Building general resilience in preparation for unexpected risks

Applying Complex Systems Thinking to Disaster Risk Reduction

THESIS SUBMITTED BY

ANTONELLA CAVALLO

FOR THE AWARD OF DOCTOR OF PHILOSOPHY

JULY 2015

THESIS SUPERVISORS:
Prof. Vernon IRELAND & Dr. Barry ELSEY

Entrepreneurship, Commercialisation and
Innovation Centre (ECIC)
Complex Systems
The University of Adelaide
Adelaide, Australia

DECLARATION OF HONOUR

I certify that this work contains no material which has been accepted for

the award of any other degree or diploma in my name in any university or

other tertiary institution and, to the best of my knowledge and belief,

contains no material previously published or written by another person,

except where due reference has been made in the text. In addition, I certify

that no part of this work will, in the future, be used in a submission in my

name for any other degree or diploma in any university or other tertiary

institution without the prior approval of the University of Adelaide and

where applicable, any partner institution responsible for the joint award

of this degree.

I give consent to this copy of my thesis when deposited in the University

Library, being made available for loan and photocopying, subject to the

provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained

within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made

available on the web, via the University's digital research repository, the

Library Search and also through web search engines, unless permission

has been granted by the University to restrict access for a period of time.

Signed:

"Because resilience may not be obvious without a whole-system view, people often sacrifice resilience for stability, or for productivity, or for some other more immediately recognizable system property."

Donella Meadows

MIT scholar and book author, 1941-2001 p. 77, Thinking in Systems: A primer (2008)

Abstract

This thesis investigates the application of Complex Systems Thinking (CST) to Disaster Risk Reduction (DRR) strategies in order to build resilience in preparation for unexpected risks.

The increasing uncertainty and hyper-connectivity in world networks means that the exposure to unexpected risks is rising. National and international DRR strategies have been shown to be insufficient to move countries, states, communities and individuals to prepare in a more responsible way.

Complex Systems Thinking offers a holistic understanding of a disaster in time and space, while appreciating the uncertainty involved in risk management. However, its operationalisation is encountering numerous difficulties because of the reductionist model on which DRR strategies are formulated. This thesis argues that these efforts need to be complemented with systemic methods that may overcome the hierarchical structures in which current DRR strategies are conceived and implemented. This requires systems to develop the ability to be ambidextrous, that is, to keep current DRR structures in place while extending their range to include unexpected events for which no prescribed actions exist. The question arises, how should this be done?

The portfolio of papers and commentary that comprises the substance of the thesis addresses these thematic questions in an integrated way. Taken together, they advance the core argument of the thesis, which is that CST offers an alternative approach to moving from a reductionist to an ambidextrous mindset; this will enable DRR practitioners to 'think outside the box' and to take better account of the complex systemic conditions in which disasters develop.

Paper 1 shows how disasters are characterised by interacting systems that need to develop the capability to adapt and to be flexible beyond predefined frameworks and regulations in order to be better prepared to face uncertainty. Paper 2 highlights that disaster risk reduction operates at the interface between knowable and unknown risks and, for this reason, reductionist and systemic approaches to disaster risk reduction need to be integrated. In Paper 3, these concepts are juxtaposed with the concept of resilience in the Australian context and three scales of enquiry are presented: (1) members of the public from two South Australian councils, (2) the Australian Red Cross and (3) the South Australian Government organisations that are responsible for DRR.

The concept of resilience is further explored in a conceptual framework in Paper 4, where the overall methodology adopted in this thesis is illustrated. Current DRR strategies are overbalanced towards mitigation of identified risks, but neglect to take into account that disasters are largely unexpected events.

'What is preventing communities and institutions from developing a culture of safety and resilience?' Paper 5 addresses this question on an international level and suggests that interdependencies between strategic priorities need to be taken into consideration, if international targets are to be met.

Paper 6 provides an overview of the South Australian DRR context and an integrated cross-scale perspective of potential and systemic constraints that act as barriers to change. Finally, Paper 7 summarises the state of the art of DRR at the South Australian level and suggests possible ways forward.

The final chapter includes key insights and recommendations, while introducing future research steps.

Keywords: Disaster Risk Reduction (DRR), prevention, mitigation, System of Systems (SoS), Complex Systems Thinking (CST)

Preamble

Foreword

This thesis is about resilience and disaster risk reduction. It concerns itself with strategy and common good, risk management and long-term thinking. It offers disaster risk reduction practitioners and academics a new way of seeing the phases of preparation before a disaster is perceived. In particular, it challenges the way uncertainty is tackled in western societies and proposes a new way of thinking rooted in complexity and systems theories.

