Identification of Sea Breezes, their Climatic Trends and Causation, with Application to the Adelaide Coast

ZAHRA PAZANDEH MASOULEH

BENG (CIVIL & STRUCTURAL), MScENG (Coastal)

A THESIS SUBMITTED FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF ADELAIDE

SCHOOL OF CIVIL, ENVIRONMENTAL AND MINING ENGINEERING
July 2015
Table of contents

Abstract ... i

Statement of Originality ... iv

Acknowledgement .. v

1. Introduction .. 1
 1.1. Background and motivation for the research .. 1
 1.2. Research scope and Objective .. 2
 1.3. Overview of Thesis .. 5

2. Literature Review ... 7
 2.1. Introduction to Adelaide Coastal Climate ... 7
 2.2. Sea breeze Circulation System ... 8
 2.3. Geophysical variable that affect sea breezes ... 9
 2.4. Surface energy budget .. 12
 2.5. Urban Boundary Layers .. 13
 2.6. Thermal Properties and the Urban Street Canyon Effect .. 15
 2.7. Urban Heat Island ... 16
 2.7.1. Heat Island Types and Circulation ... 18
 2.7.2. Urban heat island impact ... 19
 2.7.3. Characteristics of Urban Heat Island in Different Cities Worldwide 20
 2.7.4. Interaction of Urban Heat Island and Sea breeze ... 22
 2.8. Sea Breeze Detection Methods .. 24
 2.9. Numerical Simulation of climate ... 26
 2.9.1. Regional Climate Models (RCMs) ... 30
 2.9.2. Application of RCMs .. 31
 2.9.2.1. Simulation of Sea-land breeze ... 31
 2.9.2.2. Simulation of Land cover change and urban Climate .. 32
 2.9.3. Weather Research and Forecasting Model (WRF) ... 33
2.9.3.1. The major feature of ARW and the governing equations 33

3. Climate of the Study Area .. 41
 3.1. Description of the Adelaide Metropolitan Area 41
 3.2. The main feature of climate in Adelaide .. 41
 3.2.1. Wind climate .. 42
 3.3. South Australian Major Climate Drivers .. 44
 3.3.1. The El Niño Southern Oscillation .. 44
 3.3.2. The Indian Ocean Dipole ... 45
 3.3.3. Southern Annular Mode ... 45
 3.3.4. Sub-Tropical Ridge .. 46
 3.3.5. Cloud bands .. 46
 3.3.6. Frontal Systems ... 47
 3.3.7. Cut-Off Lows ... 47
 3.3.8. Blocking Highs ... 47
 3.4. Previous study of sea breezes in the region .. 48

4. Adelaide Sea breeze ... 50
 4.1. Adelaide Mesoscale Meteorology .. 50
 4.2. Detection and Validation of Sea Breezes ... 51
 4.2.1. Adelaide Airport .. 52
 4.2.2. Edithburgh .. 54
 4.2.3. The Sea Breeze Identification algorithm 55
 4.2.4. Method Assumptions .. 57
 4.3. The Results .. 57
 4.4. Sensitivity analysis .. 59
 4.4.1. Sea surface temperature .. 59
 4.4.2. Sensitivity to land surface temperature .. 60
 4.4.3. Sensitivity to surface level wind speed criteria 61
 4.5. Characteristic of the wind at opposing shoreline of St Vincent Gulf 61
List of Figures

