NEW GENERATION SUBMARINE BATTERY ELECTRODES USING A
TIN-LEAD GRID ALLOY

Brenton Travis Swansson

Thesis submitted for the degree of
Master of Engineering Science
School of Chemical Engineering
University of Adelaide
June 2015
ABSTRACT

The life of lead-acid batteries is typically governed by corrosion of the positive grid. The grid experiences highly oxidising environments which, in turn, corrodes the grid material. However, the resulting corrosion layer is essential to create an electrically conductive bond between the grid and active material. Additionally, alloying elements are necessary to allow low-cost production techniques to be used. The selection of grid material is therefore a compromise between function, life and ease-of-manufacture. Tubular plate lead-acid batteries have historically used antimonial-lead alloys as the grid alloy. These alloys impart mechanical strength within a die-cast grid and provide a suitably conductive oxide within the corrosion layer. The use of tin in many lead alloy blends has resulted in a beneficial effect on the corrosion rate of these alloys. Tin-lead alloys are used in thin plate lead-acid batteries. However there is no published data on their use for grids of tubular plates in deep-cycling applications.

A simple binary, low-tin lead alloy has been tested and found to exhibit a significantly lower corrosion rate during periods of heavy cycling when compared to a traditional low-antimony based alloy. However, it was shown that under severe over-charge conditions, the tin-lead alloy corroded at a significantly faster rate than that of an antimonial alloy. The lead-tin alloy performed well as a positive grid material throughout 500 cycles. No indications of premature capacity loss were observed and the ability of the alloy to be recharged was excellent.

Electron microprobe analysis of sections of cycled positive plates showed the doping effect of tin within the corrosion layer of the grid material. This effect led to an increase in the conductivity of the layer, resulting in an increased ion-conductivity of the corrosion layer.

The corrosion layer of each alloy type was found to be fine, densely packed and uniformly structured under cycling conditions, but it became more porous during periods of severe over-charge. The tin-based alloy was shown to produce a thinner corrosion layer at completion of 500 cycles when compared to that of the antimonial alloy. Further, the corrosion layer of the tin based alloy was found to be less cracked than that of the antimonial based alloy.
Finally, this investigation could not identify any reasons why a tin-based grid alloy has not been identified for use in tubular plate deep-cycle batteries previously. The alloy was shown to perform well under both charge and discharge conditions and was not found to suffer premature capacity loss.
DECLARATION

I, Brenton Travis Swansson, certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Brenton T. Swansson

11/06/2015
ACKNOWLEDGEMENTS

Without the help, assistance and encouragement of a group of people in my life, this Thesis would have seen the light of day!

Firstly, I would like to thank PMB Defence and in particular Peter Chaplin and Steve Faulkner. Gents, thank you very much for allowing me to undertake these studies! Peter, thank you for your guidance, discussions, supervision and feedback. Steve, thank you for allowing me the time to undertake some of this project at work, for encouraging me to push harder and delve deeper.

To my principal supervisor Associate Professor Brian O’Neill, a major Thank You. Your supervision, knowledge, feedback and guidance has been greatly appreciated throughout the duration of this project. Your enthusiasm toward this project has been greatly appreciated, as has your visits to my workplace so we can catch up and keep on track with this project.

I would like to thank all the organisations who have supplied me with the resources and materials needed to undertake this study. Without your assistance, this project would have been a lot more difficult and time consuming. To Aiofe McFadden, Angus Netting and Dr. Benjamin Wade of Adelaide Microscopy, your time, patience and assistance was invaluable!

To all the guys out at Exide Technologies, particularly Rocky Caruso and Matt Palmer, thank you greatly for allowing me to use your negative plates and containers for this study. To George Morgan and Peter Ruge of Adelaide Petrographic Laboratories, I thank you greatly for your patience in sectioning and polishing these difficult samples! I know it provided you some grief (and interest!) at times, but your assistance is greatly appreciated.
By no means least, I would like to say a major thank you to my family. Mum and Dad, thank you for always encouraging me to always push myself further and for supporting and encouraging me throughout this project (and those before it). Amy and Caleb, my endless thanks for supporting and encouraging me through this project and for putting up with too many weekdays, weeknights and weekends tapping away on the computer! I know time was difficult to find in my life for some of the things we wanted to do (especially while writing this Thesis); however we got there in the end! Caleb, I am so sorry I missed some of your ‘firsts’ in life, but I will be there for you in your future experiences – I promise!
TABLE OF CONTENTS

Abstract.. III
Declaration... V
Acknowledgements... VI
Table of Contents .. VIII
List of Figures .. X
List of Tables .. 13

Chapter 1 Introduction .. 1

Chapter 2 Project Details .. 12

2.1 Introductory Background ... 12

 2.1.1 Lead-Acid Battery Design Differences – A Brief Summary 12
 2.1.2 Lead Alloy Development – The History of Lead Alloys 15
 2.1.3 Lead Alloy Investigations – The Current State of Knowledge 20

2.2 Objectives of this project .. 25

Chapter 3 Method ... 29

3.1 Materials and Cell Design .. 29

 3.1.1 Positive Plate Design .. 29
 3.1.2 Negative Plates and Supporting Componentry 35
 3.1.3 Cell Construction .. 38
 3.1.4 Plate Formation .. 39

