Sex-Dependent Differences in Vasomotor Responses of
Older Male and Female Humans

Amenah Jaghoori

Faculty of Health Sciences
Discipline of Medicine
The University of Adelaide
South Australia

December 2014
Table of Contents

Declaration..5
Acknowledgements..6
Abstracts, Presentations and Awards derived from this thesis...7
List of thesis figures and tables...9
List of abbreviations..11
Thesis Abstract...13

CHAPTER 1: Introduction..16
1.1: Defining vascular disease...17
1.2: Vascular diseases burden..17
1.3: Vascular pathophysiology-General aspects..18
 1.3.1: Inflammation...18
 1.3.2: Atherosclerosis..21
 1.3.2.1: Atherosclerotic Risk Factors..22
 1.3.3: Thrombosis..23
 1.3.4: Vasomotor Reactivity (Vasospasm)...24
 1.3.4.1: Vascular reactivity regulations...25
 1.3.4.1.1: Endothelium...27
 1.3.4.1.1.1: Endothelial dysfunction..27
 1.3.4.1.1.2: Nitric Oxide (NO)..29
 1.3.4.1.1.3: The Prostanoids..30
 1.3.4.1.1.4: Endothelin..35
 1.3.4.1.1.5: Endothelium-Derived Hyperpolarising Factor..38
 1.3.4.1.2: Extravascular neuro-hormonal influences...38
 1.3.4.1.2.1: Catecholamines..38
 1.3.4.1.2.2: Thromboxane...42
 1.3.4.1.2.3: Serotonin..44
 1.3.4.2.1: Vascular Myogenic tone...47
 1.3.4.2.2: The contractile apparatus...47
 1.3.4.2.3: Role of Ca^{2+} in VSMC contraction..48
 1.3.4.2.4: Cytosolic Ca^{2+} influx..48
 1.3.4.2.5: Ca^{2+} sensitization...50
 1.3.4.2.6: PKC activation...51
 1.3.4.2.7: Rho-Kinase pathway...51
 1.4.1: Large Vessel Disorders..54
1.4.1.1: Coronary Artery disease ...54
1.4.1.2: Peripheral artery disease ...55
1.4.2: Microvascular Disorders ..56
1.5: Vascular treatment strategies ..57
1.5.1: Lifestyle management strategies ..57
1.5.2: Optimal Medical therapy ..57
1.5.2.1: Cardiovascular Preventative Therapies ..57
1.5.2.2 Anti-ischaemic Therapies ...58
1.5.3: Revascularisation procedures ..59
1.5.3.1: Percutaneous coronary intervention ...59
1.5.3.2: Coronary artery bypass graft (CABG) ..60
1.5.3.2.1: Internal mammary artery ...61
1.5.3.2.2: Saphenous Vein ..61

1.6: Sex differences in vascular disease ...63
1.6.1: Sex vs. gender definitions ...63
1.6.2: Vascular disease burden in women ..63
1.6.3: Sex difference in vascular coronary syndromes64
1.6.3.1: Sex differences in acute coronary syndromes65
1.6.3.2: Sex differences in coronary artery bypass surgery65
1.6.3.2.1: Risk Factors ...66
1.6.3.2.2: Clinical Outcomes ...66
1.6.4: Clinical Factors ...70
1.6.4.1.1: Presentation ..70
1.6.4.1.2: Diagnosis ...71
1.6.4.1.3: Treatment ...72
1.6.4.2: Biological factors ..76
1.6.4.2.1: Inflammation ...76
1.6.4.2.2: Atherothrombosis ..77
1.6.4.2.3: Microvascular dysfunction ...78
1.6.4.2.4: Vascular Reactivity ..79
1.6.4.2.5: Hormonal effects ..80

CHAPTER 2: Methods ...87
2.1: Study Patients ..88
2.1.1: Patient Inclusion Criteria ...88
2.1.2: Exclusion Criteria ..89
2.1.3: Patient Case Report Form ...89
2.2: Patient Surgical Procedures ...89
2.2.1: CAD Cohort ...89
2.2.2: Cohort of patients with no known CAD ...92
2.3: Isolated Vessels .. 93
 2.3.1: Isolated Vessel Apparatus .. 93
 2.3.2: Principles of Assessing Isolated Vessel Responses .. 93
 2.3.3: Vascular preparations ... 94

