Codeine, Heightened Pain Sensitivity and Medication Overuse Headache:
A Neuroimmune Hypothesis and Novel Treatment Strategy

By Jacinta Johnson B.Pharm (Hons) MPS

Discipline of Pharmacology
School of Medical Sciences
University of Adelaide

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at the University of Adelaide, South Australia

April 2015
TABLE OF CONTENTS

ABSTRACT ... I

DECLARATION .. III

ACKNOWLEDGEMENTS .. IV

LIST OF FIGURES ... VII

LIST OF TABLES .. VIII

LIST OF ABBREVIATIONS .. IX

LIST OF PUBLICATIONS DURING CANDIDATURE .. X

LIST OF PRESENTATIONS DURING CANDIDATURE .. XI

GENERAL INTRODUCTION TO THESIS ... 1

1. **LITERATURE REVIEW AND HYPOTHESIS GENERATION** ... 4

 1.1 **THE BURDEN OF HEADACHE** ... 4

 1.2 **MEDICATION OVERUSE HEADACHE** ... 6

 1.2.1 Diagnosis and classification of medication overuse headache .. 7

 1.2.2 Epidemiological aspects of medication overuse headache .. 11

 1.2.3 Medication overuse headache as a biobehavioural dependence disorder 15

 1.2.4 Causative medications and pathophysiology of medication overuse headache 22

 1.3. **MEDICATION OVERUSE HEADACHE AND OPIOID INDUCED HYPERALGESIA: A REVIEW OF MECHANISMS, A NEUROIMMUNE HYPOTHESIS AND A NOVEL APPROACH TO TREATMENT** ... 27

 1.3.1 Statement of authorship .. 27

 1.3.2. **PUBLICATION: Medication overuse headache and opioid induced hyperalgesia: A review of mechanisms, a neuroimmune hypothesis and a novel approach to treatment.** ... 29

2. **IBUDILAST IN THE TREATMENT OF MEDICATION OVERUSE HEADACHE** 43

 2.1 **BACKGROUND AND RATIONALE FOR CLINICAL TRIAL** .. 43

 2.1.1 Current management of medication overuse headache .. 43
2.1.2 Evidence for targeting neuroimmune pathways in the treatment of pain and addiction 48

2.2 CLINICAL TRIAL OF IBUDILAST IN THE TREATMENT OF MEDICATION OVERUSE HEADACHE .. 54

2.2.1 Statement of authorship .. 54

2.2.2 MANUSCRIPT: Glial attenuation with ibudilast in the treatment of medication overuse headache: A double-blind, randomised, placebo-controlled pilot trial of efficacy and safety. 58

