 1 being the number
of the fuzzy rules and pi are chosen as Gaussian functions,
i.e., for i = 1, 2, ..., N , pi(x) = exp[−(x−µi)

T (x−µi)
η2
i

] where
µi = [µi1, µi2, ..., µin]

T is the center vector, and ηi is the
width of the Gaussian function.

Lemma 2: The command filter is defined as

φ̇1 = ωnφ2 (2)
φ̇2 = −2ζωnφ2 − ωn(φ1 − α1). (3)

If the input signal α1 satisfies |α̇1| ≤ ρ1 and |α̈1| ≤ ρ2
for all t ≥ 0, where ρ1 and ρ2 are positive constants and
φ1(0) = α1(0), φ2(0) = 0, then for any µ > 0, there exist
ωn > 0 and ζ ∈ (0, 1], such that |φ1−α1| ≤ µ, |φ̇1|, |φ̈1| and
|
...
φ1| are bounded.

Proof: Define δφ1 = φ1 − α1, δφ2 = φ̇1 − α̇1, then

δφ̇1 = δφ2 (4)
δφ̇2 = −2ζωnδφ2 − ω2

nδφ1 − (α̈1 + 2ζωnα̇1) (5)

with δφ1(0) = φ1(0) − α1(0) = 0 and δφ2(0) = φ2(0) −
α̇1(0) = −α̇1(0).

According to [31], we can obtain

δφ1 =
1

ωn

1√
1− ζ2

e−ζωnt sin(ωn

√
1− ζ2t)δφ2(0)

+

∫ t

0

1

ωn

1√
1− ζ2

e−ζωn(t−τ) ×

sin[ωn

√
1− ζ2(t− τ)](2ζωnα̇1 + α̈1), (6)

which is followed by

|δφ1(t)| ≤ 1

ωn

1√
1− ζ2

|δφ2(0)|+
1

ω2
nζ

√
1− ζ2

max
0≤τ≤t

(2ζωn|α̇1(τ)|+ |α̈1(τ)|)

≤ 1

ωn

1√
1− ζ2

ρ1

+
1

ωnζ
√
1− ζ2

max
0≤τ≤t

(2ζρ1 +
ρ2
ωn

). (7)

It can be seen that by choosing the right ζ and ωn, we can
make |δφ1(t)| ≤ µ and |φ1(t)− α1| ≤ µ.

Then we can get

φ̇2(t) = −2ζωnφ2(t)− ωn(φ1(t)− α1)

≤ −2ζωnφ2(t) + ωnµ. (8)

From (8), we can get |φ2(t)| ≤ |φ2(0) +
µ
2ζ | ≤

µ
2ζ , then it

can be shown that |φ2| and |φ̇2| are bounded. Notice that φ̇1 =
ωnφ2, one can easily get |φ̇1|, |φ̈1| and |

...
φ1| are bounded.
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Remark 2: From equation (7), it can be known that increas-
ing ωn decreases the tracking error by decreasing µ, but for
a second-order command filter, increasing ωn also increases
the magnitude of the command derivatives. Higher order
filters have useful noise reduction properties, however, the
computational load increases with the order of the command
filter [31].

III. FUZZY STATE OBSERVER DESIGN

In this section, since the state variables are not available,
state observer should be designed to estimate the states. So
system (1) can be rewritten in the following form:

Ẋ = AX +

n∑
i=1

Bi(fi(X̂) +△fi) +Diu

y = CTX (9)

where △fi = fi(X) − fi(X̂), X̂ = [x̂1, x̂2, · · · , x̂n] is

the estimates of X; A =


0 1 · · · 0
0 0 1 · · ·
... 0 · · · 1
0 0 · · · 0

, Bi =

[0, · · · , 1, · · · , 0], CT = [1 · · · 0 · · · 0], Di = [0 · · · 0 · · · 1].
Define Wi = θi, then by Lemma 1, we can get f̂i(X̂|θ̂i) =

θ̂Ti Si(X̂) where θ̂i(i = 1, 2, · · · , n) are the estimation of the
unknown optimal parameter vector θi which are defined as

θi = arg min
θ̂iϵΩi

[ sup
X̂ϵUi

∣∣∣f̂i(X̂|θ̂i)− fi(X̂)
∣∣∣]

where Ωi, Ui are compact regions for θ̂i, X̂ , respectively. Also
the fuzzy minimum approximation error δi are defined by

