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Adaptive Observer Based Data-Driven Control for
Nonlinear Discrete-Time Processes

Dezhi Xu, Bin Jiang, Senior Member, IEEE, Peng Shi, Senior Member, IEEE

Abstract—In this paper, two adaptive observer-based strate-
gies are proposed for control of nonlinear processes using
input/output (I/O) data. In the two strategies, pseudo-partial
derivative (PPD) parameter of compact form dynamic lineariza-
tion and PPD vector of partial form dynamic linearization are all
estimated by the adaptive observer, which are used to dynam-
ically linearize a nonlinear system. The two proposed control
algorithms are only based on the PPD parameter estimation
derived online from the I/O data of the controlled system, and
Lyapunov-based stability analysis is used to prove all signals of
close-loop control system are bounded. A numerical example, a
steam-water heat exchanger example and an experimental test
show that the proposed control algorithm has a very reliable
tracking ability and a satisfactory robustness to disturbances
and process dynamics variations.

Note to Practitioners–In actual industrial process, the dynamic
behaviors is complex and nonlinear, and their mathematical
models are often difficult to obtain. How to design the controller
for unknown nonlinear systems using input/output (I/O) data
has become one main focus of control researches. Therefore,
in this paper, two adaptive observer-based data-driven control
algorithms are proposed for a class of unknown nonlinear
systems. Finally, the effectiveness of two control strategies are
illustrated via simulation study and experimental test.

Index Terms—Data-driven control, adaptive observer, pseudo-
partial derivative, Lyapunov-based stability analysis, nonlinear
discrete-time systems.

I. INTRODUCTION

MODEL-based control techniques are usually imple-
mented under the assumption of superior identification

of process dynamics and their operational circumstances.
However, these techniques cannot give satisfactory results
when suffering poorly modeling [1-3]. This is often the case
when dealing with complex, highly nonlinear natural dynamic
processes. Although, adaptive technique based fuzzy logic and
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neural network have been intensively researched For nonlinear
systems in the last two decades [4-8]. There are still no
assurance of high convergence speed, the over-heating phe-
nomenon, avoidance of local minima and so on; meanwhile,
there are not general methods to choose the number of the
fuzzy rule base and hidden units of common neural network.

The term data-driven was firstly proposed in computer
science and has only recently entered the vocabulary of the
control society. Because only the input/output (I/O) measure-
ment data is used in data-driven controller design proce-
dure. The modelling process, the unmodeled dynamics and
the theoretical assumptions all disappear. So it has caught
considerable attention in recent years [9-17]. There are a
few data-driven control (DDC) methods as following: model-
free adaptive control (MFAC)[9-10], virtual reference feedback
tuning (VRFT)[11-12], iterative learning control (ILC)[13],
lazy learning control (LLC) [14], unfalsified control (UC)
methodology [15], dynamic programming method [16-17] and
others [18-19].

As one of the data drive control methods, MFAC has
been proposed and applied in several areas. Hou [9-10,20]
has designed MFAC algorithm based on compact form dy-
namic linearization (CFDL), partial form dynamic lineariza-
tion (PFDL), and full form dynamic linearization (FFDL) for
single-input single-output (SISO), multi-input single-output
(MISO), and multi-input multi-output (MIMO) systems. How-
ever, the MFAC is still developing. How to prove the stability
and convergence of the tracking problems is one of the open
problems in MFAC [20]. We all know, Lyapunov functional
is widely used to analysis the stability of close-loop system
[21].

In this paper, we focus on how to design data-driven
controller based on Lyapunov method. Inspired by the work
of dynamic linearization technique of Hou [5-6], we present
two adaptive observer-based control strategies for nonlinear
processes systems in which the pseudo-partial derivative (PPD)
theory is used to dynamically linearize the nonlinear system. In
order to achieve the time-varying PPD parameter estimation,
based on discrete-time adaptive observer technique, a novel
adaptive strategy for computing the PPD term is designed by
using the Lyapunov method. A stability analysis is carried
out to prove that, in the case of perfect parametrization of
the CFDL and PFDL, the system is globally exponentially
stable. Then, inverse control algorithm is used to design the
data-driven controller via CFDL, and one-step-ahead weighted
predictive control is used to design the controller via PFDL.
The stability analysis for tracking errors of the proposed
algorithms is provided. Last, the paper discusses the different
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parameter tuning, and uses simulations for a numerical plant, a
steam-water heat exchanger process and experiments to show
that the proposed control algorithm has a good tracking ability
and a satisfactory robustness to disturbances and process
dynamics variations.