 2.3.3.1: Large vessels .. 94

 2.3.3.2: Small vessels .. 94
 2.3.4: Baseline Vasomotor Assessment .. 95

 2.3.4.1: Depolarization Stimulus Assessment ... 95

 2.3.4.2: Endothelial Function Assessment ... 97

 2.3.5: Vasoactive Agonists Responses .. 98
 2.2.6: Mechanistic Studies ... 98

2.4. Data analysis ... 99

2.5. Vascular Receptor Quantification .. 101

 2.5.1: Tissue storage .. 101
 2.5.2: Protein extraction ... 101

 2.5.3: SDS-polyacrylamide gels .. 102

 2.5.4: Sample loading and SDS-PAGE run .. 102
 2.5.5: Protein transfer .. 103
 2.5.6: Western blot analysis .. 104

 2.5.6.1: Blocking ... 104

2.7: Materials ... 107

CHAPTER 3: Sex Differences in Vascular Reactivity of Coronary Artery Bypass
 Graft Conduits .. 109

CHAPTER 4: Sex differences in vasoconstrictor responses of microvessels
 from patients with Coronary Artery Disease .. 135

CHAPTER 5: Sex Differences in Vasoconstrictor Responses of Microvessels
 From Patients With and Without Known Coronary Artery Disease 155

CHAPTER 6: Thesis Conclusion and Implications ... 179

 6.1: Sex Differences in Vascular Reactivity – Major Findings 180

 6.1.1: Heterogeneity in Vascular Responses between Sexes 183

 6.1.2: Homogeneity in Vascular Responses to Et-1 between Sexes 185

 6.2. Clinical Implications of Sex Differences in Vascular Responses 185

 6.2.1: Cardiovascular Disorders ... 186

 6.2.2: Cardiovascular Outcomes ... 186

 6.2.3: Sex-specific Therapies .. 187

 6.3: Future Directions ... 188

References .. 189
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed

Amenah Jaghoori
Acknowledgements

I would like to thank my primary PhD supervisor Prof. John Beltrame for his guidance, support, and patience what has allowed me to grow as a scientist. I am grateful for the opportunity of working with you.

I am also thankful to my co-supervisor Dr. David Wilson for his support and inspiration during my journey into becoming a scientist. I am grateful for your scientific perspectives and encouragement that motivated me to keep moving forward.

I would like to acknowledge all members of the cardiothoracic surgical unit at the Royal Adelaide Hospital and the upper GI surgical unit at the Queen Elizabeth Hospital. Their willingness and friendly collaboration made it possible for me to accomplish the challenging PhD projects.

I am eternally grateful for the continuous support of all my lab colleagues and friends for helping me whenever in need. In particular, I thank Rachel Dreyer, Rachel Jacobczak and Kanchani Rajopadhyaya, who were always cheering me in the peaks and rescuing me in the troughs of PhD.

Finally, I am profoundly thankful to my family. To my mother Sakina and father Dawood I owe all accomplishments. Thank you for the unconditional love and support in times of ease and hardship. This thesis is dedicated to you.
Abstracts, Presentations and Awards derived from this thesis

Published Abstracts

Conference proceedings

Prizes and Awards during the course of Doctorate

2. First prize for the best poster presentation in basic mechanisms section in Post Graduate conference 2011, University of Adelaide.
3. First prize for the best poster in school of Medicine in Post Graduate conference 2011, University of Adelaide.
5. Runner up for the International Society of Heart Research (ISHR) young investigator award in the Cardiac Society of Australia and New Zealand (CSANZ) conference 2012.
6. Finalist for the Ralph reader prize (clinical sessions), World Cardiology Congress (WCC) 2014.
7. Awarded Cardiac Society of Australia and New Zealand (CSANZ) 2011 travel grants.
8. Awarded Faculty of health sciences, University of Adelaide, Postgraduate travelling fellowships 2012.
10. Awarded Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists student travel grant 2012.
List of thesis figures and tables

CHAPTER 1
Figure 1 The role of inflammation in development of atherosclerosis. 17
Figure 2 Signal transduction in vascular endothelial cells involved in nitric oxide production. 23
Table 1 Summary of adrenergic receptors in the cardiovascular system. 38
Table 2 Summary of agonists, receptors and second-messenger molecules relevant to this thesis. 43
Figure 3 Signal transduction in vascular smooth muscle cells contraction 50
Table 3 Sex differences in patients undergoing CABG. 65
Table 4 Sex differences in key clinical characteristics of patients 72
Table 5 Sex differences in key biological factors. 80
Table 6 Sex differences in key psychosocial factors 82

CHAPTER 2
Table 1 Commonly agents administered during coronary artery bypass grafting. 88
Table 2 Commonly used agents during elective hernia repair surgery in patients with no known coronary artery disease. 89
Table 3 List of all materials and the respective providers used in this thesis. 104