FIGURE 1.1. THE LOCATION OF METROPOLITAN ADELAIDE (GOOGLE EARTH) ... 3
FIGURE 2.1. GEOPHYSICAL VARIABLE THAT CONTROL SEA AND LAKE BREEZES (CORIOLIS PARAMETER F NOT SHOWN) ADAPTED FROM CROSNO AND HOREL (2010) ... 10
FIGURE 2.2. THE URBAN LAYER STRATIFICATIONS (AFTER OKE, 1988) ... 14
FIGURE 2.3. THE THERMAL DIFFERENTIAL OF CITY AND ITS ADJACENT AREAS (GOODMAN, 1999) 17
FIGURE 2.4. A SCHEMATIC DIAGRAM OF URBAN PLUM AND THE HEAT ISLAND CIRCULATION 19
FIGURE 2.5. TEMPERATURE DISTRIBUTION IN DAYTIME OF 13 OF AUGUST 2009, OKAYAMA CITY IN JAPAN - DARK GREY AND BROWN SHADE REPRESENTS COMMERCIAL AREAS AND MOUNTAIN RESPECTIVELY (SHIYOTA ET AL., 2009) ... 21
FIGURE 2.6. AN EXAMPLE OF THE LONGEST TRAJECTORIES THAT ORIGINATED UPWIND (OPEN CIRCLES) AND DOWNWIND (FULL CIRCLES) OF THE PLUME AXIS IN THE PRESENCE OF A SEA BREEZE, TAKEN FROM A STUDY BY CENDESE AND MONTI (2003), X/D = 0 REPRESENTS THE CENTRE OF THE URBAN AREA 23
FIGURE 2.7. AN EXAMPLE OF NESTING IN A REGIONAL CLIMATE MODEL WITH THE HORIZONTAL GRID SHOWN IN BLACK LINE, BOUNDARY OF BUFFER ZONE IN RED LINE AND VERTICAL COLUMN INDICATING THE ATMOSPHERIC LAYERS BY THE MODEL, FROM RASCH (2012) ... 31
FIGURE 2.8. THE INTERACTIONS BETWEEN THE FIVE MAJOR PHYSICAL PARAMETERIZATIONS USED IN THE. 35
WRF-ARW (DUDHIA, 2010) .. 35
FIGURE 3.1.a. SEASONAL WIND ROSE IN ADELAIDE FOR SUMMER, 9 AM ON LEFT AND 3 PM ON RIGHT (AUSTRALIAN BUREAU OF METEOROLOGY, 2014a) ... 42
FIGURE 3.1.b. SEASONAL WIND ROSE IN ADELAIDE, 9 AM ON LEFT AND 3 PM ON RIGHT (AUSTRALIAN BUREAU OF METEOROLOGY, 2014a) .. 43
FIGURE 3.2. CLIMATIC DRIVERS OF AUSTRALIA (AUSTRALIAN BUREAU OF METEOROLOGY, 2010) 44
FIGURE 4.1. MEAN RATIOS CGA/PTA FOR MEAN WIND SPEED (R) AND GUST WIND (R) OF DAY (SOLID LINE) AND NIGHT (PECKED LINE) AND ALL OBSERVATION (DOTTED LINE), FROM (LOGUE, 1986) .. 53
FIGURE 4.2. LOCATION OF ADELAIDE AIRPORT AND EDINBURGH STATIONS .. 54
FIGURE 4.3. THE FREQUENCY OF SEA BREEZE EVENT FOR EACH SEASON, THE BOX SHOWS THE LOWER AND THE UPPER QUARTILE ... 58
FIGURE 4.4. AVAILABLE (GREEN DOTS) AND AVERAGED (RED LINE) SEA SURFACE TEMPERATURE AGAINST THE OBSERVED LAND SURFACE TEMPERATURE FOR EACH DAY OF THE YEAR ... 59
FIGURE 4.6. AVERAGE SEA BREEZE DAYS` U-COMPONENT (A) AND V-COMPONENT (C) OF ADELAIDE AIRPORT (SOLID LINE) AND EDINBURGH (DASHED LINE). SAME FOR NON-SEA BREEZE DAYS (B) AND (D) RESPECTIVELY .. 64
FIGURE 4.7. U COMPONENT OF 15:00 HOUR FOR ENTIRE PERIOD (A) AND EXCLUDING 1972-1984 (B) 66
FIGURE 4.8. U COMPONENT OF 12:00 HOUR FOR ENTIRE PERIOD (A) AND EXCLUDING 1972-1984 (B) AND SIMILARLY FOR 21:00 DATA (C,D) .. 67
FIGURE 4.9. V COMPONENT OF 18:00 (A) AND 21:00 (B) WINDS OF SEA BREEZE DAYS AND 21:00 (C) WIND OF NON-SEA BREEZE DAYS .. 70
FIGURE 4.10. U COMPONENT OF 15:00 (A) AND 21:00 (B) WIND OF SEA BREEZE AND 21:00 (C) WIND OF NON-SEA BREEZE DAYS. THE GREY LINE SHOWS THE FIVE YEARS MOVING AVERAGE......... 72
FIGURE 4.11. V COMPONENT OF SEA BREEZE (LEFT) AND NON-SEA BREEZE (RIGHT) AT 15:00 (A,B), 18:00 (C,D) AND 21:00 (E,F) .. 74
FIGURE 4.12. THE U COMPONENT OF SEA BREEZE DAY 12:00 (A), 15:00 (B), 18:00 (C) AND 21:00 (D) WIND. .. 76
FIGURE 4.13. THE V COMPONENT OF SEA BREEZE DAY 15:00 (A), 18:00 (B) AND 21:00 (C) WIND. 77
Figure 4.14. Sea breeze (solid line) and non-sea breeze days (dashed line) hodograph (1955-2007) for Adelaide airport. The sea breeze sector (180°-320°) is illustrated as a blue curve. The circles show the wind speed at the interval of 1 m/s. 78
Figure 4.15. The frequency of time of sea breeze start (A) cessation (B) and maximum (C) (1985-2007) in each season. ... 79
