THE ROLE OF CYTOSKELETAL PROTEIN FLIGHTLESS I (FLII) IN DIABETIC WOUND HEALING

NADIRA RUZEHAJI

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy (Medicine)

Discipline of Paediatrics

The University of Adelaide

January 2013
TABLE OF CONTENT

Introductory statement ... iv

Acknowledgements .. v

Abstract .. vi

Publications arising from this thesis .. viii

International and national presentations and awards .. x

Chapter 1: Literature review .. 1

Chapter 2: Materials and Methods ... 53

Chapter 3: Flightless in a murine model of diabetic wound healing 102

Chapter 4: Neutralizing Flightless activity in chronic wound fluid improves cellular proliferation .. 138

Chapter 5: Flightless is secreted via non-classical late endosome/lysosome and exosome-associated pathways .. 183

Chapter 6: Flightless protein deficiency improves diabetic wound repair through increased angiogenesis .. 283

Chapter 7: Discussion and conclusion .. 212

References .. 223
INTRODUCTORY STATEMENT

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution, and to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Nadira Ruzehaji

23rd of January 2013
ACKNOWLEDGEMENT

I wish to express thanks and gratitude to all who have assisted me and guided me along the path of my thesis. I would like to thank my supervisor Professor Allison Cowin for the patient guidance, encouragement and advice she has provided throughout my time as her student. I have been extremely lucky to have a supervisor whose knowledge and attention to detail have been invaluable. Thank you for caring so much about my work and responding to my questions and queries so promptly.

I also thank my co-supervisor Professor Robert Fitridge for his expert advice and guidance. I thank all the members of our Wound Healing Laboratory who made working there an enjoyable experience. I especially thank Zlatko Kopecki for his friendly support and advice.

I would also like to express my gratitude and many thanks to Dr Rachael Murray for her advice on protein trafficking and immunofluorescence techniques and Dr Claudine Bonder for assisting me with the angiogenesis studies. Finally, I would like to thank my family for their support, patience and understanding over the years.
ABSTRACT

Skin lesions and ulcerations are common and severe complications of diabetes. A significant proportion of these wounds fail to respond to conventional treatment, hence amputation is a feared outcome of diabetes. Overexpression of Flightless (Flii) inhibits wound healing and ablation of Flii using specific neutralising monoclonal antibodies (FnAb) enhances cellular proliferation and migration. It was therefore hypothesized that decreasing Flii expression in diabetic wounds would create a permissive environment for cellular proliferation, enhanced neovascularization, and improved healing outcomes. The aim of this study was to determine whether genetic Flii gene knockdown or treatment with FnAb were effective in improving diabetic wound repair. A mouse model of diabetes was used in which type 1 diabetes was induced using streptozotocin. Diabetes was subsequently induced in low (Flii\(^{+/}\)), normal (WT) and high (Flii\(^{Tg/Tg}\)) mice. Full-thickness dorsal wounds were created and it was found that these wounds healed more rapidly when Flii gene expression was decreased. Further studies revealed that this improved healing was accompanied by a robust pro-angiogenic response with significantly elevated von Willebrand factor and VEGF positive endothelial cell infiltration. In a separate study, wounds in WT diabetic mice were injected intradermally with FnAb and here too improved healing was observed with significantly increased rate of re-epithelialisation compared with placebo control. We investigated the angiogenic response of FnAb both in vitro and in vivo. FnAb enhanced capillary tube formation in human umbilical vein endothelial cells (HUVEC) and promoted formation of functional neovasculature in vivo. Mice with reduced Flii also showed increased numbers of mature blood vessels using an in vivo Matrigel plug assay with increased recruitment of \(\alpha\)-SMA positive cells and improved tight junction aiding cell to cell attachments. In conclusion, reducing Flii levels in wounds either genetically or using neutralising
antibodies promotes wound healing in diabetic mice by enhancing epithelialisation and improving angiogenic processes. Manipulating Flightless I may therefore be a potential approach for therapeutic intervention in the treatment of the diabetic foot.
PUBLICATIONS ARISING FROM WORK IN THIS THESIS

NATIONAL AND INTERNATIONAL SCIENTIFIC MEETING ABSTRACTS

AWARDS ARISING FROM WORK PRESENTED IN THIS THESIS

2009 AUGU/RC Heddle Award

The University of Adelaide

2009 Australian Federation of University Women

Brenda Nettle Award

2009 Postgraduate Travelling Fellowship

The University of Adelaide

2011 Health Sciences Faculty Finalist

The University of Adelaide Three Minute Thesis Competition

2011 Postgraduate Research Conference

The University of Adelaide

People’s Choice Award
2011 Freemasons Foundation

Trevor Prescott Memorial Award

2011 Young Investigator Award 2011

2012 Best Oral Award

Australian Society for Medical Research

2012 The Adelaide Research & Innovation Prize

Project with most commercial potential

2012 Best Oral Presentation

AWTRS conference, Sydney, Australia
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>αSMA</td>
<td>Alpha smooth muscle actin</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>EC</td>
<td>Endothelial cells</td>
</tr>
<tr>
<td>EM</td>
<td>Electron microscopy</td>
</tr>
<tr>
<td>EGF</td>
<td>Epidermal growth factor</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular matrix</td>
</tr>
<tr>
<td>FGF</td>
<td>Fibroblast growth factor</td>
</tr>
<tr>
<td>Flii</td>
<td>Flightless I</td>
</tr>
<tr>
<td>GFR</td>
<td>Glomerular filtration rate</td>
</tr>
<tr>
<td>H&E</td>
<td>Haematoxylin and Eosin</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunoglobulin</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>MMP-9</td>
<td>Matrix metalloproteinase 9</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger ribonucleic acid</td>
</tr>
</tbody>
</table>
PDGF Platelet-derived growth factor
PCR Polymerase chain reaction
RNA Ribonucleic acid
STZ Streptozotocin
TGF Transforming growth factor
TIMP Tissue inhibitor of metalloproteinase
TNF-α Tumour necrosis factor alpha
VEGF Vascular endothelial growth factor
vWF von Willebrand factor