δi = fi(X̂)− f̂i(X̂|θi)

where δi satisfies |δi| < εi, with εi being an unknown positive
constant. Rewrite (9) as

Ẋ = A0X +
n∑

i=1

Bi(fi(X̂) +△fi) +Diu+Ky (10)

y = CTX

where K = [k1, k2, · · · , kn]T and A0 = A−KCT .
Choose vector K so that the matrix A0 is a strict Hurwitz

matrix. Thus, given a QT = Q > 0, there exists a positive
definite matrix PT = P > 0 which satisfies

AT
0 P + PA0 = −Q. (11)

According to Lemma 1, design fuzzy state observer as

˙̂
X = A0X̂ +

n∑
i=1

Bif̂i(X̂|θ̂i) +Diu+Ky (12)

ŷ = CT X̂

Let e = X − X̂ be the observer error, then from (10) and
(12), we have the observer error equations as

ė = A0e+
n∑

i=1

Bi

[
θ̃Ti Si(X̂) + δi +△fi

]
(13)

with θ̃i = θi − θ̂i. Choose V0 = eTPe, then

V̇0 = ėTPe+ eTP ė = −eTQe

+2eTP

n∑
i=1

Bi

[
θ̃Ti Si(X̂) + δi +△fi

]
. (14)

By using Young’s inequality and Assumption 3, we obtain

2eTP
n∑

i=1

Bi

[
θ̃Ti Si(X̂) + δi

]
≤ 2neT e+||P ||2

n∑
i=1

Bi(θ̃
T
i θ̃i+ε2i ),

2eTP
n∑

i=1

Bi△fi ≤ (n+ ||P ||2
n∑

i=1

h2
i )e

T e. (15)

Substituting (15) into (14), we can get

V̇0 ≤ −(λmin(Q)− 3n− ||P ||2
n∑

i=1

h2
i )e

T e

+||P ||2
n∑

i=1

Bi

[
θ̃Ti θ̃i + ε2i

]
(16)

where λmin(Q) is the minimum eigenvalue of Q.

Remark 3: Notice that if (λmin(Q)−3n−||P ||2
n∑

i=1

h2
i ) >

0, and the term ||P ||2
n∑

i=1

Biθ̃
T
i θ̃i is bounded, therefore, from

(16), it will conclude that the designed nonlinear fuzzy state

observer (12) is stable. However, the term ||P ||2
n∑

i=1

Biθ̃
T
i θ̃i

may be unbounded, thus it is necessary to design a suitable
controller to make the resulting closed-loop system be stable.

IV. COMMAND FILTERED ADAPTIVE FUZZY
BACKSTEPPING

This section presents a new adaptive backstepping imple-
mentation control approach. First of all, define the tracking
error for the command filtered backstepping approach as

z1 = x1 − xd, zi = x̂i − xi,c

for i = 2, · · · , n, where xd is the desired trajectory and xi,c are
the output of the command filter with αi−1 as the input. The
design produce contains n steps. At each step, one command
filter is needed to filter the virtual control. For i = 1, 2, ..., n−
1, the command filter is defined as:

φ̇i,1 = ωnφi,2 (17)
φ̇i,2 = −2ζωnφi,2 − ωn(φi,1 − αi) (18)

with xi,c(t) = φi,1(t) as the output of each filter and αi is the
input of the filter. The filter initial conditions are φi,1(0) =
αi(0) and φi,2(0) = 0.

Define the virtual control functions αi (i=2, · · · , n) for the
command filtered backstepping procedure as

α1 = −c1z1 − z1 + ẋd − θ̂T1 S1(X̂) (19)

αi = −cizi − zi−1 + ẋi,c − kie1 − θ̂Ti Si(X̂) (20)
u = αn (21)

with ci > 0. We choose the adaptive law as

˙̂
θi = riνiSi(X̂)−miθ̂i(i = 1, 2, ..., n). (22)
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Remark 4: It should be pointed that the command filters
may cause the filtering errors which will add the difficulty
to get a small tracking error. In this paper we will design
the compensating signals in order to remove the effect of the
errors (xi+1,c − αi) caused by the command filters.

