Analysis of Rock Performance under Three-Dimensional Stress to Predict Instability in Deep Boreholes

Arash Mirahmadizoghi

September 2012

School of Civil, Environmental and Mining Engineering
The University of Adelaide
Contents

Abstract ... xii
Statement of Originality ... xv
Acknowledgements ... xvi

CHAPTER 1 Introduction
1.1. Introduction .. 1
1.2. Aims of the Study ... 4
1.3. Research Method ... 6
1.4. Organisation of the Thesis ... 8

CHAPTER 2 Literature review
2.1. Introduction .. 10
2.2. In situ Stresses Prior to the Introduction of the Borehole ... 10
2.3. Stress Analysis around the Borehole ... 12
2.4. Strength Analysis of Intact Rock .. 16
 Coulomb criterion ... 17
 Hoek-Brown criterion ... 18
2.4.1. The influence of intermediate principal stress on rock failure stress 21
 Yield and failure ... 22
2.4.2. Frictional criteria ... 25
 Drucker-Prager criterion .. 26
 Modified Wiebols and Cook criterion .. 27
 Modified Lade criterion .. 29
2.4.3. Hoek-Brown based criteria ... 31
 Pan-Hudson criterion .. 32
CHAPTER 3 Stress analysis around a borehole

3.1. Introduction ... 37

3.2. Stress Analysis around a Vertical Borehole ... 40

3.2.1. Numerical model of a vertical borehole ..46

3.3. Stress Analysis around a Deviated Borehole .. 53

3.3.1. Stresses at the borehole wall due to far-field in-plane shear, σ_{xy} and
normal stresses, σ_{xx}, σ_{yy} and σ_{zz} .. 55

3.3.2. Stresses at the borehole wall due to longitudinal shear stresses
$(\sigma_{xz} = \sigma_{zx})$ and $(\sigma_{yz} = \sigma_{zy})$.. 58

3.4. Numerical Counterpart of the Generalised Kirsch Equations .. 60

3.5. A Modification to the Generalised Kirsch Equations .. 70

CHAPTER 4 Rock strength analysis in three-dimensional stress

4.1. Introduction .. 76

4.2. Definition of General, Principal and Deviatoric Stress Tensors 77

4.3. Failure Function in Principal Stress Space .. 80

4.4. Failure functions in deviatoric stress space ... 82

4.5. Failure Criteria on Deviatoric and Meridian Planes ... 87

4.6. Failure Criteria Especially Developed For Rock Material .. 91
CHAPTER 4

4.1. Introduction ... 50
4.2. Mathematical Formulation .. 54
4.3. Numerical results .. 57
4.4. Conclusions ... 63

CHAPTER 5

A case study of prediction of borehole instability

5.1. Introduction ... 136
5.2. Prediction of borehole instability ... 137
5.3. Designing the drilling fluid ... 143

CHAPTER 6

Conclusion

6.1. Summary and conclusions .. 147
6.2. Recommendations for future studies ... 148

References .. Error! Bookmark not defined.

Appendix A The Finite Element Method.. 155

iii
Figures

Figure 1.1 Failure (σ_f) and yield (σ_y) stresses for brittle materials.. 4
Figure 1.2 Demonstration of different phases in the stepwise research method
adopted in this study ... 6

Figure 2.1 Coordinate system for a deviated borehole [after Fjær et al. (2008)] 12
Figure 2.2 Mean octahedral shear stress, τ_{oct} vs. mean octahedral normal σ_{oct} at
yield for Dunham dolomite (after Mogi (2007)) .. 24
Figure 2.3 The cross section of (a) the Coulomb, (b) the circumscribed and (c) the inscribed Drucker-Prager on the deviatoric plane ... 27
Figure 2.4 Relation between intermediate and major principal stresses at failure
for eight different failure criteria for a rock mass subjected to a minor principal stress of 15 MPa, with a uniaxial compressive strength of 75 MPa, $m_i = 19$ and GSI = 90 (Priest, 2010) .. 33