The rest of this paper is organized as follows. In Section II, a
brief descriptions of the CFDL and PFDL is given. In Section
III, main results of adaptive observer based data-driven control
via CFDL are proposed. Next main results of adaptive observer
based data-driven control via PFDL are developed in Section
IV. Simulation results are presented to show the effectiveness
of the proposed technique in in Section V. Finally, some
conclusions are made at end of this paper.

II. DATA-DRIVEN MODELING (DYNAMICAL
LINEARIZATION TECHNIQUE)

Consider discrete-time SISO nonlinear system represented
in the following Nonlinear AutoRegressive with eXogenous
input (NARX) model:

y(k + 1) = f(y(k), · · · , y(k − dy), u(k), · · · , u(k − du))
(1)

where y, u are the system output and input, dy , du are the
unknown orders, and f(·) is an unknown nonlinear function.

The proposed novel data-driven control algorithm is de-
signed with PPD technique. Here, we simply introduce the
CFDL and PFDL. Details can see [5,7].

A. Compact Form Dynamic Linearization

The CFDL of the system (1) is based on following two
necessary assumptions.

Assumption 1: The partial derivative of f(·) with respect to
the control input u(k) is continuous.

Assumption 2: The system (1) is generalized Lipschitz, that
is, satisfying ∆y(k + 1) ≤ C1|∆u(k)|, for ∀k and |∆u(k)| 6=
0, where ∆y(k + 1) = y(k + 1)− y(k), and ∆u(k) = u(k)−
u(k − 1). and C1 is a constant.

Theorem 1: For the nonlinear system (1), we assume that
Assumptions 1 and 2 hold. There must exist a parameter φ(k),
called PPD, system (1) can be transformed into the following
CFDL description when |∆u(k)| 6= 0:

∆y(k + 1) = ∆u(k)φ(k) (2)

where |φ(k)| ≤ C1

Proof: See reference [5].

B. Partial Form Dynamic Linearization

The PFDL of the system (1) is based on following two
necessary assumptions.

Assumption 3: The partial derivative of f(·) with respect to
the control input u(k), u(k− 1) · · · , u(k−L) are continuous.
where L is a positive constant called control input length
constant of linearization for the discrete-time nonlinear system
(1).

Assumption 4: The system (1) is generalized Lipschitz,
that is, satisfying ∆y(k + 1) ≤ C2‖∆U(k)‖, for ∀k and
‖∆U(k)‖ 6= 0, where ∆y(k + 1) = y(k + 1) − y(k), and

∆U(k) = [∆u(k), · · · ,∆u(k − L + 1)]T , ∆u(k − i) =
u(k− i)−u(k− i−1), i = 0, · · · , L−1 and C2 is a constant.

Theorem 2: For the nonlinear system (1), we assume that
Assumptions 3 and 4 hold. There must exist a parameter vector
Φ(k), called PPD vector, system (1) can be transformed into
the following PFDL description when ‖∆U(k)‖ 6= 0:

∆y(k + 1) = ∆UT (k)Φ(k) (3)

where Φ(k) = [φ1, φ2, · · · , φL]T , and ‖Φ(k)‖ ≤ C2

Proof: See reference [5].
The following works are based on basic assumption.
Assumption 5: For Theorem 1 and Theorem 2, the norm of

the parameter ∆u(k) and vector ∆U(k) is uniformly bounded
by constants Ω1 > 0 and Ω2 > 0, i.e., |∆u(k)| ≤ Ω1, and
‖∆U(k)‖ ≤ Ω2.

Notice that Assumption 5 can be satisfied for a wide class
of functions ∆u(k) and ∆U(k), by assuming that the output
y(k) and the input u(k) of the system (1) remains bounded.

III. CONTROLLER DESIGN VIA COMPACT FORM DYNAMIC
LINEARIZATION

In this section, we will propose a novel data-driven control
algorithm using the CFDL model. Main contributions in
the following works include as: 1) A novel unknown PPD
estimation algorithm; 2) Proposed a data-driven inverse control
algorithm; 3) Lyapunov-based stability analysis.