CHAPTER 3
Table 1 Patient Characteristics 117
Table 2 Reactivity of IMA and SV segments to PE, 5HT, ET-1 and U46619. 118
Table 3 Reactivity of IMA segments to PE in absence and presence of L-NAME and Indomethacin. 119
Figure 1 Female IMA segments were significantly more hypersensitive to PE and 5HT, compared to males. 120
Figure 2 There were no sex differences in vasoconstrictor responses of SV. 121
Figure 3 Female hypersensitivity to \(\alpha_{1} \)-adrenergic stimulation is ameliorated in presence of cyclo-oxygenase blockade. 122
Figure 4 There is no difference in \(\alpha_{1} \)- and \(\beta_{2} \)- adrenergic receptor density in internal mammary artery of male and female patients. 123
Figure 5 Specific serotonin 5HT\(_{2A}\) receptor density is increased in female internal mammary artery but not in matched males. No sex differences are seen in the 5HT\(_{2B}\) receptor density. 124

CHAPTER 4
Table 1 Patient Characteristics 141
Table 2 Reactivity of pericardial microvessels to PE, 5HT, ET-1 and U46619. 142
Table 3 Reactivity of subcutaneous microvessels to PE, 5HT, ET-1 and U46619. 143
Figure 1 Female pericardial microvessels are hypersensitive to PE and 144
5HT, compared to males.

CHAPTER 5

Table 1
Baseline characteristics of patients with and without known CAD.

Table 2
Reactivity of subcutaneous microvessels from patients with and without known CAD in response to PE, 5HT, ET-1 and U46619

Figure 1a
Sex differences in the high K\(^+\) mediated vasoconstriction in patients with no known CAD.

Figure 1b
Sex differences in the high K\(^+\) mediated vasoconstriction in patients with known CAD.

Figure 2
Subcutaneous resistance arteries from asymptomatic female patients with out history of coronary artery stenosis are hypersensitive to \(\alpha_1\)-adrenergic receptor stimulation, compared to matched males.

Figure 3
Subcutaneous resistance arteries of male patients with known CAD are significantly hypersensitive to \(\alpha_1\)-adrenergic, serotonergic and thromboxane A\(_2\) (U46619) receptor stimulation, as compared to those with no known CAD.

Figure 4
Subcutaneous resistance arteries of female patients with known CAD are significantly hypersensitive to \(\alpha_1\)-adrenergic and thromboxane A\(_2\) (U46619) receptor stimulation, as compared to those with no known CAD.

CHAPTER 6

Table 1
Summary of the observed female vascular hypersensitivity in response to specific agonists in different vascular beds.
List of abbreviations

CVD Cardiovascular Disease
LDL Low Density Lipoprotein
VCAM-1 Vascular Cell Adhesion Molecule-1
VLDL Very Low-Density Lipoprotein
HDL High-Density Lipoprotein
AII Angiotensin II
AT1 Angiotensin II Type 1
VSMC Vascular Smooth Muscle Cell
IVUS Intravascular Ultrasound
FMD Flow Mediated Dilation
CAD Coronary Artery Disease
NO Nitric Oxide
NOS Nitric Oxide Synthase
GC Guanylate Cyclase
cGMP cyclic Guanosine-3′,5′-monophosphate
PKG Protein Kinase G
CAM Calmodulin
eNOS Endothelial Nitric Oxide Synthase
PI3K Phosphatidylinositol 3-kinase
PKB Protein Kinase B
nNOS Neuronal Nitric Oxide Synthase
iNOS Inducible Nitric Oxide Synthase
BH4 Tetrahydrobiopterin
ADMA Asymmetrical Dimethylarginine
COX Cyclo-Oxygenase
PGI2 Prostacyclin
TXA2 Thromboxane
cAMP cyclic Adenosine Monophosphate
NSAID Nonsteroidal Anti-Inflammatory Drugs
ET Endothelin
PLC Phospholipase C
IP3 Inositol triphosphate
DAG Diacylglycerol
PKC Protein Kinase C
EDHF Endothelial Derived Hyperpolarizing Factor
PE Phenylephrine
ROK Rho-associated Kinase
5HT 5-Hydroxytriptamine
MLCK Myosin Light Chain Kinase
MLCP Myosin Light Chain Phosphatase
MYPT Myosin Phosphatase Targeting subunit
PIP2 Phosphatidylinositol 4,5-biphosphate
GDP Guanosine Diphosphate
GTP Guanosine Triphosphate
GEF Guanine nucleotide Exchange Factor
GAP GTPase-Activating Proteins
ACS Acute Coronary Syndrome
MI Myocardial Infarction
AMI Acute Myocardial Infarction
STEMI ST-Elevation Myocardial Infarction
NSTEMI Non-ST-Elevation Myocardial Infarction
ECG Electrocardiogram
ACE Angiotensin Converting Enzyme
ARB Angiotensin Receptor Blocker
PCI Percutaneous Coronary Intervention
CABG Coronary Artery Bypass Graft
IMA Internal Mammary Artery
SV Saphenous Vein
CHD Coronary Heart Disease
BMI Body Mass Index
IHD Ischaemic Heart Disease
PVD Peripheral Vascular Disease
FRS Framingham risk score
CRP C-reactive Protein
PTD Pain-To-Door
DTB Door-To-Balloon
LTD Lab-To-Balloon
WISE Women’s Ischaemia Syndrome Evaluation study
MVD Microvascular Dysfunction
QOL Quality of Life
NHT Normal HEPES-Tyrode
KPSS Potassium Physiological Salt Solution
KCl Potassium Chloride
L-NAME Ng-nitro-L-arginine methyl ester
DFP Diisopropylfluorophosphate
DTT Dithiothreitol
SDS Sodium Dodecyl Sulphate
SDS-PAGE Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis
APS Ammonium Persulfate
TEMED N,N,N’,N’-tetramethylethylenediamine
TBS-T Tris buffered saline – Tween 20
IgG Immunoglobulin G
ANOVA Analysis of Variance
Thesis Abstract