Figure 3.1 Stresses on an element at a radial distance r from the centre of a circular hole with radius a, in polar coordinates... 38
Figure 3.2 The model of the pre-stressed rock block into which the borehole
will be drilled... 41
Figure 3.3 Demonstrating the conditions for applying plane strain assumption
for calculating longitudinal stress components around a borehole... 43
Figure 3.4 Radial distance from the borehole centre and angular position of a
given element.. 48
Figure 3.5 Comparison between numerical and analytical model for variation
of induced radial (σ_{rr}) and tangential ($\sigma_{\theta\theta}$) stresses around the vertical borehole at $r = 0.085$ m ... 50
Figure 3.6 Comparison between numerical and analytical model for variation of induced vertical (σ_{zz}) and in-plane shear ($\sigma_{r\theta}$) stresses around the vertical borehole at $r = 0.085$ m .. 51
Figure 3.7 Comparison between numerical and analytical model for variation of induced stresses along the radial direction r, at $\theta = 0$, for the vertical borehole .. 52
Figure 3.8 Comparison between numerical and analytical model for variation of induced in-plane shear stress along the radial direction r, at $\theta = 0$, for a vertical borehole .. 53
Figure 3.9 General stress state in the vicinity of an inclined borehole 54
Figure 3.10 Corresponding stresses for (a) and (b) plain strain problem and (c) for anti-plane strain problem .. 55
Figure 3.11 Demonstrating the method adopted for calculating induced stresses around a borehole due to pure far-field shear stresses, acting on a plane perpendicular to the borehole axis ... 56
Figure 3.12 Deformations associated with anti-plane strain boundary conditions 60
Figure 3.13 Comparison between numerical and analytical model for variation of induced radial (σ_{rr}) and tangential ($\sigma_{\theta\theta}$) stresses around the inclined borehole at $r = 0.085$ m .. 64
Figure 3.14 Comparison between numerical and analytical model for variation of induced vertical (σ_{zz}) and in-plane shear ($\sigma_{r\theta}$) stresses around the borehole at $r = 0.085$ m .. 65
Figure 3.15 Comparison between numerical and analytical model for variation of induced longitudinal shear stresses $\sigma_{r\theta}$ and $\sigma_{\theta\theta}$, around the inclined borehole at $r = 0.085$ m .. 66
Figure 3.16 Comparison between numerical and analytical model for variation of induced stresses along the radial direction r, at $\theta = 55.166^\circ$, for the inclined borehole .. 69
Figure 3.17 A section of a borehole at the depth of 3000 m ... 71
Figure 3.18 Changes in longitudinal shear stresses around the borehole under the proposed boundary conditions .. 73
Figure 3.19 Changes in longitudinal shear stresses under the proposed boundary conditions, along the radial direction from the borehole wall .. 74

Figure 4.1 Compressive general stresses on a block of rock .. 77
Figure 4.2 Principal stresses on a block of rock ... 78
Figure 4.3 Failure surface in the principal stress space ... 81
Figure 4.4 Hydrostatic axis and the stress vector σ in the principal stress space 82
Figure 4.5 Deviatoric and π-plane .. 83
Figure 4.6 Cartesian coordinate system on the deviatoric plane 84
Figure 4.7 Polar components of point P on the deviatoric plane 86
Figure 4.8 Symmetry properties of a failure criterion on the deviatoric plane 88
Figure 4.9 Meridional plane ($\xi - \rho$ coordinates) [after Ottosen and Ristimaa(2005)] 90
Figure 4.10 Intersection of tensile and compressive meridians with the deviatoric plane .. 91
Figure 4.11 The cross section of the Hoek-Brown failure surface on the deviatoric plane.. 93
Figure 4.12 The Hoek-Brown criterion in the principal stress space 95
Figure 4.13 The cross section of the Hoek-Brown criterion on the deviatoric plane 97
Figure 4.14 The Pan-Hudson criterion in the principal stress space ... 98
Figure 4.15 The cross section of the Zhang-Zhu criterion on the deviatoric plane 101
Figure 4.16 The Zhan-Zhu criterion in the Principal stress space 102
Figure 4.17 The cross section of the generalised Priest criterion on the deviatoric plane .. 105
Figure 4.18 The generalised priest criterion in the principal stress space 106
Figure 4.19 The cross section of the simplified Priest criterion on the deviatoric plane for (a) $\sigma_3 = 10$ MPa, (b) $\sigma_3 = 100$ MPa ... 108
Figure 4.20 The Simplified Priest criterion in the principal stress space, for (a) $\sigma_3 = 10$ MPa $w = 0.211$ and (b) $\sigma_3 = 100$ MPa, $w = 2.99$ 109
Figure 4.21 Fitting quadratic functions to true-triaxial experimental data in $\sigma_1 - \sigma_2$ domain (continues) .. 113
Figure 4.22 Non-linear correlation coefficient between the failure stress (σ_1) and the intermediate principal stress (σ_2) versus the least principal stress (σ_3) 115