A. Observer-Based PPD Parameter Identification

The proposed PPD parameter identification observer has the
following structure

ŷc(k + 1) = ŷc(k) + ∆u(k)φ̂(k) + kcec(k) (4)

where ec(k) = y(k) − ŷc(k) is the output estimation error,
φ̂(k) represents an estimate of the PPD parameter, and the
gain kc is chosen such that Fc = 1− kc in the unit circle.

Hence, in view of (2) and (4), the output estimation error
dynamics is given by

ec(k + 1) = Fcec(k) + ∆u(k)φ̃(k) (5)

where φ̃(k) = φ(k) − φ̂(k) represents the PPD parameter
estimation error.

The PPD term can be tactfully calculated through the
estimation of φ. Namely, an adaptive update law for the
parameters φ(k) can be chosen as

φ̂(k + 1) = φ̂(k) + ∆u(k)Γc(k)(ec(k + 1)− Fcec(k)) (6)

The gain Γc(k) is chosen as follows

Γc(k) = 2
(|∆u(k)|2 + µ

)−1

where µ is a positive constant, hence, Γc(k) is positive definite
for all k. Notice that, by Assumption 5, Γc(k) can be lower
bounded as

|Γc(k)| ≥ 2
Ω2

1 + µ
= γc > 0
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By taking into account (5) and (6), the estimation error
dynamics can be written as

ec(k + 1) =Fcec(k) + ∆u(k)φ̃(k)

φ̃(k + 1) =Hcφ̃(k)
(7)

where Hc is given by

Hc = 1−∆u2(k)Γc(k)

The main property of estimate scheme is recapitulated in the
following theorem.

Theorem 3: Under Assumption 5, the equilibrium [ec, φ̃] =
[0, 0] of the system (7) is globally uniformly stable. Further-
more, the estimation error ec(k) converges asymptotically to
0.

Proof: Consider the Lyapunov function

V (k) = Pce
2
c(k) + λcφ̃

2(k)

where λc, Qc are positive constants and Pc is the solution
by Pc − F 2

c Pc = Qc, the solution Pc exists and is positive
definite. By taking into (7), we have

∆V (k + 1) =V (k + 1)− V (k)

=−Qce
2
c(k) + 2PcFc∆u(k)ec(k)φ̃(k)

− [
λc(1−H2)− Pc∆u2(k)

]
φ̃2(k)

=−Qce
2
c(k)− [

µλcΓ2
c(k)− Pc

]
η2(k)

+ 2PcFcec(k)η(k)

≤−Qce
2
c(k)− [

µλcγ
2
c − Pc

]
η2(k)

+ 2PcFcec(k)η(k)

≤− c1e
2
c(k)− c2η

2(k)

where η(k) = ∆u(k)φ̃(k), c1 = Qc − 1
ε , c2 = µλcγ

2
c − Pc −

εP 2
c F 2

c . Hence, ∆V (k + 1) ≤ 0 provided that ε, Qc and λc

satisfy the following inequalities

Qc >
1
ε
, µλcγ

2
c − Pc − εP 2

c F 2
c > 0

Notice that ∆V (k) is negative definite in the variables ec(k),
η(k). Since V (k) in a decreasing and non-negative function,
it converges to a constant value V∞ ≥ 0, as k → ∞, hence,
∆V (k) → 0. This implies that both ec(k) and φ̃(k) remain
bounded for all k, and limk→∞ e(k) = 0.

B. Controller Design and Stability Analysis

Based on the observer (4), the data-driven inverse control
law can be described as

u(k) = u(k − 1)+
φ̂(k)(y∗(k + 1)− ŷc(k)− kcec(k))

φ̂2(k) + α
,

for |∆u(k)| ≤ δ

u(k) = u(k − 1)+δsign(∆u(k)), for |∆u(k)| > δ

(8)

where y∗(k) is reference trajectory. α and δ as given finite
positive numbers. Notice that, in many practical systems,
because their actuators cannot change too fast, the number
δ can be jammy obtained.

Define observer tracking error eo(k) = y∗(k)− ŷc(k), thus

eo(k + 1) =y∗(k + 1)− ŷc(k + 1)

=y∗(k + 1)− ŷc(k)−∆u(k)φ̂(k)− kcec(k)
(9)

The robustness of the stability and the performance for data-
driven control law (8) are given in Theorem 4.