The compensating signals ξi for i=2, · · · , n are defined as

ξ̇1 = −c1ξ1 − ξ1 + ξ2 + (x2,c − α1) (23)

ξ̇i = −ciξi − ξi−1 + ξi+1 + (xi+1,c − αi) (24)

ξ̇n = −cnξn − ξn−1 (25)

with ξ(0) = 0. According to Lemma 3 in [31], we can get
||ξi|| is bounded. If t extents to ∞, we have

lim
t→∞

||ξi|| ≤
µ

2k0
(26)

where k0 = 1
2 mini(ci).

Then we define the compensated tracking error signals νi
as νi = zi − ξi, for i=1, 2, · · · , n.

Step 1: Consider the following Lyapunov function
as V1 = V0 +

1
2ν

2
1 + 1

2r1
θ̃T1 θ̃1 where r1 > 0 is a constant.

Then the time derivative of V1 is given as

V̇1 = V̇0 + ν1(z2 + x2,c − α1 + α1 + e2 + θT1 S1(X̂)

+δ1 − ẋd − ξ̇1)−
1

r1
θ̃T1

˙̂
θ1. (27)

By using Young’s inequality, we can get the following
inequalities

ν1e2 ≤ 1

2
ν21 +

1

2
eT e, ν1δ1 ≤ 1

2
ν21 +

1

2
ε21. (28)

According to (19) and (28), we can obtain

V̇1 ≤ V̇0 + ν1[ν2 + ξ2 + (x2,c − α1)− c1ν1 − c1ξ1 − ξ1

+θ̃T1 S1(X̂)− ξ̇1] +
1

2
eT e+

1

2
ε21 −

1

r1
θ̃T1

˙̂
θ1. (29)

Choosing the adaptive law ˙̂
θ1 = r1ν1S1(X̂)−m1θ̂1. and

substituting (23) into the equation (29), we can get

V̇1 ≤ V̇0 − c1ν
2
1 + ν1ν2 +

1

2
eT e+

1

2
ε21 +

m1

r1
θ̃T1 θ̂1. (30)

Step 2: Choose the Lyapunov function
as V2 = V1 +

1
2ν

2
2 + 1

2r2
θ̃T2 θ̃2 with r2 > 0 being a

constant. Obviously, the time derivative of V2 is computed by

V̇2 ≤ V̇0 − c1ν
2
1 + ν2(ν1 + ż2 − ξ̇2) +

1

2
eT e+

1

2
ε21

≤ V̇0 − c1ν
2
1 + ν2(ν1 + z3 + x3,c − α2 + α2 − ẋ2,c

+θ̂T2 S2(X̂) + θ̃T2 S2(X̂)− θ̃T2 S2(X̂) + k2e1

−ξ̇2) +
1

2
eT e+

1

2
ε21 +

m1

r1
θ̃T1 θ̂1 −

1

r2
θ̃T2

˙̂
θ2. (31)

Utilizing Young’s inequality, we have

−ν2θ̃
T
2 S2(X̂) ≤ ν22 +

1

4
θ̃T2 θ̃2. (32)

Substituting (20) and (32) into (31) results in

V̇2 ≤ V̇0 − c1ν
2
1 + ν2[−c2ν2 − c2ξ2 − ξ1 + ν2

+ν3 + ξ3 + (x3,c − α2)− ξ̇2] +
1

2
eT e

+
1

2
ε21 +

1

4
θ̃T2 θ̃2 +

m1

r1
θ̃T1 θ̂1

+
1

r2
θ̃T2 (r2ν2S2(X̂)− ˙̂

θ2). (33)

According to the compensating signal ξ2 and the adaptive
law θ̂2, (33) can be rewritten as

V̇2 ≤ V̇0 − c1ν
2
1 − c2ν

2
2 + ν22 +

1

2
eT e+

1

2
ε21

+
m1

r1
θ̃T1 θ̂1 +

m2

r2
θ̃T2 θ̂2 +

1

4
θ̃T2 θ̃2 + ν2ν3. (34)

Step i: (2 < i ≤ n − 1) Consider the Lyapunov function
as Vi = Vi−1 +

1
2ν

2
i + 1

2ri
θ̃Ti θ̃i where ri > 0 is a constant.