But how did it all start?

Figure 1.1. Particular of coat of arms of Lizzano. Authorised by Benito Mussolini in 1929.

Resilience has been a background theme for a long time. I originally come from Lizzano, a small town in Southern Italy. Lizzano's coat of arms is an oak tree and among its branches, it reads 'Fracta et ligata refloret', which, translated from the Latin, means 'broken and tied it flourishes'. Legend says that during a storm, the most majestic oak in town was violently struck by the fury of the wind, which caused the two main branches to drop. During the storm the castle, being the safest refuge, had opened its doors to all the people living around the town.

After the storm, the community did not give up on the broken tree and decided to tie the branches to the trunk. Their efforts were rewarded when finally the oak, almost magically, flourished more beautifully than before. The tree became a symbol of resilience. Those in the community had taken care of one another and of their valued tree. The story offers a profound metaphor for the care of human beings for their environment (back then people knew that they were highly dependent on the resources of the land, being primarily farmers).

The message conveyed in this story is powerful: "broken and connected, it now flourishes". I have often contemplated these words and sensed their profound and open meaning, which pervades this thesis.

About the author

My background has influenced the development of this thesis, representing at times strength and at times risk of bias. For this reason, I declare it to the reader here as a matter of transparency.

I have worked in a number of corporate businesses across Italy, Germany, France and Australia, mainly in project and risk management related positions. In 2010, I authored the book 'Risk Management in Complex Projects. An exploratory study to managing unknown unknowns in uncertain environments' published by LAP. I hold a Bachelor degree in Logistics and Production Engineering from the Politecnico di Torino / Free University of Bolzano (Italy) and a Master in Business Engineering from the Karlsruhe Institute of Technology (KIT, Germany).

I am co-founder and board member of the *Sferracavalli* | *International Festival of Sustainable Imagination* (Italy), Co-Chair of the South Australian Covenanting Committee (reconciliation between Australian First and Second Peoples), board member of the National Voluntary Service Strategic Reference Group of the Australian Red Cross and a volunteer in Emergency Services for the Australian Red Cross.

In the latter role as an Emergency Services volunteer for the Australian Red Cross in South Australia, I have been activated multiple times during heat waves and bush fires between 2012 and 2015, both at the headquarters of the Australian Red Cross, in relief centres and out in the field, to provide support to disaster survivors.

Acknowledgments

When starting to read a book or a thesis, I normally read the acknowledgements because they give me an indication of what it takes to put together the document that I am about to read. It is in that spirit and with gratitude that I write the following.

I acknowledge the financial support of the University of Adelaide through the Adelaide Scholarship International (ASI). In addition, the Australian Commonwealth Government and the South Australian Fire and Emergency Service Commission (SAFECOM) provided financial support (Grant no. NDRP-1213-33) and generous advice during the PhD journey.

Research participants supported this study by volunteering their time and contributing their insights and expertise. I wish to thank: the community members and staff of Community Safety at the City of Onkaparinga; the community members and staff of Emergency Management at the Adelaide City Council; the Australian Red Cross – Emergency Services; the SA Police; the SA Metropolitan Fire Services; the SA Country Fire Services; Safework SA; the SA Department of Environment and Water; the State Emergency Services; Primary Industries and Regional SA; the SA Department of Health and the Department for Planning, Transport and Infrastructure. Thank you.

I am thankful to both my supervisors for believing in me, in my research and stakeholder engagement skills.

I am thankful to my principal supervisor, Professor Vernon Ireland, for initiating me into Complex Systems Thinking and giving me the freedom to explore its application to Disaster Risk Reduction.

My deep gratitude goes to my co-supervisor, Dr. Barry Elsey, for supporting and encouraging me in developing my own critical thinking, for believing in me while questioning my assumptions, thus helping me to sharpen them. I shall always treasure your teachings about life and academia.

I also thank Professor Kristine Gebbie for coffee-time progress checks and wise advice on focus group facilitation.

Thanks to Dr. Robyn Groves, who helped me to express my thoughts in English and assisted with proofreading this thesis. During the last 3 years, I spent long hours sitting at a desk without having any back problems. The merit is Ms. Michelle Langman's – thanks for your wise advice and fun pilates classes.

I thank my family in Italy and Australia for their support and enthusiasm for my research topics. Your positivity and warm attitude helped me endure in the journey and feel at home in this far away country.