Theorem 4: For given |y∗(k)−y∗(k−1)| ≤ ∆y∗, using the
data-driven control law (8), the solution of close-loop observer
error system (9) is uniformly ultimately bounded (UUB) [22]
for all k with ultimate bound limk→∞ |eo(k)| ≤ a2

1−a1
.

where ∆y∗ is a given positive constant, 0 < s0(k) ≤ 1,

a1 = 1− s0(k) +
s0(k)α

φ̂2(k) + α
,

a2 =

(
1− s0(k) +

s0(k)α

φ̂2(k) + α

)
|∆y∗ − kcec(k)|.

Proof: Define a variable s0(k) where 0 < s0(k) ≤ 1 for
all k. The control law (8) is equivalently expressed as

∆u(k) =
y∗(k + 1)− ŷc(k)− kcec(k)

φ̂2(k) + α
s0(k)φ̂(k) (10)

where
s0(k) = 1, for |∆u(k)| ≤ δ

0 < s0(k) < 1, for |∆u(k)| > δ

Using (10), (9) becomes

|eo(k + 1)| =
(

1− s0(k) +
s0(k)α

φ̂2(k) + α

)

× | (y∗(k + 1)− ŷc(k)− kcec(k)) |

=

(
1− s0(k) +

s0(k)α

φ̂2(k) + α

)

× | (y∗(k + 1)− y∗(k) + eo(k)− kcec(k)) |

≤
(

1− s0(k) +
s0(k)α

φ̂2(k) + α

)
|eo(k)|

+

(
1− s0(k) +

s0(k)α

φ̂2(k) + α

)
|∆y∗ − kcec(k)|

=a1|eo(k)|+ a2

(11)
Choosing a Lyapunov function as V (k) = |eo(k)|, from (11),
one has

∆V (k + 1) =|eo(k + 1)| − |eo(k)| = (1− a1)V (k) + a2

Since 0 ≤ a1 < 1 and a2 is bounded, according to the lemma
in [22], using the control law (8), the results of close-loop
observer system (9) are UUB for all k with ultimate bound
limk→∞ |eo(k)| ≤ a2

1−a1
.

Corollary 1: Under the controller (8), together with the
observer (4), adaptive laws (6), we can guarantee that the
system (1) tracking error e(k) = y∗(k) − y(k) is UUB with
ultimate bound limk→∞ |e(k)| ≤ a2

1−a1
.

Proof: Since

e(k) = eo(k)− ec(k) (12)



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL., NO., FEBRUARY 2012 4

Taking the absolute value and limiting on both sides of (12),
we obtain

lim
k→∞

|e(k)| ≤ lim
k→∞

|eo(k)|+ lim
k→∞

|ec(k)|

≤ a2

1− a1

(13)

So the tracking error e(k) is UUB for all k with ultimate
bound limk→∞ |e(k)| ≤ a2

1−a1
.

Remarks :
1) In order to make the parameter estimation law have a

stronger capability in tracking time-varying parameter, a retune
mechanism which in [7] should be considered as following

φ̂(k) =φ̂(1),

if |φ̂(k)| ≤ ε or sign(φ̂(k)) 6= sign(φ̂(1))
(14)

where where ε is a small positive constant and φ̂(1) is the
initial value of φ̂(k).

2) If the reference trajectory y∗(k) = constant, we
can obtain the ∆y∗ = 0, and from the Theorem 3, the
limk→∞ ec(k) = 0. Hence, the number a2 = 0, we can simply
obtained the result limk→∞ |e(k)| = 0.

IV. CONTROLLER DESIGN VIA PARTIAL FORM DYNAMIC
LINEARIZATION

In this case the focus is on PFDL, based on the PPD
parameter vector estimation of adaptive observer which is
similar as Section III(A), we propose a enhanced data-driven
control algorithm.

A. Observer Design

The proposed PPD parameter identification observer has the
following structure

ŷp(k + 1) = ŷp(k) + ∆UT (k)Φ̂(k) + kpep(k) (15)

where ep(k) = y(k) − ŷp(k) is the output estimation error,
Φ̂(k) represents an estimate of the PPD parameter vector, and
the gain kp is chosen such that Fp = 1− kp in the unit circle.
And the adaptive update law for the parameters estimate Φ(k)
can be chosen as

Φ̂(k + 1) = Φ̂(k) + ∆U(k)Γp(k)(ep(k + 1)− Fpep(k))
(16)

The gain Γp(k) is chosen as follows

Γp(k) = 2
(‖∆U(k)‖2 + µ1

)−1

where µ1 is a positive constant, hence, Γp(k) is positive
definite for all k. Notice that, by virtue of Assumption 5, Γp(k)
can be lower bounded as

|Γp(k)| ≥ 2
Ω2

2 + µ1
= γp > 0

Hence, in view of (3) and (15), the output estimation error
dynamics is given by

ep(k + 1) = Fpep(k) + ∆UT (k)Φ̃(k) (17)

where Φ̃(k) = Φ(k) − Φ̂(k) represents the PPD parameter
estimation error of PFDL.