Then the time derivative of Vi can be expressed as follows:

V̇i ≤ V̇0 − c1ν
2
1 −

n−2∑
i=2

(ci − 1)ν2i +
1

2
eT e+

1

2
ε21

+
n−2∑
i=1

mi

ri
θ̃Ti θ̂i +

1

4

n−2∑
i=2

θ̃Ti θ̃i + νi(zi−1 − ξi−1

+zi+1 + xi+1,c − αi + αi + θ̂Ti Si(X̂) + θ̃Ti Si(X̂)

−θ̃Ti Si(X̂) + kie1 − ẋi,c − ξ̇i)−
1

ri
θ̃Ti

˙̂
θi. (35)

Similar to (32), we can get the following inequality

−νiθ̃
T
i Si(X̂) ≤ ν2i +

1

4
θ̃Ti θ̃i. (36)

By (20) and (36), we can gain

V̇i ≤ V̇0 − c1ν
2
1 −

n−2∑
i=2

(ci − 1)ν2i +
1

2
eT e+

1

2
ε21

+

n−2∑
i=1

mi

ri
θ̃Ti θ̂i +

1

4

n−1∑
i=2

θ̃Ti θ̃i + νi[−ciνi

−ciξi − ξi−1 + νi + νi+1 + ξi+1 + (xi+1,c

−αi)− ξ̇i] +
1

ri
θ̃Ti (riνiSi(X̂)− ˙̂

θi). (37)

From the compensating signal ξi and the adaptive law θ̂i,
(37) can be rewritten as

V̇i ≤ V̇0 − c1ν
2
1 −

n−1∑
i=2

(ci − 1)ν2i +
1

2
eT e+

1

2
ε21

+
n−1∑
i=1

mi

ri
θ̃Ti θ̂i +

1

4

n−1∑
i=2

θ̃Ti θ̃i + νiνi+1. (38)

Step n: Consider the following Lyapunov function as
Vn = Vn−1 +

1
2ν

2
n + 1

2rn
θ̃Tn θ̃n with rn > 0 being a con-
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stant. By (38), we have the time derivative of Vn

V̇n ≤ V̇0 − c1ν
2
1 −

n−1∑
i=2

(ci − 1)ν2i +
1

2
ε21 +

n−1∑
i=1

mi

ri
θ̃Ti θ̂i

+
1

4

n−1∑
i=2

θ̃Ti θ̃i +
1

2
eT e+ νn(νn−1 + u+ θ̂TnSn(X̂) (39)

+θ̃TnSn(X̂)− θ̃TnSn(X̂) + kne1 − ẋn,c − ξ̇n)−
1

rn
θ̃Tn

˙̂
θn.

Similarly, by utilizing Young’s inequality, we have

−νnθ̃
T
nSn(X̂) ≤ ν2n +

1

4
θ̃Tn θ̃n. (40)

Then the control law u is defined in (21) as

u = −cnzn − zn−1 + ẋn,c − kne1 − θ̂TnSn(X̂). (41)

Theorem 1. Consider system (1) satisfying assumptions 1-
2 and the given reference signal xd. Then under the action
of the state observer (12), command filter-based adaptive
fuzzy controllers (41) and the adaptive laws (22), the tracking
error of the closed-loop controlled system will converge to
a sufficiently small neighborhood of the origin and all the
closed-loop signals will be bounded.

Proof: Substituting (41) and (40) into (39) results in

V̇n ≤ V̇0 − c1ν
2
1 −

n−1∑
i=2

(ci − 1)ν2i +
1

2
ε21 +

n−1∑
i=1

mi

ri
θ̃Ti θ̂i

+
1

4

n∑
i=2

θ̃Ti θ̃i +
1

2
eT e+ νn(−cnνn − cnξn − ξn−1

+νn − ξ̇n) +
1

rn
θ̃Tn (rnνnSn(X̂)− ˙̂

θn). (42)

As the compensating signal ξn and the adaptive law θ̂n are
defined before, we can obtain

V̇n ≤ V̇0 − c1ν
2
1 −

n∑
i=2

(ci − 1)ν2i +
1

2
eT e+

1

2
ε21

+
n∑

i=1

mi

ri
θ̃Ti θ̂i +

1

4

n∑
i=2

θ̃Ti θ̃i. (43)

Similarly, according to Young’s inequality, we have

mi

ri
θ̃Ti θ̂i ≤ −mi

2ri
θ̃Ti θ̃i +

mi

2ri
θTi θi. (44)