Background and Aims: Sex differences have been observed in several cardiovascular diseases, in terms of mortality and morbidity. Female patients experience worse clinical outcomes than their male counterparts. Although multiple mechanisms may be involved, sex differences in vascular reactivity of large and small blood vessels have not been investigated. This thesis aims to assess sex-dependent difference in vasoconstrictor responses of human vessels isolated from a variety of vascular beds from older patients (mean age 68 years) with and without existing coronary artery disease. Specific aims include evaluation of:(1a) sex differences in vascular responses of internal mammary artery (IMA) and saphenous vein (SV) segments from male and female patients undergoing CABG and (1b) mechanisms underlying sex dependent vascular responses.

(2) sex differences in microvascular reactivity of vessels isolated from mediastinal and peripheral subcutaneous areas in patients with CAD. (3a) sex difference in vascular reactivity of subcutaneous microvessels from patients with no known CAD, undergoing elective non-cardiac surgery. (3b) subcutaneous microvascular reactivity of males and females patients with CAD to those without known CAD.

Methods: This thesis used wire myography technique to assess functional changes in vasoconstrictor responses of isolated large conduit and small blood vessels. Concentration-response curves were formed for various vasoconstrictors including phenylephrine, serotonin, endothelin-1 and the thromboxane mimetic, U46619. Western blot analysis was employed to measure the biochemical parameters, including receptor abundance endothelin-1.
Summary of major findings: Female IMA segments display hypersensitive responses to serotonergic and α_1-adrenergic receptor stimulation, compared to males. Blocking eNOS and/or cyclooxygenase revealed that prostaglandins account for in the observed α_1-adrenergic mediated sex differences. Biochemical analysis revealed increased density of 5HT$_{2A}$ receptors in the female IMA.

Similar sex differences were observed in the pericardial microvessels of the same patient cohort, with females showing increased sensitivity to serotonergic and α_1-adrenergic receptor stimulation. Interestingly, no sex differences were observed in the peripheral subcutaneous microvessels of patients with existing CAD.

In patients without known CAD, female subcutaneous microvessels were hypersensitive to serotonergic and α_1-adrenergic receptor stimulation, compared to matched males. When compared to subcutaneous microvessels of male and female patients without known CAD, male and female CAD patients exhibited increased sensitivity to α_1-adrenergic agonist. Male CAD patients were also hypersensitive to serotonin and the thromboxane A$_2$ mimetic, U46619, relative to those without known CAD.

Conclusions: For the first time, in a population cohort with a mean age of 68 years, female vascular hyper-reactivity in both large graft arteries (IMA) and microvessels has been demonstrated. Female vascular hypersensitivity is consistently seen in response to serotonergic and α_1-adrenergic receptor agonist. In part, this may be due to sex-differences in prostanoid activity. The IMA hyper-reactivity in the group of older women may contribute to their poorer outcomes following CABG and microvascular differences amongst patients without documented cardiovascular disease may pre-
dispose them to hypertension.