By taking into account (16) and (17), the estimation error
dynamics can be written as

ep(k + 1) =Fpep(k) + ∆UT (k)Φ̃(k)

Φ̃(k + 1) =HpΦ̃(k)
(18)

where Hc is given by

Hp = IL −∆U(k)Γp(k)∆UT (k)

and IL denotes the (L× L) identity matrix.
Theorem 5: Under Assumption 5, the equilibrium

[ep, Φ̃T ]T = [0, 0T
L×1]

T of the system (18) is globally uni-
formly stable. Furthermore, the estimation error ep(k) con-
verges asymptotically to 0.

Proof: Consider the Lyapunov function

V (k) = Ppe
2
p(k) + λpΦ̃T (k)Φ̃(k)

where λp, Qp are positive constant and Pp is the solution by
Pp − F 2

p Pp = Qp. By taking into (18), we have

∆V (k + 1) =V (k + 1)− V (k)

≤−Qpe
2
p(k)− [

µ1λpγ
2
p − Pp

]
Θ2(k)

+ 2PpFpep(k)Θ(k)

≤− c3e
2
p(k)− c4Θ2(k)

where Θ(k) = ∆UT (k)Φ̃(k), c3 = Qp − 1
ς , c4 = µλpγ

2
p −

Pp− ςP 2
p F 2

p . Hence, ∆V (k +1) ≤ 0 provided that ς , Qp and
λp satisfy the following inequalities

Qp >
1
ς
, µλpγ

2
p − Pp − ςP 2

p F 2
p > 0

Notice that ∆V (k) is negative definite in the variables ep(k),
Θ(k). Since V (k) in a decreasing and non-negative function,
it converges to a constant value V∞ ≥ 0, as k → ∞, hence,
∆V (k) → 0. This implies that both ep(k) and Φ̃(k) remain
bounded for all k, and limk→∞ ep(k) = 0.

Remark 3: In order to make the parameter estimation law
have a stronger capability in tracking time-varying parameters,
a retune mechanism which in [5] should be considered as
following

φ̂1(k) =φ̂1(1), if |φ̂1(k)| ≤ ε (19)

where where ε is a small positive constant and φ̂1(1) is the
initial value of φ̂1(k).

B. Enhanced Controller Design
The control law can be achieved by minimizing the one-

step-ahead weighted predictive control performance index

J = [y∗(k + 1)− ŷp(k)]2 + λ[∆u(k)]2 (20)

λ(λ > 0) denotes the control effort weighting factor. Taking
(15) into (20) and then minimizing it, we can achieve the
following control law

u(k) = u(k − 1)+
φ̂1(k)(y∗(k + 1)− ŷp(k)− kpep(k))

φ̂2
1(k) + λ

−
φ̂1(k)

L∑
i=2

φ̂i(k)∆u(k − i + 1)

φ̂2
1(k) + λ

(21)
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An adaptive modification item (AMI) [23] ψ(k) is introduced
to the control law (21). Then the control law can be rewritten
as

u(k) = u(k − 1)− ψ(k)
φ̂1(k)

L∑
i=2

φ̂i(k)∆u(k − i + 1)

φ̂2
1(k) + λ

+ ψ(k)
φ̂1(k)(y∗(k + 1)− ŷp(k)− kpep(k))

φ̂2
1(k) + λ

(22)
Theorem 6: There exists suitable ψ(k) such that the observer
tracking error eo(k) will be to 0.

Proof: Define observer tracking error eo(k) = y∗(k) −
ŷp(k), thus

eo(k + 1) =y∗(k + 1)− ŷp(k + 1)
=a3 (y∗(k + 1)− ŷp(k)− kpep(k))

− a3

(
L∑

i=2

φ̂i(k)∆u(k − i + 1)

) (23)

Where

a3 = 1− ψ(k)φ̂2
1(k)

φ̂2
1(k) + λ

So, there exists suitable AMI as

ψ(k) =
φ̂2

1(k) + λ

φ̂2
1(k)

which can make eo(k + 1) = 0.
The AMI, which is time-varying parameter, and may be

tuned for high tracking ability [23-24]. In most cases, ψ(k)
is chosen as 1 [24]. [23] gives a simple recursive efficient
method, and in this paper we using the recursive efficient
method of [23] for calculating the ψ(k) in our simulations.