Substituting (44) into (43) gives

V̇n ≤ −(λmin(Q)− 3n− 1

2
− ||P ||2

n∑
i=1

h2
i )e

T e+−c1ν
2
1

−
n∑

i=2

(ci − 1)ν2i −
n∑

i=2

(
mi

2ri
− ||P ||2 − 1

4
)θ̃Ti θ̃i

−(
m1

2r1
− ||P ||2)θ̃T1 θ̃1 + ||P ||2

n∑
i=1

εi +
1

2
ε21 +

n∑
i=1

mi

2ri
θTi θi ≤ −aVn + b (45)

where λmin(Q)−3n− 1
2−||P ||2

n∑
i=1

h2
i > 0, mi

2ri
−||P ||2− 1

4 >

0, m1

2r1
− ||P ||2 > 0 and

a = min{
λmin(Q)− 3n− 1

2 − ||P ||2
n∑

i=1

h2
i

λmax(P )
, 2c1,

2(c2 − 1), · · · , 2(cn − 1), 2r1(
m1

2r1

−||P ||2), 2r2(
m2

2r2
− ||P ||2

−1

4
), · · · , 2rn(

mn

2rn
− ||P ||2 − 1

4
)},

b = ||P ||2
n∑

i=1

εi +
1

2
ε21 +

n∑
i=1

mi

2ri
θTi θi.

Furthermore, (45) implies that

Vn(t) ≤ (Vn(t0)−
b

a
)e−a(t−t0) +

b

a

≤ Vn(t0) +
b

a
,∀t > t0. (46)

Then we can obtain νi, θ̃i and θi are bounded,
thus ||P ||2

n∑
i=1

Biθ̃
T
i θ̃i and θ̂i are bounded. Because

zi = νi + ξi and ∥ξi∥ are bounded, the signals zi are
bounded. Accordingly, it can be obtained that the input signal
u is bounded. For x(t) and all other control signals are
bounded over any time interval. By [31], the solution exists
for t ∈ [0,∞). So we can get limt→∞ |z1| ≤

√
2b
a + µ

2k0
.

Remark 5: It can be seen from Lemma 2 and the definitions
of a, b and k0 that to get a small tracking error we can set
large value of ri, but εi and µ small enough after giving the
parameters ci, ki and mi.

V. SIMULATION STUDIES

In this section, two examples are provided to illustrate the
effectiveness of the proposed control method in this paper.

Example 1. (Application Example) In this example, an
comparison between the method in this paper and the fuzzy
output-feedback DSC method proposed in [35] is given
for an electromechanical system, which is shown in Fig.1.

Fig. 1. Schematic of the electromechanical system.

The dynamics of the electromechanical system is described
by the following equation [36]:{

Dq̈ +Bq̇ +N sin(q) = τ
Mτ̇ +Hτ = V −Kmq̇

(47)

where definitions of J , m, M0, L0, R0, G, B0, q(t), τ , Kτ ,
L, H , Km, V , D, N , B and their values can be seen in [36].
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Case 1. Introduce the variables x1 = q, x2 = q̇, x3 = τ and
u = V , and the dynamics given by (47) can be rewritten as

ẋ1 = x2

ẋ2 = f2 (x1, x2) +
1
Dx3

ẋ3 = f3 (x1, x2, x3) +
1
M u

y = x1

(48)

where f2 (x1, x2) = −N
D sin(x1)− B

Dx2 and f3 (x1, x2, x3) =
−Km

M − H
M x3 are unknown functions.

According to (48), the state observers are designed as:
˙̂x1 = x̂2 + k1(y − ŷ)
˙̂x2 = 1

D x̂3 + θ̂T2 S2 + k2(y − ŷ)
˙̂x3 = 1

M u+ θ̂T3 S3 + k3(y − ŷ)
ŷ = x̂1

(49)

(a). First, the command filtered fuzzy controller is applied
to system (48). Design the error and the virtual control as:

z1 = x1 − xd, z2 = x̂2 − x2,c, z3 = x̂3 − x3,c

α1 = −c1z1 − z1 + ẋd,

α2 = −c2z2 − z1 + ẋ2,c − k2e1 − θ̂T2 S2

u = −c3z3 − z2 + ẋ3,c − k3e1 − θ̂T3 S3

Choose the compensating signals as:

ξ̇1 = −c1ξ1 − ξ1 + ξ2 + (x2,c − α1)

ξ̇2 = −c2ξ2 − ξ1 + ξ3 + (x3,c − α2)

ξ̇3 = −c3ξ3 − ξ2

Design νi = zi−ξi(i = 1, 2, 3) and choose the adaptive laws
as ˙̂

θi = riνiSi −miθ̂i (i = 2, 3). The control parameters are

c1 = 16, c2 = 75, c3 = 50, r1 = r2 = 0.2,

m2 = 2,m3 = 5, ζ = 0.4, ωn = 2000.

