REGOLITH AND ASSOCIATED MINERAL SYSTEMS OF THE EUCLA BASIN, SOUTH AUSTRALIA

by

ASHLYN KATE JOHNSON

B. A, Adelaide University, 2008
B. Sc (Hons), Adelaide University, 2009

A thesis submitted in fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Geology and Geophysics.
School of Earth and Environmental Sciences.

ADELAIDE UNIVERSITY
Adelaide, South Australia, Australia

2015
STATEMENT OF AUTHORSHIP

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

__ ______________________________
Ashlyn Kate Johnson Date
This thesis documents previous research into the heavy mineral sands (HMS) of the Eucla Basin. It presents new research designed to incorporate previous work, and to then encourage a broadening of research into the future. Specifically, this thesis is dedicated to demonstrating the importance of encompassing all aspects of research within a mineral system rather than isolating system components.

In order to understand the complex regolith geology expressed within the Eucla Basin and its contained HMS deposits, a multi-faceted approach is applied, targeting two broad research areas.

The first research area addresses processes acting prior to deposition of the Eucla Basin sediments, including providing constraints on the source of the sediments using U-Pb zircon analysis. The conclusions of this area of the research are that the dominant U-Pb zircon population lies between 1100 and 1250 Ma. Further, that these zircon populations match with the ages of zircon growth events in two of the most proximal potential source regions, the Musgrave Province and the Albany-Fraser Province. This research has also shown that due to the similar magmatic and metamorphic history of the Musgrave Province and Albany-Fraser Province it is difficult to distinguish between the possible sources regions using the U-Pb zircon data alone, highlighting the need for other methods. This thesis also found that kyanite and staurolite, which are common minerals in the Eucla Basin HMS, do not have an identified source in the Musgrave Province but do have a potential source in the Mount Barren Group in the Albany-Fraser Province. Finally, this thesis clearly demonstrates that the recognition of a likely more western source of zircon, kyanite and staurolite requires a revision of existing models of Eucla Basin HMS provenance, which focuses on the Musgrave Province as the most likely source.
The second research area concentrates on the syn- and post-depositional history of the sedimentary rocks inclusive of depositional processes, weathering and groundwater interactions, the combination of which are expressed in multi-element whole rock major, trace element and isotope geochemical data. These data can be combined with other components of the HMS mineral assemblage, together with an understanding of the denudation history of the possible source regions, to establish a landscape evolution model from source, through transport to the site of deposition. The conclusion of this section of research is that stratigraphy of the sequences hosting HMS deposits at Jacinth requires revision because stratigraphic boundaries were assigned to horizons that are the result of post-depositional acid-sulphate weathering and groundwater processes.

Finally, differentiation of rock types into process related sub-groupings is vital for understanding exploration geochemical data but cannot be achieved using major element chemistry alone. A broad suite of trace elements and selected isotope data are required, including strontium/calcium and strontium isotope ratios for the purpose of discriminating between marine and pedogenic carbonates. This methodology has provided significant breakthroughs in the discrimination of carbonate materials, particularly for landscapes with a complex marine or marginal marine history.
Dedicated to my amazing family and friends . . .

Especially to those that witnessed the beginning of this journey, and who are not here for the end:

Juliette
Jim
Jacqui
Keith
Douglas
ACKNOWLEDGEMENTS

I would like to thank to my PhD advisors, Doctor Steven Hill and Professor David Giles for mentoring, supporting, and supervising me over the past four years. Thank you doesn’t seem adequate enough for the time, effort and patience you both demonstrated towards me and my research. Steve was instrumental in motivating me, teaching me, and entertaining me as I spent three years collecting samples across remote Australia. His willingness to help me discover has resulted in me producing work that has been able to push through boundaries. His energy and enthusiasm in the field was pivotal in my research and I cannot thank him enough for the long hours he spent with me defining the direction my research would take.

Dave has been patient, knowledgeable and supportive, and gave me the freedom to pursue and document new research findings. He has also provided insightful discussions about the research and encouraged me to think more independently about my results. His editing, willingness to discuss the same results over and over, and permission to do something unique has meant I could produce something I am proud of, and something that I hope can contribute to our understanding of geological studies in Australia.

I am also very grateful to my peer and friend Ben van der Hoek for his steady advice, geological knowledge and many challenging discussions and suggestions. Further thanks go to my fellow Geology peers Verity Normington, Charlotte Mitchell, Steph McLennan and Bec Pohrib – a stronger, more determined and amazing group of academic women could never have existed. Their emotional support was important, and their scientific contributions to my thinking more so. To the Adelaide University research students not mentioned by name but who kept me going through Honours into these four years, thank you also.

A good support system is imperative to surviving a Doctorate. The friends who stuck by me, who put up with bizarre behaviours and my missing presence deserve a massive shout out –
in particular my netball team, my unique group of school friends, and my social sporting
friends who have unwittingly adopted me at my most exhausted. To my extended family who
saw me for brief periods at a time, in particular my most special Grannie and Shirley – thank
you for loving me no matter what. I am thankful for your unconditional love.