Thanks to all the friends that supported me by asking clever questions, proofreading my writing, listening to my complex thoughts, and continuing to be my friend.

Finally, thanks to Rowan who supported me in every possible way, including by solving mysterious formatting issues, cooking, cleaning, proof-reading, listening, and cheering me up. You helped me see this PhD as part of a much bigger journey, that is, life. Thank you.

Table of Contents

Abstract		i
Preamble	2	v
Forewor	d	v
About th	e author	vii
Acknow	ledgments	ix
Table of	Contents	xii
List of Fi	gures	xvii
List of Ta	ables	xix
Abbrevia	ations	xx
1 Introdu	uction	23
1.1	Motivation	24
1.2	Novel uncertainties	25
1.3	What does it mean for Disaster Risk Reduction?	26
1.4	Complex Systems Thinking	28
1.5	Research background	33
1.6	Applications of main findings to DRR	36
	1.6.1 Locally	36
	1.6.2 In Australia	37
	1.6.3 Internationally	38
1.7	Notes on methodology	38
	1.7.1 Philosophical foundations	39
	1.7.2 Social constructionism and constructivism	41
	1.7.3 Merit in interpretivism	42

	1.7.4 Limitations of study	45
1.8	Format of thesis and contributions to knowledge	47
1.9	Summary	51
2 Beyond	plans: disasters as SoS	53
Preface to	paper	53
Statement	t of authorship	55
2.1 Introd	uction	56
2.2 Comp	lexity in recent disasters	57
2.3 A SoS	during the Fukushima Daiichi disaster	58
2.4 Why s	ystems thinking in the crisis	59
2.5 Conclu	usion	60
2.6 Refere	nces	61
3 At the in	nterface between complex and complicated	63
Preface to	paper	64
Statement	t of authorship	65
3.1 Abstra	act	66
3.2 Introd	uction	66
3.3 Backg	round: Decision Support in Crisis Management	66
3.4 Limita	tions of Current Approaches to Risks	67
3.5 Comp	lex or Complicated: How much can we know?	68
3.6 Design	ning Decision Support Systems	69
	The precautionary principle: a way out?	69
	A role for ICT systems	70
3.7 The ne	eed for an Integrated Approach	70
3.8 Conclu	usion	70
3.9 Ackno	wledgments	71
3.10 Refer	rences	71
4 Integrat	ing disaster preparedness and resilience	73

Preface to paper	73
Statement of authorship	75
4.1 Abstract	76
4.2 Introduction	76
4.3 Disaster resilience in a complex System of Systems (SoS)	77
4.4 Resilience is complex and dynamic	77
4.5 Disaster preparedness and disaster resilience	78
4.6 Correspondences with communities	79
4.7 Conclusion	80
4.8 Acknowledgements	81
4.9 References	81
5 Preparing for complex interdependent risks	83
Preface to paper	84
Statement of authorship	85
5.1 Abstract	86
5.2 Introduction	86
Risk assessment today	87
5.2. Why system thinking in disaster preparedness	89
5.3 Complex and systemic risks	90
5.4 Resilience Thinking	90
Characteristics	91
Definitions	91
In practice	92
5.5 Specified and general resilience	92
5.6 Building general resilience starting from the community	94
5.7 Conclusion	96
5.8 Acknowledgements	97
5 9 References	97

6 CST in international strategies	99
Preface to paper	99
Statement of authorship	101
Abstract	102
6.1 Introduction	102
Specified resilience	103
General resilience	103
6.2 The need for ambidexterity in risk management	104
6.3 Conclusions	105
6.4 References	105
7 Let's get ready for the unexpected	107
Preface to paper	108
Statement of authorship	109
Abstract	110
7.1 The context	111
7.2 Innovation in DRR	114
7.3 Three scales, one SoS	115
7.4. Cascading Constraints	117
7.5. Towards integrated systemic approaches	119
7.6 Conclusion	119
7.7 Acknowledgments	120
7.8 References	120
8 Building general resilience in South Australia	123
Preface to paper	124
Statement of authorship	125
Abstract	126
8.1 Introduction	127
The South Australian context	127