The fuzzy membership functions are: µF j
i

=

exp
[
−(x̂i+l)2

2

]
(i=2,3) where j = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

and l = 5, 4, 3, 2, 1, 0,−1,−2,−3,−4,−5, respectively.
Choose observer gain vector K = [10, 300, 600] so that
the matrix A0 is Hurwitz. Specify positive definite matrix
Q =diag{10, 10, 10}, such that λmin(Q)− 2(n− 1)− 1

4 > 0.
The simulation is carried out under initial conditions
are chosen to be zero and the reference signal is
xd = 0.5 sin(t) + 0.5 sin(0.5t).
(b). Next, the DSC method in [35] is also utilized to control

system (48) and the corresponding controller parameters c1 =
300, c2 = 30, c3 = 100, and the other parameters are chosen
as same as the proposed method in this paper.

The simulation results are shown in Figs. 2-7 in which Figs.
2(a)-7(a) are for the proposed method in this paper and Figs.
2(b)-7(b) are for the DSC method. From the simulation results,
we can see that two kinds of methods all achieve satisfactory
control performance and our proposed approach has smaller
overshoots and achieves better tracking effect.

Remark 6: It should be noted that the fuzzy output-
feedback DSC method proposed in [35] takes no account
of the problem of compensating the errors caused by the
filters, however, our proposed method introduces the filtering
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Fig. 2(a). x1 and xd.
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Fig. 2(b). x1 and xd.
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Fig. 3(a). Tracking error.
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Fig. 3(b). Tracking error.

error compensation signals in this paper. Simulation results
by comparing Figs. 2(a)-7(a) with Figs. 2(b)-7(b) shows the
effectiveness of our proposed method.

Case 2. To further illustrate the robustness for the output
measure noise of our proposed method, we give another set
of simulation for the same electromechanical system and the
measure noise 0.003 sin(5t) is added at t ∈ [6, 7]s for the input
signal. From the simulation results in Figs. 8-9, it can be seen
that the proposed command filtered-based fuzzy controller has
a good robustness for the output measure noise.

Example 2. (Numerical Example) Consider the following
nonlinear system 

ẋ1 = x2 + x1 cosx
2
1

ẋ2 = x3 + x2 sinx
2
1

ẋ3 = x4 + ax1x2

ẋ4 = u
b + x2

1+x1x2

y = x1

(50)
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Fig. 4(a). x1 and x̂1.
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Fig. 6(a). x3 and x̂3.
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where a = 10, b = 0.001, f1 (x1) = x1 cosx
2
1, f2 (x1, x2) =

x2 sinx
2
1, f3 (x1, x2) = ax1x2 and f4 (x1, x2) =

x2

1+x1x2
are

unknown functions. The design parameters are chosen as

k1 = 50, k2 = 180, k3 = 80, k4 = 80, c1 = 40,

c2 = 10, c3 = 50, c4 = 30, r1 = r2 = r3 = r4 = 0.18,

m1 = m2 = m3 = m4 = 0.05, ζ = 0.8, ωn = 270.

The simulation is carried out under zero initial conditions
and the reference signal is xd = sin(2t). The main simula-
tion results are shown in Figs. 10-11. From them, it can be seen
that the proposed control method in this paper can track the
reference signal well and achieve better control performances.

VI. CONCLUSION

In this paper, a fuzzy command filtered adaptive output-
feedback control has been proposed for a class of strict-
feedback with parametric uncertainties and unmeasured states.
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Fig. 8. x1 and xd (Case 2).
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Fuzzy logic systems are used to approximate the unknown
nonlinear functions and a fuzzy state observer is designed
to estimate the immeasurable states. Furthermore, command
filtered backstepping control is constructed to avoid the ex-
plosion of complexity in the backstepping design and com-
pensating signals are introduced to remove the effect of the
errors caused by command filters. The proposed controller
guarantees that all the signals in the closed-loop systems are
bounded. Simulation results of two examples have shown the
effectiveness of the proposed control scheme.
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