2.3 CRITICAL ANALYSIS OF CLINICAL TRIAL DESIGN AND EXECUTION .. 90

2.3.1 Defining and recruiting a suitable medication overuse headache study population 90

2.3.2 Suitability of outcome measures selected .. 95

2.3.3 Assessing medication adherence and its impact on ibudilast efficacy 97

2.3.4 Pharmacokinetic and drug dosing considerations .. 100

2.3.5 Potential involvement of additional mechanisms and pathophysiological pathways 102

2.3.6 Alternative interventions and other trial design options ... 103

2.4 CONCLUSIONS AND FUTURE DIRECTIONS FROM CLINICAL TRIAL .. 107

3. PRE-CLINICAL INVESTIGATIONS OF CODEINE-INDUCED HYPERALGESIA AND ALLODYnia,

FOCUSBING ON THE ROLE OF GLIAL ACTIVATION .. 108

3.1. INTRODUCTION AND RATIONAL FOR ANIMAL EXPERIMENTS ... 108

3.1.1. Assessing pain in mice ... 108

3.1.2. Pre-clinical evidence and models of opioid-induced hyperalgesia .. 113

3.1.3. Codeine pharmacology ... 116

3.2. CODEINE-INDUCED HYPERALGESIA AND ALLODYnia: INVESTIGATING THE ROLE OF GLIAL ACTIVATION 119

3.2.1. Statement of authorship ... 119

3.2.2. PUBLICATION: Codeine-induced hyperalgesia and allodynia: Investigating the role of glial activation. ... 122

4. SUMMARY AND DISCUSSION OF PHD FINDINGS .. 132

5. CONCLUSIONS ... 143

REFERENCE LIST .. 144

APPENDIX ... 162
APPENDIX 1. INTERNATIONAL CLASSIFICATION OF HEADACHE DISORDERS CRITERIA FOR HEADACHE INDUCED BY

CHRONIC USE OR EXPOSURE. ... 162

APPENDIX 2. DIAGNOSTIC AND STATISTICAL MANUAL OF MENTAL DISORDERS EDITION IV CRITERIA FOR SUBSTANCE

DEPENDENCE .. 163

APPENDIX 3. HOSPITAL ANXIETY AND DEPRESSION SCALE ... 164

APPENDIX 4. HEADACHE IMPACT TEST (HIT-6) QUESTIONNAIRE ... 165

APPENDIX 5. HEADACHE DIARY .. 167

APPENDIX 6. TYPES OF OPPOID ANALGESICS CONSUMED BY PARTICIPANTS IN THE CLINICAL TRIAL OF IBUDILAST IN THE

MANAGEMENT OF MEDICATION OVERUSE HEADACHE. ... 169

APPENDIX 7. ADVERSE EVENTS REPORTED DURING THE CLINICAL TRIAL OF IBUDILAST IN THE MANAGEMENT OF

MEDICATION OVERUSE HEADACHE .. 170
ABSTRACT

Codeine is the most widely consumed opioid analgesic worldwide. It relies upon partial metabolism to morphine to elicit analgesic effects. Paradoxically, the pain-reliever morphine has previously been linked to states of increased pain sensitivity; such as medication overuse headache and opioid-induced hyperalgesia and allodynia.

Despite the clinical impact of medication overuse headache the pathophysiology behind this disorder remains unclear and mechanism-based treatments are lacking. Although most acute headache treatments are alleged to cause medication overuse headache, within this thesis we conclude from the literature opioids are the drug class most strongly associated with worsening headache. In opioid-induced hyperalgesia and alldynia sensitivity to normally noxious, and non-noxious stimuli respectively, are enhanced due to opioid exposure.

Chronic morphine may exacerbate pain in the long-term by non-specifically activating toll-like receptor-4 (TLR4) on glial cells, resulting in a pro-inflammatory state that manifests clinically as increased pain. Here we hypothesise medication overuse headache is a specific form of opioid-induced hyperalgesia, which derives from a cumulative interaction between central sensitisation and glial priming, due to repeated activation of nociceptive pathways by recurrent headaches, and pain facilitation due to glial activation and subsequent neuroinflammation.

The first part of this thesis examines the efficacy of a glial-attenuating treatment, ibudilast, in the clinical management of medication overuse headache induced by opioid use in a double-blind, randomised, placebo-controlled parallel group study. Patients received ibudilast 40 mg twice daily or placebo for 8 weeks and recorded headache and analgesic intake using a headache diary for 4-weeks prior to randomisation and throughout the treatment phase.

No reduction in headache burden, opioid analgesic intake or headache related quality of life were observed in the ibudilast group compared to placebo, however, valuable safety data were obtained
demonstrating ibudilast 80 mg/day is well tolerated, facilitating the use of similarly high doses in future studies for alternative indications.

Prior to this PhD project the relationship between codeine and increased pain sensitivity had not been investigated. *In silico* docking simulations performed as part of this PhD suggest codeine binds to MD2, an accessory protein for TLR4, signifying it may be able to induce hyperalgesia independent of conversion to morphine. Evidence that codeine can induce hyperalgesia would sit in line with our glial hypothesis for opioid overuse headache. Thus, the second part of this PhD includes a series of preclinical experiments to 1) determine if chronic codeine alters pain sensitivity 2) ascertain if pre-existing glial activation primes for opioid-induced hyperalgesia, 3) investigate signalling pathways involved and 4) assess potential interventions to reverse exacerbated pain sensitivity. Hyperalgesia and allodynia were measured using hot plate and von Frey tests respectively, at baseline, day 3 and day 5 in mice receiving intraperitoneal codeine 21 mg/kg, morphine 20 mg/kg or saline, twice daily.