Figure 4.16. Monthly averages of sea breeze start-end and maximum (1985-2007) 80
Figure 4.17. Average of maximum sea breeze direction and speed (1985-2007). The numbers on the arrows are the wind speed in m s⁻¹. ... 80
Figure 4.18. Percentage of annual sea breeze events for the period of 1956-2007, the line shows the 5-year moving average. ... 81
Figure 4.19. The 18:00 (X axes) against 15:00 (Y axes) wind component for sea breeze days U(A), V (C) component (m s⁻¹) and similarly for non-sea breeze days (B, D) 83
Figure 4.20. Anomaly of 1.2 m maximum (A) and minimum (B) temperatures in Adelaide Airport. ... 84
Figure 4.21. Plot of maximum temperature against monthly averaged V components of wind on sea breeze days, at 18:00 (A) and 21:00 (B) and non-sea breeze days (C, D respectively). ... 86
Figure 4.22. Plot of monthly averaged maximum temperature and the percentage of selected sea breeze days. ... 87
Figure 4.23. Averaged southerly wind component of January 18:00 (A) and 21:00 (B) with actual value (gray dots) and de-trended value (black dots). ... 88
Figure 4.24. Adelaide Metropolitan population (Australian Bureau of Statistics, 2012). 90
Figure 4.25. Adelaide City expansion since 1910 (State of Environment, 2011) on right and population density in 2012 (ABS, 2013) on left. ... 91
Figure 5.1. Layout of model domains, D1, D2 and D3, with enlarged domain 3 shown on the right (Google Earth, 2013). ... 95
Figure 5.2. Schematic of single-layer urban canopy model (from Chen et al., 2011) 96
Figure 5.3. The change of vegetation in South Australia since 1750 (Department of the Environment and Water Resources, 2007). ... 99
Figure 5.4. Land cover index from the model for CTL simulation (left) and NTV (right). 99
Figure 5.5. Location (displayed by red flags) of available meteorological stations for the period of simulation (Google Earth, 2013), Adelaide metropolitan area is shown by yellow line. ... 101
Figure 5.6. Taylor diagram of statistical values for all stations for three variables: temperature (circles), wind speed (squares) and wind direction (triangles) 106
Figure 5.7. The performance of model to simulate 2 m temperature (A), 10 m wind speed (B) and 10 m wind direction (C) in Adelaide airport in February 2005. Blue dots represent the observation and black lines are the model’s outputs. ... 108
Figure 5.8. The averaged daily cycle of temperature simulated with current land cover (black) and native vegetation (blue) at an inner suburb (A), a coastal point (B) and the difference (C)=(A)-(B). ... 110
Figure 5.9. The difference between an hourly averaged temperature of an inner city location of two simulation (TCTL - TNTV) for two cold months of May and July and two warm months of January and March. ... 111
Figure 5.10. Two examples of 2 m height temperature (°C) distribution over the area for two times steps; CTL (left) and NTV (right) ... 112
Figure 5.11. Area average wind speed at 10 m height over the metropolitan area. CTL (black dots and thin black line) and NTV (red dots and thin grey line) for the period of 13 to 25 of January 2005. ... 115
Figure 5.12. Same as Figure 5.11 for an adjacent point over water (green and blue ovals demonstrate the difference between two simulations in night times and afternoon respectively) .. 115
Figure 5.13. The monthly averaged u-wind component of the water point at lowest 2 km level of warm months (lines) and cold months (dashed line) at times of 0600, 0900, 1200, 1500,
1800 and 2100. The red and blue lines demonstrate the average of warm and cold months, respectively.