I especially thank my sisters and best friends Annelise and Kristie. From listening to
irrational rants about the data I was evolving, to proof reading and making me endless cups
of tea– their massive efforts can’t all be listed here. The impact my putting this above
everything else in life had on them can be acknowledged, but is hard to repay. Thanks also to
Ryan for marrying Kristie at my wedding and being as good as a brother in-law can be.

To my parents Kaye and Bruce... Your support, which came in varying forms throughout my
thesis; from caring love, to tough love, to worry, to financial assistance, to daily routines, to
lending your considerable intelligence to my work, has made this possible. I could not have
done any of it without you, and I hope that you feel the accomplishment as much as I do.
Table of Contents

ACKNOWLEDGEMENTS .. IX

TABLE OF CONTENTS ... XI

RATIONALE ... XII

CHAPTER 1: INTRODUCTION ... 14
 1.1 Geochemistry for Mineral Exploration and Landscape Evolution 15
 1.2 Stratigraphy and Lithology of the Eucla Basin ... 19
 1.3 Jacinth Heavy Mineral Sands Basics ... 23
 1.4 Weathering Products ... 25
 1.5 Summary ... 32

CHAPTER 2: METHODOLOGY ... 34
 2.1 Field Observations ... 34
 2.2 Sampling Methods .. 35
 2.3 Petrology .. 36
 2.4 Zircon Dating .. 37
 2.5 Whole Rock Geochemistry ... 40
 2.6 Isotope geochemistry ... 40
 2.7 Hylogger .. 43
 2.8 Summary ... 43

CHAPTER 3: ZIRCONS, HEAVY MINERAL SANDS, & SOURCE OF EUCLA BASIN SEDENTS .. 45
 3.1 Geological Context ... 45
 3.2 Zircon as a provenance mapping tool .. 46
 3.3 HMS in the Eucla Basin .. 49
 3.4 Methodology ... 60
 3.5 Results .. 66
 3.6 Discussion .. 73
 3.7 Findings ... 80

CHAPTER 4: SYN & POST-DEPOSITIONAL RESULTS ... 82
 4.1 Field-Based Assessment ... 82
 4.2 Geochemical Classification ... 96
 4.3 Isotope Geochemistry ... 117

CHAPTER 5: GEOCHEMISTRY & WEATHERING OVERPRINTS ... 122
 5.1 Geochemistry: characterising lithology .. 122
 5.2 Calcium carbonate: Pedogenic? Marine? Or a combination? .. 125
 5.3 Acid Sulfate weathering and pseudo-stratigraphy ... 130
 5.4 Advice to Explorers .. 138

CHAPTER 6: SUMMARY & CONCLUSIONS ... 139

REFERENCES ... 143

APPENDICES .. 165
Rationale

The basis for this thesis started in the 1980s to early 1990s, with the identification of palaeo sand ridges along the margins of the Eucla Basin. Whilst being explored for Heavy Mineral Sands (HMS) since this time, previous programs have yielded few discoveries. However, following a reinterpretation of the geology of the Eucla Basin in 2003, drilling commenced and three weeks later a deposit, large enough to supply ~25% of the global zircon demand, was discovered. Iluka Resources Ltd managed only five years from discovery to commissioning of the mine, with the project being delivered on time and within budget. However, despite more successful drilling programs in the area, amongst the exploration companies there was still a limited understanding of the Eucla Basin and its innermost workings. Problems such as exhausted search space, spatially limited drilling information, incomplete geophysical targeting, restricted stratigraphic understanding, a focus on palaeogeographic reconstructions, and ‘on the fly’ interpretations plagued exploration companies. In an effort to find solutions for these problems, questions of scientific curiosity were also realised. Like the quotation below, this thesis details factors ranging from the scale of global weather patterns to the weathering effect on individual sand grains. It aims to address the limited understanding of the Eucla Basin regolith and associated mineral systems, whilst providing new understanding for future mineral exploration in the area.

‘We live in an age of increasing specialisation, and for good reason. Humanity keeps learning more about each field of study; and as every speciality grows, it tends to split into subspecialties. That process happens over and over again, and it is necessary and desirable. However, there is also a growing need for specialisation to be supplemented by integration. The reason is that no complex, nonlinear system can be adequately described by dividing it up into subsystems or into various aspects, defined beforehand. If those subsystems or those aspects, all in strong interaction with one another, are studied separately, even with great care, the results, when put together, do not give a useful picture of the whole. In that sense, there is profound truth in the old adage, “The whole is more than the sum of its parts.”’
People must therefore get away from the idea that serious work is restricted to beating to death a well-defined problem in a narrow discipline, while broadly integrative thinking is relegated to cocktail parties. In academic life, in bureaucracies, and elsewhere, the task of integration in insufficiently respected.’