Our preclinical studies demonstrate that despite providing lesser acute analgesia, equimolar codeine and morphine induced similar hot plate hyperalgesia, suggesting codeine does not rely upon conversion to morphine to increase pain sensitivity, emphasising the non-opioid receptor-dependent nature of this phenomenon. IL-RA reversed codeine-induced hyperalgesia and allodynia, and knock-out of TLR4 protected against codeine-induced pain sensitivity changes. Glial attenuation with ibudilast reversed codeine-induced allodynia and thus could be investigated as potential treatment for conditions involving codeine-induced pain enhancement.
DECLARATION

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

... Date:

Jacinta Johnson
ACKNOWLEDGEMENTS

I am extremely grateful to have been given the opportunity, by means of an Australia Postgraduate Award, to spend the last four years learning and developing skills while pursuing a research topic I am truly passionate about. Of course, a project such as this cannot be conducted without the support of many other individuals. It is my pleasure to convey my sincere thanks to all of those who have contributed and extended their assistance during the course of this project.

First and foremost I would like to thank Prof. Paul Rolan for taking me on as a PhD candidate mid 2010 despite having a very full plate at the time. Thank you for the many insightful and entertaining conversations, and for sharing your expertise and advice while encouraging me to develop my independence as a researcher.

To Assoc. Prof. Mark Hutchinson, thank you for sharing your knowledge, ensuring the project always remained on track, and for compelling me to think about ways to maximise efficiency and productivity. The tips I have taken from you will be invaluable regardless of the direction my career takes from here.

Thank you to Dr Des Williams, for your constructive ideas, supportive mentorship, enthusiasm and keen eye for detail when reviewing my work. Thank you also for opening the door to the world of tertiary teaching, which I have found to be especially rewarding.

This project would not have been possible without the involvement of Dr Kirk Johnson and the team at Medicinova. Thank you for sharing your expertise and supporting the projects within the thesis financially, and through the provision of ibudilast.
Thank you to Crystal Eldridge for all of the hard work you put into continuing our clinical study, and to all of the amazing staff of the Pain and Anaesthesia Research Clinic for your support and guidance throughout my project.

Thank you to Dr Larisa Bobrovskaya, Manjula Senthilkumaran, Michaela Johnson, Natalie Morrall and the University of Adelaide Laboratory Animal Services for your kind assistance with my preclinical project, and thank you to Dr Dan Barrett and Dr Jonathan Tupe for your indispensable advice regarding statistics.

I am beyond grateful to all of my clinical trials participants for the time and effort they put into completing months of headache diaries and attending numerous study visits; with out clinical trial volunteers the development of new medical treatments would stand still.

To my fellow Pharmacology PhD-ers and other members of our Neuroimmunopharmacology lab group, thank you for listing to my rants about recruitment difficulties and other things not going to plan and for the constant reassurance and encouragement that kept me motivated. In particular, thank you to James Swift, Nicole Sumraki, Heilie Kwok, Lauren Nicotra and Vicky Staikopolous who all contributed their time and skills directly to various aspects of my project.

Thank you to Ryan Fazakerley for putting up with my strange working hours and stress-induced bad moods over the last few years; having you to come home to really did make it all easier.
Finally, thank you to my family, to whom this thesis is dedicated. Mum and dad, thank you for giving me all of the love and support I could possibly need, and for bringing me up to me to love learning. Thank you sisters for sitting through countless practice presentations, and for helping out when I needed it in whatever way you possibly could, I appreciate your support more than you could know.
LIST OF FIGURES

Figure 1. The metabolic activation of codeine to morphine by cytochrome (CYP) 2D6............. 117

Figure 2. Diagram of questions to be addressed by preclinical studies in relation to the hypothesised mechanism of medication overuse headache. ... 118
LIST OF TABLES

Table 1. International Headache Society criteria for medication overuse headache published in 2004 (International Classification of Headache Disorders (ICHD)-II) ... 10