Corollary 2: Under the controller (22), together with the
observer (15), adaptive laws (16), we can guarantee that the
tracking error e(k) = y∗(k)− y(k) is convergent.

Proof: The Prove is similar as Corollary 1.
Remark 4: We can also obtain the one-step-ahead control

from the optimization of the cost function (20) by using the
gradient descent optimizing technique [25], i.e.,

u(k) = u(k − 1)− %

1 + %σ
eo(k + 1)

∂eo(k + 1)
∂u(k)

(24)

where % > 0 is the optimizing step. Considering the observer
model (15). The sensitivity ∂eo(k + 1)/∂u(k) can be derived
from the

∂eo(k + 1)
∂u(k)

= −φ̂1(k)

If the parameters satisfy 0 < %
1+%σ σ ≤ 1, the control algorithm

given in (24) will be convergent. Suppose the Lyapunov
function is defined as V = e2

o(k+1)+∆e2
o(k+1), the sufficient

condition for the stability of the one-step ahead data-driven
control system is %

1+%σ ≤ 1
|C2|2 .

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, simulation and experiments are shown to
demonstrate the validity of the proposed data-driven con-
trol algorithmes. A nonlinear system and steam-water heat
exchanger process simulations are conducted to test the al-
gorithm effectiveness. The output tracking capability, load
rejection capability, and the robustness to process dynamic
changes are tested in this simulation. To demonstrate the
real application, the proposed algorithm is also experimentally
tested with a level control system.

A. Case study 1

The following SISO nonlinear process model is used in the
simulation [26]:

y(k + 1) = sin[y(k)] + u(k)(5 + cos[y(k)u(k)]) (25)

Existing the disturbance in input channel which is described
as

u(k) = uc(k) + 0.01 ∗ sin(2πk/200)

The tracking trajectory is given as

y∗(k) = 0.6+0.2 [sin(2πk/50)
+ sin(2πk/100) + sin(2πk/150)]

(26)

For the propose of comparison, the DDC-CFDL and DDC-
PFDL are compared to the neural based inverse control (NIC)
[27] approach with the disturbance of input.

1) Data-Driven Control based on CFDL: For the proposed
control law, we choose the sampling time Ts = 1. The
parameters of proposed control law in Section III are kc = 0.9,
µ = 0.1, α = 0.01, δ = 0.2, ε = 10−10 and φ̂(1) = 10.

System responses are shown in Fig. 1 (A), which are
included output signals of DDC-CFDL and NIC (i.e. Fig.
1 (A(1))), input signals (i.e. Fig. 1 (A(2))), PPD parameter
estimation (i.e. Fig. 1 (A(3))) for the DDC-CFDL in case
study 1. The simulations in Fig. 1 (A) show good tracking
performance, and is not affected much by the increasing
magnitude of the tracking trajectory (26). From Fig. 1 (A),
the tracking error significantly decreases using the proposed
DDC-CFDL in comparison to NIC. The proposed data driven
controller can achieve a better performance in the presence of
disturbance.

2) Data-Driven Control based on PFDL: The parameters
of proposed control law in Section IV are L = 3, kp = 0.9,
µ1 = 0.1, λ = 0.01, ε = 10−10 and Φ̂(1) = [3, 3, 3]T .

Fig. 1 (B(1-3)) shows that output signals of DDC-PFDL
and NIC, input signals, and PPD parameter estimation of
DDC-PFDL. It can be seen that the proposed DDC-PFDL can
achieve a better performance in the presence of disturbance.
This is because the DDC structures does not include a plant
model, the controller is only from I/O data.

B. Case study 2

Heat exchangers are universal elements in the chemical and
process industry. Temperature control is still a major task
if the heat exchanger is operated over a broad scale. The
nonlinear behavior depends strongly on the flow rates and on
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Fig. 1. (A) The signals of response for DDC-CFDL in case study 1. (B) The signals of response for DDC-PFDL in case study 1.