Figure 4.23 Actual values of the weighting factor w versus values of the term $\mu \eta - \sigma_3 \sigma_2$... 119

Figure 4.24 Difference between predicted and observed failure stresses 121

Figure 4.25 True-triaxial apparatus of the University of Adelaide [after Schwartzkopff et al. (2010)] .. 125

Figure 4.26 Block of Kanmantoo Blue stone and preparation of cubic specimens [after Dong et al., (2011)] ... 126

Figure 4.27 (a) The V-shaped failure mode and (b) the M-shaped failure mode [after Dong et al. (2011)] ... 128

Figure 4.28 Best fit line to conventional triaxial data for determining the Hoek-Brown constant parameter m ... 130

Figure 4.29 σ_1-σ_2 plots, demonstrating that all 3D failure criteria underestimate the strength of the rock specimen .. 131

Figure 4.30 Intrusion of the HDPE plastic layer into the rock specimen [after Dong et al. (2011)] ... 132

Figure 4.31 Best fit line to triaxial test data on cubic specimens for determining the empirical parameter m ... 133

Figure 4.32 σ_1-σ_2 plots, demonstrating the comparison of the selected three-dimensional failure criterion ... 134

Figure 5.1 Principal in situ stresses acting on a rock element at the borehole wall, with drilling fluid ... 145

Figure A.1 The numerical error of the observed field variable (in this case $u(x)$) can be minimized by increasing the discretisation resolution stepwise from (a) to (c) .. 158
Figure C.1 Linear correlation coefficient calculated by the means of Pearson linear correlation coefficient for the nine sets of true-triaxial data................................. 173

Figure D.1 σ_1 vs. σ_2 Plots for KTB Amphibolite for different constant values of σ_3 174
Figure D.2 σ_1 vs. σ_2 Plots for Westerly Granite for different constant values of σ_3 176
Figure D.3 σ_1 vs. σ_2 Plots for Dunham Dolomite for different constant values of σ_3 180
Figure D.4 σ_1 vs. σ_2 Plots for Solnhofen Limestone for different constant values of σ_3 184
Figure D.5 σ_1 vs. σ_2 Plots for Yamaguchi Marble for different constant values of σ_3 186
Figure D.6 σ_1 vs. σ_2 Plots for Mizuho Trachyte for different constant values of σ_3 187
Figure D.7 σ_1 vs. σ_2 Plots for Manazuru Andesite for different constant values of σ_3 189
Figure D.8 σ_1 vs. σ_2 Plots for Inada Granite for different constant values of σ_3 191
Figure D.9 σ_1 vs. σ_2 Plots for Orikabe Monzonite for different constant values of σ_3 194

Figure E.1 Normal distribution of failure prediction accuracy of selected failure criteria for Orikabe Monzonite.. 196
Figure E.2 Normal distribution of failure prediction accuracy of selected failure criteria for Inada Granite... 196
Figure E.3 Normal distribution of failure prediction accuracy of selected failure criteria for Manazuru Andesite... 197
Figure E.4 Normal distribution of failure prediction accuracy of selected failure criteria for Mizuho Trachyte ... 197
Figure E.5 Normal distribution of failure prediction accuracy of selected failure criteria for Yamaguchi Marble... 198
Figure E.6 Normal distribution of failure prediction accuracy of selected failure criteria for Solnhofen Limestone.. 198
Figure E.7 Normal distribution of failure prediction accuracy of selected failure criteria for Dunham Dolomite.. 199
Figure E.8 Normal distribution of failure prediction accuracy of selected failure criteria for Westerly Granite.. 199
Figure E.9 Normal distribution of failure prediction accuracy of selected failure criteria for KTB Amphibolite.. 200
Tables

Table 3.1 Determining the angular position of the two points of stress concentration...68

