Evolution of Mammalian Sex Chromosomes and Sex Determination Genes: Insights from Monotremes

A thesis submitted for the degree of Doctor of Philosophy

Deborah Fernanda Toledo-Flores

School of Molecular and Biomedical Science

Discipline of Genetics

December 2014
Table of Contents

Abstract ... 1
Thesis Declaration ... 3
Acknowledgments ... 4
CHAPTER 1: Introduction .. 5
 Chapter overview .. 5
 Introduction .. 6
 Sex chromosome evolution in vertebrates .. 8
 Sex chromosomes evolved from a pair of autosomes ... 9
 The therian XY sex chromosome system .. 14
 The prototherian multiple sex chromosome system ... 17
 Molecular aspects of mammalian sex determination ... 20
 Sex determination genes in therian mammals .. 20
 Sex determination in monotremes .. 26
 Sex ratios in captive animal populations ... 28
 Aims of the Project ... 30
 Summary ... 31
References ... 34

CHAPTER 2: Prediction of Y-linked genes in the platypus reveals Amhy as the most likely sex-determining candidate gene ... 48
 Chapter overview ... 48
 Statement of authorship ... 49
 Publication: .. 50

CHAPTER 3: Non-random meiotic segregation of the therian protosex chromosome in platypus may provide insights into differentiation of sex chromosomes in mammals .. 51
 Chapter overview .. 51
 Statement of Authorship .. 52
 Manuscript in preparation: .. 53
 Deborah Toledo-Flores, R. Daniel Kortschak, Frank Grützner. Non-random segregation of the therian proto-sex chromosome at platypus male meiosis. .. 53

CHAPTER 4: Identification and characterization of a male-specific change in Sox3 in the platypus ... 89
 Chapter overview .. 89
 Identification of a male-specific Sox3 allele in the platypus might suggest a role in male sex determination ... 90

CHAPTER 5: Investigating sex bias in captive bred echidnas ... 117
 Chapter overview .. 117
 Statement of authorship .. 118
 Manuscript in preparation: .. 119
 Deborah Toledo-Flores, Wan Xian Kang, Arthur Ferguson, Belinda Turner, Enkhjargal Tsend-Ayush, Shu Ly Lim, Frank Grützner. Genetic Sexing Reveals Female Bias in Echidnas Born in Captivity .. 119
 Statement of authorship .. 144
 Letter in preparation: ... 145
Deborah Toledo-Flores, Frank Grützner. Identification of a Sox3 deletion in a captive-bred echidna. ..145

CHAPTER 6: Significance and future directions ..152
 Chapter overview ..152
 Significance and future directions ..153

Amendments..156
Abstract

Genetic sex determination systems are generally based on the presence of differentiated sex chromosomes. Birds have a ZZ/ZW sex chromosome system in which males are ZZ and females ZW, whereas mammals have an XX/XY system with males being XY and females XX. Monotremes have an extraordinary sex chromosome system that consists of multiple sex chromosomes: 5X5Y in platypus and 5X4Y in echidna. Intriguingly, the monotreme sex chromosomes show extensive homology to the bird ZW and not to the therian XY. However, sex determination in monotremes is still a mystery; the Y-specific Sry gene that triggers male sex determination in therian mammals is absent and so far very few genes have been identified on Y chromosomes in monotremes. To gain more insights into the gene content of Y-chromosomes and to identify potential sex determination genes in the platypus a collaborative large scale transcriptomic approach led to the identification of new male specific genes including the anti-Muellerian hormone AMH that I mapped to Y₅, this makes Amhy an exciting new candidate for sex determination in monotremes.

Platypus chromosome 6 is largely homologous to the therian X and therefore it represents the therian proto sex chromosome. In addition, this autosome features a large heteromorphic nucleolus organizer region (NOR) and associates with the sex chromosomes during male meiosis (Casey and Daish personal communication). I investigated chromosome 6 heteromorphism in both sexes and found a number of sex-specific characteristics related to the extent of the NOR heteromorphism, DNA methylation, silver staining patterns and interestingly, meiotic segregation bias. This
raises the possibility that chromosome 6 may have commenced differentiation prior to monotreme therian divergence.

These results led me to investigate the chromosome 6 borne gene Sox3, from which Sry evolved in therian mammals. This revealed a platypus male-specific Sox3 allele, which differs from the alleles observed also in females on the length of one of the Sox3 polyalanine tracts. This raises the possibility that Sox3 may be working differently in males and females.

We have used our unique knowledge of monotreme sex chromosomes to determine the sex of captively bred echidnas. I used a PCR based genetic sexing technique that utilizes DNA from small hair samples and primers that amplify male-specific genes. Interestingly, I found that seven out of eight echidnas born in captivity were females. Furthermore, I found a Sox3 deletion in the only male echidna born in captivity. This gives us the unique opportunity to investigate the sexual development of an animal in which this gene is naturally deleted providing an exceptional situation in which to study monotreme sex determination. Furthermore, this sexing technique has the potential of being applied in the wild to investigate sex ratio in natural populations of monotremes, including the critically endangered long-beaked echidna.
Thesis Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Deborah Fernanda Toledo-Flores

20 – Dec – 2014
Acknowledgments

I would like to thank all the people that have supported me and guided me throughout my Ph.D. studies. Thanks to my supervisor Prof. Frank Grützner for his constant advice and support and to all the current and former members of the Grützner’s lab for being excellent colleagues and friends. Thanks to our collaborator Prof. Henrik Kaessmann and his group at the University of Lausanne, Switzerland, and to Prof. Vincent Harley and his group at the Prince Henry’s Institute, Melbourne. Thanks to Dr. Dan Kortschak, Prof. Jeremy Timmis and Prof. Jenny Graves for constructive discussion and feedback.

I would like to acknowledge the support of the Mexican National Council for Science and Technology (CONACYT) for sponsoring me during my Ph.D.

Thanks to all the people that made this journey so enriching and enjoyable; the School of Molecular and Biomedical Science students and staff, my friends and my boyfriend. I want to particularly thank Nicole and Reuben for their support, feedback and for so many good chats and lunch sessions. Also, thanks to Nicole for keeping my cookies in her drawer!

Finally, I would like to specially thank my family because without them this would not have been possible. Thanks to my mom, dad and my little brother for always being there to support me, advice me, encourage me and inspire me. Thank you. – Finalmente, quisiera agradecer muy especialmente a mi familia porque sin ellos, esto no hubiera sido posible. Gracias a mi mamá, papá y a mi hermanito por siempre estar ahí para apoyarme, aconsejarme, motivarme e inspirarme. Gracias. ¡Soy hija de mi apá y de mi amá! ¡Y hermanita de mi hermanito!