3.2 Cell Capacity Determination .. 40

3.3 Charge / Discharge Cycle Testing .. 45

 3.3.1 Equipment Setup ... 45
 3.3.2 Charging, Discharging and Monitoring Equipment 45
 3.3.3 Cycling Setup .. 49

3.4 Grid and Plate Analysis .. 51

 3.4.1 Corrosion Rate Analysis .. 52
 3.4.2 Corrosion Layer Analysis ... 52
Table of Contents

3.4.3 Grid Grain Morphology Analysis ... 55

Chapter 4 Results and Discussion... 56

4.1 Cycling Performance ... 56

4.1.1 Formation .. 58

4.1.2 Charge / Discharge Cycling .. 59

4.2 Corrosion Rate .. 64

4.3 Grid Alloy Optical Microscopy .. 77

4.4 Corrosion Layer Investigation ... 79

4.5 Final Discussions .. 89

Chapter 5 Conclusions and Further Work ... 92

Chapter 6 References .. 94
LIST OF FIGURES

Figure 1: Simplified schematic of Volta’s original Voltaic Pile (Borbrav 2008) 1

Figure 2: Planté’s original lead-acid cell: (a) completed cell; (b) spirally wound electrodes; (c) lead electrodes with rubber strips prior to being wound (Planté 1879) 2

Figure 3: A typical lead-acid battery grid ... 3

Figure 4: Schematic of a typical Submarine and its battery placement 4

Figure 5: Cut-away of a typical submarine lead-acid battery’s construction 5

Figure 6: Positive grid corrosion ... 7

Figure 7: Water electrolysis potentials within a lead-acid battery (O’Donnell & Schiemann 2008) .. 9

Figure 8: Flat-pasted plate design .. 13

Figure 9: Tubular plate design ... 14

Figure 10: Lead-antimony alloy phase diagram (Guruswamy, 2000) 16

Figure 11: Lead alloy after extrusion and hot-rolling .. 31

Figure 12: Positive plate grid profile .. 32

Figure 13: Positive grid with lug attachment .. 32

Figure 14: Positive grid stamped with identification number 33

Figure 15: Positive plate bottom bar ... 34

Figure 16: Positive plate grid with top seals in place .. 34

Figure 17: Positive plate with top seals and bottom bar in place 34

Figure 18: Positive plate gauntlet ... 35

Figure 19: Folded negative plate ... 36

Figure 20: Profile view of folded negative plate ... 37
Figure 21: Separators used during testing; (a) negative plate side, (b) positive plate side. 38

Figure 22: Formation charge profile for trial cells. ... 41

Figure 23: Cell capacity determination discharge voltage trends... 43

Figure 24: Cell capacity determination discharge voltage trends, without Cadmium reference potentials .. 44

Figure 25: Test cell container location within test chamber ... 45

Figure 26: Formation average cell voltages .. 49

Figure 27: Formation voltages without erroneous data ... 50

Figure 28: Resin mounted and polished plate sample... 54

Figure 29: Formation charge cell voltage for pilot cells .. 58

Figure 30: Typical discharge voltage plot for pilot cells .. 60

Figure 31: Average end of discharge voltage for pilot cells ... 61

Figure 32: Average end of recharge voltage for pilot cells ... 62

Figure 33: Rest period voltage trend for pilot cells... 63

Figure 34: Grid mass loss against number of cycles ... 65

Figure 35: Grid mass loss as a percentage against number of cycles .. 66

Figure 36: Corrosion rate comparison (mass loss basis)... 68

Figure 37: Corrosion rate comparison (percentage grid loss basis) ... 68

Figure 38: Corrosion rate difference between alloy types at various stages 69

Figure 39: Uncracked corrosion layer of Sb-12 after 42 cycles .. 70

Figure 40: Uncracked corrosion layer of Sn-19 after 42 cycles .. 70

Figure 41: Cracked corrosion layer of Sb-21 after 130 cycles .. 71

Figure 42: Cracked corrosion layer of Sn-09 after 130 cycles .. 71
Figure 43: Sn-21 after 221 cycles showing no radial cracks and uniform corrosion.........72
Figure 44: Sn-11 after 302 cycles showing radial cracking and uniform 73
Figure 45: BSE image of Sb-18 corrosion layer ... 74
Figure 46: BSE image of Sn-05 corrosion layer ... 75
Figure 47: SEM montage of Sb-18 showing corrosion layer structure 76
Figure 48: SEM montage of Sn-05 showing corrosion layer structure 77
Figure 49: Optical micrograph of antimonial grid, shown at 40x magnification 78
Figure 50: Optical micrograph of tin-based grid, shown at 40x magnification 78
Figure 51: Sb-18 antimony concentration map ... 79
Figure 52: Sn-05 tin concentration map .. 81
Figure 53: Sb-18 corrosion layer analysis spot locations 82
Figure 54: Sb-18 corrosion layer antimony concentration 84
Figure 55: Oxygen concentration to number of equivalent molecules correlation graph .. 85
Figure 56: Sb-18 corrosion layer oxygen concentration 85
Figure 57: Sn-05 corrosion layer analysis spot locations 86
Figure 58: Sn-05 corrosion layer tin concentration ... 87
Figure 59: Sn-05 corrosion layer oxygen concentration 87
Figure 60: Tin price over the past 5 years (MetalPrices.com, 2014) 90
Figure 61: Antimony price over the past 5 years (MetalPrices.com, 2014) 91
Figure 62: Lead price over the past 5 years (MetalPrices.com, 2014) 91
LIST OF TABLES

Table 1: Comparison of lead-acid and lithium-ion technologies ... 11
Table 2: Mechanical property comparison of lead alloys .. 15
Table 3: Chemical composition of alloys examined in this project .. 29
Table 4: Plate location within test containers .. 39
Table 5: Cells placed in each cycling string .. 48