Figure 5.14. Same as Figure 5.13 for V-wind component.

Figure 5.15. The warm period time-averaged U (two left columns) and V (two right columns) component of the water point simulated with CTL (black dots and thin line) and NTV (blue dots and thin dashed line) at times of 0600 and 0900 (top row), 1200 and 1500 (middle row), 1800 and 2100 (bottom row).

Figure 5.16. The hodograph of time-averaged wind of WMP at 10m height of the water point for CTL (black dots and line) and NTV (blue dots and line) simulations. The circles show the wind speed intervals of 1 m s⁻¹ and the numbers denote the Australian Central Standard Time. An example of averaged wind vector for the hour of 1400 in CTL run is demonstrated by an arrow.

Figure 5.17. The averaged U-wind component profile of WMP in 9 am (above) and 9 pm (below) from shoreline to further 27 km over water.

Figure 5.18. The vertical component of winds simulated with CTL (black) and NTV (blue) at times of 0000, 0300, 0600, 0900, 1200, 1500, 1800 and 2100.

Figure 5.19. Hodograph of averaged sea breeze (left) and non-sea breeze day (right) of WMP, simulated with CTL (black) and NTV (blue). The circles show the wind speed intervals of 1 m s⁻¹ and the numbers denote the Australian Central Standard Time.
List of Tables

TABLE 3.1: CLIMATIC DRIVERS OF SOUTH AUSTRALIA .. 48
TABLE 3.2: A SUMMARY OF SEA BREEZE DAY CHARACTERISTIC ADOPTED FROM PHYSICK AND BYRON-SCOTT (1977).. 49
TABLE 4.1: ADELAIDE AIRPORT STATION. DATA SUPPLIED BY AUSTRALIAN BUREAU OF METEOROLOGY (2014A)... 52
TABLE 4.2 RESULTS OF REGRESSION ANALYSIS OF U-WIND COMPONENT IN SUMMER –EXCLUDING THE 1972-1984 RECORDS, THE SIGNIFICANT REGRESSION VALUES ARE BOLDED.. 68
TABLE 4.3 REGRESSION ANALYSIS OF V-WIND COMPONENT IN SUMMER –EXCLUDING THE 1972-1984 RECORDS .. 69
TABLE 4.4 RESULT OF REGRESSION ANALYSIS OF U-WIND COMPONENT IN AUTUMN............................... 71
TABLE 4.5 RESULT OF REGRESSION ANALYSIS OF V-WIND COMPONENT IN AUTUMN............................... 73
TABLE 4.6 RESULT OF REGRESSION ANALYSIS OF U-WIND COMPONENT IN SPRING –EXCLUDING THE 1972-1984 AND 1992 RECORDS .. 75
TABLE 4.7 RESULT OF REGRESSION ANALYSIS OF V-WIND COMPONENT IN SPRING –EXCLUDING THE 1972-1984 AND 1992 RECORDS .. 76
TABLE 4.8 THE TIME OF OBSERVED SIGNIFICANT INCREASE OF THE COMPONENT OF AFTERNOON AND EVENING WINDS ... 82
TABLE 4.9 THE CORRELATION BETWEEN EACH AFTERNOON WIND COMPONENT AND THE NEXT READING... 83
TABLE 4.10 CORRELATION COEFFICIENT BETWEEN MONTHLY AVERAGED U AND V COMPONENTS OF WIND AND MAXIMUM TEMPERATURE FOR SEA BREEZE AND NON-SEA BREEZE DAYS... 85
TABLE 5.1 PHYSICAL PARAMETERS OF DIFFERENT LAND COVERS OF METROPOLITAN AREA......................... 100
TABLE 5.2 STATISTICAL EVALUATION OF SIMULATION OF TEMPERATURE, WIND SPEED AND DIRECTION AT DIFFERENT LOCATIONS .. 103
Abstract

Nearshore processes along the sandy beaches of Adelaide are driven by the prevailing wind and waves. While the narrow entrance of Gulf St. Vincent and the shallow waters attenuate the ocean swell waves, the locally generated southerly to south-westerly waves are behind the net northward littoral drift transport. An important factor in the generation of local waves are the sea breezes, which for Gulf St Vincent result from a combination of a southerly ocean breeze and westerly gulf breezes, and a key question in this time when the climate is said to be changing is whether there is evidence that these sea breezes are changing.

This study, therefore, investigates the existence of long-term changes to the gulf breeze; hereafter referred to as the sea breeze, over the period of August 1955 to June 2008.