Table 2. Adult prevalence rates and demographic data for medication overuse headache in population based studies .. 12

Table 3. Long-term relapse rates following successful medication withdrawal in heterogeneous medication overuse headache cohorts .. 48

Table 4. Methods used for assessing medication adherence ... 98

Table 5. Summary of the characteristics of commonly employed nociceptive tests in mice 109

Table 6. Summary of a range of models demonstrating opioid-induced hyperalgesia and allodynia .. 114
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>ABBREVIATION</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-HT</td>
<td>5-Hydroxytryptamine, serotonin</td>
</tr>
<tr>
<td>CCI</td>
<td>Chronic Constriction Injury</td>
</tr>
<tr>
<td>CD11b</td>
<td>Cluster of Differentiation Molecule 11B</td>
</tr>
<tr>
<td>CYP</td>
<td>Cytochrome P450</td>
</tr>
<tr>
<td>DAMGO</td>
<td>D-Ala²,N-Me-Phe⁴,γol⁵ encephalin</td>
</tr>
<tr>
<td>DSM-IV</td>
<td>Diagnostic and Statistical Manual of Mental Disorders, Edition IV</td>
</tr>
<tr>
<td>GFAP</td>
<td>Glial Fibrillary Acidic Protein</td>
</tr>
<tr>
<td>HAD</td>
<td>Hospital Anxiety and Depression</td>
</tr>
<tr>
<td>ICHD-I</td>
<td>International Classification of Headache Disorders, First Edition</td>
</tr>
<tr>
<td>ICHD-II</td>
<td>International Classification of Headache Disorders, Second Edition</td>
</tr>
<tr>
<td>ICV</td>
<td>Intracerebroventricular</td>
</tr>
<tr>
<td>ID</td>
<td>Intradermal</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IT</td>
<td>Intrathecal</td>
</tr>
<tr>
<td>IV</td>
<td>Intravenous</td>
</tr>
<tr>
<td>MDQ-H</td>
<td>Medication Dependence Questionnaire in Headache patients</td>
</tr>
<tr>
<td>MIDAS</td>
<td>Migraine Disability Assessment</td>
</tr>
<tr>
<td>MOH</td>
<td>Medication Overuse Headache</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>Non-Steroidal Anti-Inflammatory Drugs</td>
</tr>
<tr>
<td>PBMC</td>
<td>Peripheral Blood Mononuclear Cell</td>
</tr>
<tr>
<td>PREEMPT</td>
<td>Phase III REsearch Evaluating Migraine Prophylaxis Therapy</td>
</tr>
<tr>
<td>SC</td>
<td>Subcutaneous</td>
</tr>
<tr>
<td>SD</td>
<td>Sprague-Dawley</td>
</tr>
<tr>
<td>SF-36</td>
<td>Short Form 36 (36 items)</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-Like Receptor</td>
</tr>
<tr>
<td>TLR2</td>
<td>Toll-Like Receptor 2</td>
</tr>
<tr>
<td>TLR4</td>
<td>Toll-Like Receptor 4</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumor Necrosis Factor α</td>
</tr>
<tr>
<td>TTH</td>
<td>Tension Type Headache</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
</tbody>
</table>
LIST OF PUBLICATIONS DURING CANDIDATURE

Publications currently under review:

LIST OF PRESENTATIONS DURING CANDIDATURE

Johnson, J, Hutchinson, M, Williams, D & Rolan, P “More pain than gain with chronic codeine: The first evidence of codeine-induced hyperalgesia.” Selected for podium presentation at the Australian Society for Medical Research Annual Scientific Meeting, Adelaide, Jun 5’ 2013.

Johnson, J & Rolan, P “Medication overuse headache is a manifestation of opioid-induced hyperalgesia: A hypothesis and clinical trial design.” Australian Pain Society Annual Scientific Meeting, Melbourne, Apr 1-4, 2012.

Johnson, J “Medication overuse headache – the pharmacists role.” Invited presentation, Flinders Medical Centre Pharmacy Department Continuing Education Seminar Series, Flinders Medical Centre, Adelaide, Feb 23, 2011.