Fig. 2. Heat exchanger.

the temperatures of the media. In this section, a steam-water

heat exchanger is considered. Equations of the steam-water
heat exchanger dynamic, which represent a complex behavior.
The experimental equipment is shown in Fig. 2. The steam
condenses in the two-pass shell and tube heat exchanger, so
raising the process water temperature. The steam flow rate and
process water flow rate can be controlled by pneumatic control
values. [28] describes the plant where the heat exchanger
dynamic is expressed by a Hammerstein model (the nonlinear
element follows linear block) and it is given by

GH(z−1) =
0.207z−1 − 0.1764z2

1− 1.608z−1 + 0.6385z−2
(27)

N(u) = −31.549u + 41.732u2 − 24.201u3 + 68.634u4

(28)
We choose the parameters of DDC-CFDL are kc = 0.9,

µ = 10, α = 0.01, δ = 0.2, ε = 10−10 and φ̂(1) = −50.
And the parameters of DDC-PFDL are chosen as kp = 0.9,
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Fig. 3. (A) The signals of response for DDC-CFDL in case study 2. (B) The signals of response for DDC-PFDL in case study 2.

µ1 = 0.1, λ = 0.01, Φ̂(1) = [−50,−15,−10]T .
The control simulations is based on measurement noise

0.005rand(1) and the step disturbance 0.1 at 150s in input
channel. The desired trajectories to be tracked are

y∗ =

{
3 t < 100
8 t ≥ 100

The simulation results of two proposed DDC are shown
in Fig. 3. Fig. 3 (A(1)) and Fig. 3 (B(1)) give the DDC-
CFDL and DDC-PFDL output response. The control signals
of two control laws are shown in Fig. 3 (A(2)) and Fig. 3
(B(2)). Fig. 3 (A(3)) and Fig. 3 (B(3)) describe the PPD
parameter estimations of by two data-driven controllers. These
two simulations show that acceptable set-point tracking can be
obtained with the proposed control algorithm for the nonlinear
process. The results also show that the close-loop systems with
two proposed DDC have stronger anti-interference ability than

robust PID control method [29].

C. Experimental results

The proposed DDC-CFDL and DDC-PFDL methods were
experimentally evaluated on a process control system (PCS).
The PCS is made by FESTO company, which is built up by
four working units (Level control, temperature control, pres-
sure control, flow control). Each unit can work independently,
and flexible connections with other units through hardware
and software integration to constitute a complex system. Fig.
4 shows a photograph of this PCS, and the block diagram
figure of level control unit is illustrated in Fig. 5.

Where the SIMENS R© S7-300 (lower-computer) is used to
collect data for field devices. The liquid level of tank (B102)
is measured by ultrasonic liquid level sensor (LIC102). The
control signal is constrained between 0 and 10 V for DC motor
(P101).
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Fig. 4. PCS experimental device.

Fig. 5. Block diagram of level control unit.

The parameters of DDC-CFDL are chosen as kc = 0.9, µ =
10, α = 0.01, δ = 0.2, ε = 10−10 and φ̂(1) = −500. And the
parameters of DDC-PFDL are chosen as kp = 0.9, µ1 = 0.1,
λ = 0.01, Φ̂(1) = [−500,−170,−80]T . The experimental
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Fig. 6. Level response to the set-point changes.

result is shown in Fig. 6 for the set-point tracking control, and
Fig. 7 gives the control responses to a disturbance produced by
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Fig. 7. Level response to disturbance.

pouring 3 L of water into the tank B102 at the 200th sample.
These two experiments show that acceptable set-point tracking
and disturbance rejection can be obtained with the proposed
control algorithm for the nonlinear process.

VI. CONCLUSION

The PPD was used to dynamically linearize a nonlinear
process, and aggregation was used to predict the PPD. To
rely on dynamically linearize technology, we propose adaptive
observer based two novel and effective data-driven control law
for unknown nonlinear dynamic processes. The two control
has the real-time implementation advantage of not requiring
any iterative computation for determining the control input.
And the Lyapunov-based stability analysis is introduces to the
proposed control systems. The simulations and experiments
show that the proposed control algorithms have good tracking
capability, acceptable robustness to disturbances and process
dynamics changes. It is believed that the proposed algorithm
is a favorable control strategy for unknown nonlinear systems
where realtime application is important.

Furthermore, the DDC for multi-input single-output
(MISO), and multi-input multi-output (MIMO) systems will
be studied in our further works.
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