	DRR as a System of Systems1	29
8.2 Bounci	ing Forward1	31
	Specified resilience: managing the preventable1	32
	General resilience: preparing for the unexpected1	33
	Exploring the capacity for CST1	36
8.3 How c	an communities become more general resilient?1	39
	Constraints of policy and politics1	40
	Changes in social capital1	41
	Making sense of lack of participation1	43
	Adapting to contemporary community routines1	45
8.4 Conclu	ısion1	46
8.5 Ackno	wledgement1	47
8.6 Refere	nces1	47
	nces	
		.51
9 Conclus	ion1	.51 51
9 Conclus	ion	.51 51 54
9 Conclus: 9.1 9.2	ion	.51 51 54 56
9 Conclus 9.1 9.2 9.3	ion	.51 51 54 56 59
9 Conclus: 9.1 9.2 9.3 9.4	ion	515154565961
9 Conclus 9.1 9.2 9.3 9.4 9.5	ion	51 54 56 59 61 63
9 Conclus 9.1 9.2 9.3 9.4 9.5 9.6 9.7	ion	51 54 56 59 61 63 64

List of Figures

Figure 1.1. Particular of coat of arms of Lizzano. Authorised by Benito
Mussolini in 1929v
Figure 1.2. Stability levels and thresholds (Walker et al. 2004) 32
Figure 1.3. Three scales involved in focus group discussions (Cavallo
2015a)
Table 3. Philosophical foundations. 40
Table 6. Key concepts, central arguments and knowledge contributions
per chapter and publication. 49
Figure 2.1. Risk network of the Fukushima Daiichi disaster 58
Figure 2.2 Stylized risk network for a disaster
Figure 2.3. Example of risk domains and hierarchical systems in a SoS
configuration
Figure 3.1. Decomposing risk into its elements
Figure 4.1. Generic emergency management System of Systems
Figure 4.2. Example of risk break down structure for earthquakes 79
Figure 5.1. Risk management scheme in Australia based on ISO31000 88
Figure 5.2. A partial risk network of the Fukushima Daiichi disaster 88
Figure 5.3. Disaster resilience in a System of Systems
Figure 5.4. Difference between a complicated and a complex system 91
Figure 5.5. Adaptive cycle simplified. 92
Figure 5.6. Differences between deductive, inductive and abductive
reasoning93

Figure 5.7. Framework formulation and validation94
Figure 5.8. The three research steps undertaken in 2013
Figure 5.9. A part of the System of Systems (SoS) in South Australia96
Figure 7.1. The nine South Australian Hazard Leaders112
Figure 7.2. The three scales of the System of Systems (SoS) involved in this
study
Figure 7.3. Barriers to application of CST to DRR strategies118
Figure 8.1. Government agencies responsible for Disaster Prevention and
Mitigation in South Australia127
Figure 8.2. The scales of the SA System of Systems
Figure 8.3. Components of transformability
Figure 8.4. Bonding, bridging and linking social capital
Figure 8.5. Sense-making diagram arising from open, axial and selective
coding144

List of Tables

Table 1.1. Characteristics of a complex adaptive system (adapted from
Cavallo 2010)30
Table 1.2. Characteristics of Systems of Systems (Maier 1998; Boardman
and Sauser 2008)
Table 1.4. Difference between social constructionism and constructivism.41
Table 1.5. Theory formation explained following Neuman's (2004) model.43
Table 4.1. Two complementary ways of thinking about disaster
preparedness and disaster resilience80
Table 5.1. Characteristics of specified and general resilience93
Table 5.2. Hazard Leaders in South Australia96
Table 6.1. Differences between building resilience to known risks and
unexpected interdependent risks
Table 7.1. Developing ambidexterity in DRR
Table 7.2. Composition of focus groups in South Australia

Abbreviations

ARC Australian Red Cross

CEDIM Centre for Disaster Management and Risk Reduction Technology

CFS Country Fire Services

CST Complex Systems Thinking

DEWNR Department of Environment, Water and Natural Resources

DPTI Department of Transport, Planning and Infrastructure

DRR Disaster Risk Reduction

GAR Global Assessment Report

HFA Hyogo Framework for Action 2005-2015

HL Hazard Leader

KIT Karlsruhe Institute of Technology

MFS Metropolitan Fire Services

NERAG National Emergency Risk Assessment Guidelines

NSDR National Strategy for Disaster Resilience

OECD Organisation for Economic Co-Operation and Development

OSCE Organisation for Security and Co-operation in Europe

SAFECOM South Australian Fire and Emergency Service Commission

SA South Australia (n)

SAPOL South Australian Police

SEMP State Emergency Management Plan

SES State Emergency Services

SMAG State Mitigation Advisory Group

SoS System of Systems

SoSS System of Subsystems

UN United Nations

UNISDR United Nations Office for Disaster Risk Reduction

ZERMC Zone Emergency Risk Management Committee