In the study of the local climate a set of criteria were developed to define and identify the sea breeze days on which the locally generated coastal winds are generally dominant in the afternoon. Considering the limitation of meteorological observations, the criteria employed the three-hourly near surface data, the 12-hourly upper air levels recorded data, and the surface temperatures of Gulf St. Vincent, provided by Advanced High Resolution Radiometer (AVHRR).

Applying the methods, the period of study is divided into sea breeze and non-sea breeze days, where the characteristic afternoon wind in both categories is analysed. Although the annual percentage of observed sea breeze cases does not show any significant change over the period of the study, the results have demonstrated the presence of an increasing trend in the intensity of afternoon winds, more evidently for the selected sea breeze days.

Through regression analysis of the results, the rise of the southerly component of the wind has been found to have a strong correlation with the surface temperature of the
land, whereas the growth of the westerly component was not correlated with any local climate drivers.

Following this important result, the study then went on to determine what might be driving this change. As the importance of urbanization on the climate of wind has been extensively studied by previous researchers, the growth of the Adelaide metropolitan area was conjectured to affect the wind climate at the planetary boundary layer.

A next-generation mesoscale numerical model, Weather Research and Forecasting (WRF), was employed to simulate the climate of the area with and without the metropolitan area of Adelaide, where the city was replaced by the native vegetation of the land. From the simulations it appears that the westerly components of the winds are strongly affected by changes to the nature of the land, due to a combination of changes to the surface roughness length and modification of the surface heat budget components.

The main findings of the statistical and numerical study of the wind climate of Adelaide are:

1. The wind climate in and around Gulf St. Vincent has shown a statistically significant change over the last 50 years.

2. While there has been no significant change in the number of sea breeze days, the current wind climate has significantly higher wind speeds more evidently on sea breeze days. This is likely to have an important effect on the coast, particularly if the trend continues.

3. Through the component-wise analysis of wind, the change in the intensity of south-north component of wind intensity was found to be correlated to the increasing trend of land surface temperature. This is likely to explain one of the key drivers of the change in wind climate.
4. A numerical modelling exercise demonstrated the importance of the growth of the metropolitan area of Adelaide with the change in surface roughness and the change to the surface energy budget being two key elements of the change. In the end, there is still a need for future study to examine the possible effects of prolonged changes of wind characteristics on the dynamics of the shoreline, particularly in regard to the littoral sediment transport system.
Statement of Originality

I, Zahra Pazandeh Masouleh certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signature:

Date:
Acknowledgement

I would like to express my deep and sincere gratitude to my supervisors: Professor David Walker and Professor John Crowther, for their valuable guidance, consistent encouragement, understanding, patience, and most importantly, their friendship throughout the research work.

I am extremely grateful to my main supervisor Prof. David Walker, for his guidance and all the useful discussions and brainstorming sessions, especially during the difficult conceptual development stage. His deep insights helped me at various stages of my research. I also remain indebted for his understanding and support during my maternity leave. My sincere gratitude is reserved for Prof. John Crowther for his invaluable insights and suggestions. I really appreciate his willingness to meet me at short notice every time and going through several drafts of my thesis. I remain amazed that despite his busy schedule, he was able to go through the final draft of my thesis and meet me in less than a week with comments and suggestions on almost every page. He is an inspiration. I also acknowledge the contribution of Dr. Murray Townsend to my thesis and his support as a member of my PhD supervision panel is highly appreciated. I thank Mr. Darren Ray, senior meteorologist at South Australian Regional Climate Services Centre of Bureau of Meteorology for his supports and helps with meteorological data.

Sincere thanks are extended to the former computing officer, Dr. Stephen Carr and the school administrative staff, for their help.

I wish to thank my fellow postgraduates in the School of Civil, Environmental and Mining Engineering for their assistance and friendship. Special thanks to my very good friends Li Li, Jaya and Nimasha, who have made this journey so much more enjoyable. I owe a lot to my parents, who encouraged and helped me at every stage of my personal and academic life, and longed to see this achievement come true. Lastly, I would like to dedicate this thesis to my precious daughter, Aida and my loving, supportive, encouraging, and patient husband Arash Asadi whose faithful support through this Ph.D. is so appreciated.
List of Abbreviation