Table 4.1 Hoek-Brown and Coulomb parameters of the rock types studied.................................110
Table 4.2 Comparison of 3D Hoek-Brown based criteria ...122
Table 4.3 True-triaxial experimental data of Kanmantoo Bluestone, The University of Adelaide (2011) ...127
Table 4.4 Uniaxial compressive strength of cylindrical and cubic specimens of Kanmantoo bluestone. ...128
Table 4.5 Conventional triaxial tests for determining the Hoek-Brown constant parameter \(m \) ...129
Table 4.6 Predicted values of failure stress by the means of each selected failure criteria for \(m = 16.131 \) and \(\sigma_c = 147 \) MPa ...131
Table 4.7 Triaxial test data on cubic rock specimens for determination the empirical parameter \(m \) ..133
Table 4.8 Predicted values of failure stress by the means of each selected failure criteria for \(m = 36.6 \) and \(\sigma_c = 190.3 \) MPa ...134
Table 4.9 Error analysis and quantitative comparison of selected 3D failure criteria ...135

Table 5.1 Calculation of the failure stress for Granite and Marble ...143

Table B.1 Error analysis of the finite element model in comparison with the analytical solution, for calculating the induced stresses around the vertical borehole (for a quarter-model)..159
Table B.2 Error analysis of the finite element model in comparison with the analytical solution (the generalised Kirsch equations), for calculating the induced stresses around a deviated borehole (for a quarter-model) ..160
Table B.3 Error analysis of the finite element analysis based on the proposed boundary conditions in comparison with the analytical solution (the generalised Kirsch’s equations), for calculating the induced stresses around a deviated borehole (for a quarter-model) .. 161

Table B.4 Error analysis of the finite element model in comparison with the analytical solution (the generalised Kirsch’s equations), for calculating the induced stresses along the radial distance r from the wall of a deviated borehole at $\theta = 55.166^\circ$.. 162

Table B.5 Error analysis of the finite element analysis based on the proposed boundary conditions in comparison with the analytical solution (the generalised Kirsch’s equations), for calculating the induced stresses along the radial distance r from the wall of a deviated borehole at $\theta = 55.166^\circ$.. 163

Table C.1 True-triaxial data of Solnhofen Limestone, Mogi (2007) .. 164
Table C.2 True-triaxial data on Dunham Dolomite, Mogi (2007) ... 165
Table C.3 True-triaxial data on Yamaguchi Marble, Mogi (2007) ... 166
Table C.4 True-triaxial test data on Mizuho Trachyte (Mogi, 2007) 167
Table C.5 True-triaxial test data on Orikabe Monzonite (Mogi, 2007) 168
Table C.6 True-triaxial test data on Inada Granite (Mogi, 2007) .. 169
Table C.7 True-triaxial test data on Manazuru Andesite (Mogi, 2007) 170
Table C.8 True-triaxial test data on KTB Amphibolite (Chang and Haimson, 2000) 171
Table C.9 True-triaxial test data on Westerly Granite (Haimson and Chang, 2000) 172
Abstract

Underground rock formations are always under some stress, mostly due to overburden pressure and tectonic stresses. When a borehole is drilled, the rock material surrounding the hole must carry the load which was initially supported by the excavated rock. Therefore, due to the introduction of a borehole, the pre-existing stress state in the sub-surface rock mass is redistributed and a new stress state is induced in the vicinity of the borehole. This new stress state around the borehole can be determined directly by means of in situ measurements, or can be estimated by applying numerical methods or closed form solutions.

In this thesis borehole stability analysis is undertaken by means of the linear elasticity theory. The introduction of a borehole into a block of rock which behaves linearly elastic, leads to stress concentration near the hole. If the rock material around the borehole is strong enough to sustain the induced stress concentration, the borehole will remain stable; otherwise rock failure will occur at the borehole wall. Therefore, a key aspect in stability evaluation of a borehole is the assessment of rock response to mechanical loading.

For borehole stability evaluation in good quality brittle rock formations, which can be considered as isotropic, homogeneous and linearly elastic, stresses around the borehole are usually calculated using a closed form formulation known as the generalised Kirsch equations. These equations are the three-dimensional version of the original form of the well known Kirsch equations for calculating stresses around a circular hole in an isotropic, linearly elastic and homogeneous material. These equations have been widely used in the petroleum and mining industries over the past few decades. However, the boundary conditions on which these equations were based have been poorly explained in the literature and therefore merit further investigation.