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAO</td>
<td>Antarctic Oscillation</td>
</tr>
<tr>
<td>ACST</td>
<td>Australian Central Standard Time</td>
</tr>
<tr>
<td>AFWA</td>
<td>Air Force Weather Agency</td>
</tr>
<tr>
<td>AHD</td>
<td>Australian Height Datum</td>
</tr>
<tr>
<td>AOI</td>
<td>Antarctic Oscillation Indices</td>
</tr>
<tr>
<td>ARW</td>
<td>Advanced Research WRF</td>
</tr>
<tr>
<td>AVHRR</td>
<td>Advanced Very High Resolution Radiometer</td>
</tr>
<tr>
<td>CBD</td>
<td>Central Business District</td>
</tr>
<tr>
<td>CGA</td>
<td>Synchrotac Cup Anemometer</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Scientific and Industrial Research Organisation</td>
</tr>
<tr>
<td>CTL</td>
<td>Control Run</td>
</tr>
<tr>
<td>DST</td>
<td>Daylight Saving Time</td>
</tr>
<tr>
<td>ENSO</td>
<td>El Niño Southern Oscillation</td>
</tr>
<tr>
<td>ETA</td>
<td>Eta Model</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>FSL</td>
<td>Forecast System Laboratory</td>
</tr>
<tr>
<td>GCM</td>
<td>General Circulation Models</td>
</tr>
<tr>
<td>GDAS</td>
<td>Global Data Assimilation System</td>
</tr>
<tr>
<td>GTS</td>
<td>Global Telecommunications System</td>
</tr>
<tr>
<td>IOA</td>
<td>Index Of Agreement</td>
</tr>
<tr>
<td>IOD</td>
<td>Indian Ocean Dipole</td>
</tr>
<tr>
<td>LH</td>
<td>Latent Heat</td>
</tr>
<tr>
<td>LW</td>
<td>Long Wave radiation</td>
</tr>
<tr>
<td>MB</td>
<td>Mean Biass Error</td>
</tr>
<tr>
<td>MM5</td>
<td>PSU/NCAR mesoscale model</td>
</tr>
<tr>
<td>MO</td>
<td>Monin–Obukhov similarity theory</td>
</tr>
<tr>
<td>NCAR</td>
<td>National Center for Atmospheric Research</td>
</tr>
<tr>
<td>NCEP</td>
<td>National Center for Environmental Prediction</td>
</tr>
<tr>
<td>NCEP FNL</td>
<td>global reanalysis datasets (final data analysis) from the US National Centers for Environmental Prediction</td>
</tr>
<tr>
<td>NESL</td>
<td>parallel language developed at Carnegie Mellon</td>
</tr>
<tr>
<td>NMM</td>
<td>Non-hydrostatic Mesoscale Model</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NRMSE</td>
<td>Normalized root mean square error</td>
</tr>
<tr>
<td>NTV</td>
<td>Native Vegetation (model)</td>
</tr>
<tr>
<td>NVIS</td>
<td>National Vegetation Information System</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>PBL</td>
<td>Planetary Boundary Layer</td>
</tr>
<tr>
<td>pchip</td>
<td>Piecewise Cubic Hermite Interpolating Polynomial</td>
</tr>
<tr>
<td>PTA</td>
<td>Dines Pressure Tube Anemometer</td>
</tr>
<tr>
<td>Qv</td>
<td>mixing ratio for water vapour</td>
</tr>
<tr>
<td>RAAF</td>
<td>Royal Australian Air Force</td>
</tr>
<tr>
<td>RCM</td>
<td>Regional Climate Models</td>
</tr>
<tr>
<td>RMSD</td>
<td>Root Mean Square Difference</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root Mean Square Error</td>
</tr>
<tr>
<td>RSM</td>
<td>Reynolds Stress equation Model</td>
</tr>
<tr>
<td>SH</td>
<td>Sensible Heat</td>
</tr>
<tr>
<td>SLP</td>
<td>Sea-Level Pressure</td>
</tr>
<tr>
<td>SOI</td>
<td>Southern Oscillation Index</td>
</tr>
<tr>
<td>SW</td>
<td>Short Wave radiation</td>
</tr>
<tr>
<td>UCI</td>
<td>Urban Cool Island</td>
</tr>
<tr>
<td>UHI</td>
<td>Urban Heat Island</td>
</tr>
<tr>
<td>USGS</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>WMP</td>
<td>Warmer Months Prediction</td>
</tr>
<tr>
<td>WPS</td>
<td>WRF pre-processing system</td>
</tr>
<tr>
<td>WRF</td>
<td>Weather Research and Forecasting</td>
</tr>
<tr>
<td>WSM3</td>
<td>WRF Single Moment 3 classes</td>
</tr>
</tbody>
</table>