In this thesis, in order to eliminate the ambiguity associated with the boundary conditions assumed for deriving the analytical model for stress analysis around the borehole, finite element analysis (FEA) was carried out to create a numerical counterpart of the current analytical solution. It appeared that the assumed boundary conditions for deriving the analytical model, i.e. the generalised Kirsch equations, are incompatible in the physical sense.
A new set of boundary conditions in better compliance with the physics of the problem was introduced in order to modify the analytical model, by reducing the simplifying assumptions made to facilitate the derivation of the closed form solution.

Another key parameter in borehole stability evaluation is the strength of the rock material at the borehole wall. The rock strength is usually evaluated using a failure criterion which is a mathematical formulation that specifies a set of stress components at which failure occurs. A number of different failure criteria have been introduced in the literature to describe brittle rock failure among which the Coulomb and the Hoek-Brown criteria have been widely used in industry; however, they both have limitations. For instance, both the Coulomb and the Hoek-Brown criteria identify the rock strength only in terms of maximum and minimum principal stresses and do not account for the influence of the intermediate principal stress on failure. On the other hand, at the borehole wall where a general stress state \((\sigma_1 > \sigma_2 > \sigma_3)\) is encountered, a failure criterion which neglects the influence of the intermediate principal stress on failure seems to be inadequate for rock strength estimation in the borehole proximity.

Although a number of three-dimensional failure criteria have been proposed over the past decades, none of them has been universally accepted. A major limitation in studying the three-dimensional rock failure criteria is the lack of adequate true-triaxial experimental data that can be used for validation of theoretical rock failure models. A number of true-triaxial tests were carried out at the University of Adelaide and the results, along with nine sets of published true-triaxial experimental data, were utilised for comparison and validation of five selected failure criteria. These failure criteria have been developed especially for rock material and include; the Hoek-Brown, the Pan-Hudson, the Zhang-Zhu, the Generalised Priest and the Simplified Priest. A new three-dimensional failure criterion was also developed by modifying the simplified Priest criterion and was identified as a three-dimensional model which best describes the rock failure in three-dimensional stress state, compared to other selected criteria.

In this thesis, a case example is presented where the borehole instability is predicted by comparing the induced major principal stress at the borehole wall to the predicted rock failure stress. The major in situ principal stress around the borehole is calculated by means of the FEA based on the assumption of a new set of boundary conditions. The rock failure stress
under the three-dimensional stress state at the borehole wall is calculated by means of the newly proposed three-dimensional failure criterion.
Statement of Originality

This work contains no material which has been accepted for the award of any other degree or diploma in any University or other tertiary institution and, to the best of my knowledge and belief no material previously published or written by any other person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

SIGNED:.. DATE:.......................................
Acknowledgements

The work described in this thesis was carried out in the School of Civil, Environmental and Mining Engineering at the University of Adelaide during the period 2010 to 2012. The candidate was supervised for the first one and a half years by Professor Stephen D. Priest and Dr. Nouné S. Melkoumian and, after Professor Priest retired, by Dr. Nouné S. Melkoumian and Associate Professor Mark B. Jaksa. The author is indebted to Professor Stephen D. Priest for providing the opportunity for this research to be carried out and for seeing it to fruition. Much appreciation is also shown to Dr. Nouné S. Melkoumian and Assoc. Prof. Mark B. Jaksa for being generous with their advice, assistance and guidance. The author is grateful for the discussions with Assoc. Prof. Hamid Sheikh and for his technical advice on finite element analysis presented in Chapter 3 of this thesis.

The author wishes to acknowledge the support of the Deep Exploration Technologies CRC for partially funding the true-triaxial test and the ABAQUS licenses used in this research. No amount of thanks would be enough to give to the technical staff in the School of Civil, Environmental and Mining Engineering at the University of Adelaide, for without their assistance and encouragement conducting the true-triaxial tests would have been impossible. In particular the author would like to give special mention to:

- Mr. David Hale, the manager of technical operations, for providing invaluable comments and advice for true-triaxial experiments.
- Mr. Adam Ryntje for preparation of rock specimens for true-triaxial tests and for his assistance in operating the true-triaxial apparatus.
- Mr. Ian Cates for supervising the laboratory instrumentation and running the data acquisition system and for his assistance in collecting the true-triaxial test data.
- Dr. Stephen Carr for his help in running ABAQUS models associated with the finite element analysis presented in Chapter 3.

I wish to express my appreciation to my mother and my wife for without their financial and mental supports conducting this research would be impossible.