Combinatorial Targeting of the Androgen Receptor for Prostate Cancer Therapy

A thesis submitted to the University of Adelaide in the fulfilment of the requirements for the degree of Doctor of Philosophy

By

Sarah Louise Carter B.BiomolChem.(Hons)

Dame Roma Mitchell Cancer Research Laboratories
School of Medicine
The University of Adelaide and
The Hanson Institute

March 2015
Contents

Chapter 1: General Introduction ... 1

1.1 Background .. 2

1.2 Androgens and the Prostate ... 3

1.3 Androgen Signalling through the Androgen Receptor 4
 1.3.1 The androgen receptor (AR) .. 4
 1.3.2 Androgen signalling in the prostate .. 6

1.4 Current Treatment Strategies for Prostate Cancer ... 8
 1.4.1 Diagnosis ... 8
 1.4.2 Localised disease ... 10
 1.4.3 Relapse and metastatic disease ... 13
 1.4.4 Failure of hormonal therapy .. 15

1.5 Mechanisms Underlying Development of Castrate-Resistant Prostate Cancer 17
 1.5.1 Increased AR levels ... 19
 1.5.2 AR mutations .. 19
 1.5.3 Alterations in AR coregulators ... 20
 1.5.4 Adrenal and intra-tumoural androgen biosynthesis 20
 1.5.5 Non-canonical activation of the AR .. 21
 1.5.6 AR splice variants ... 22

1.6 Combinatorial AR Targeting as an Approach to Avoid Hormone-Therapy Mediated Selection Pressure .. 22
 1.6.1 Hsp90 inhibitors ... 23
 1.6.2 Histone deacetylase inhibitors .. 24

1.7 Summary ... 28

1.8 Objectives of this Thesis .. 30

Chapter 2: General Materials and Methods .. 31

2.1 Materials ... 32
 2.1.1 Chemicals and general reagents ... 32
 2.1.2 Drugs ... 36
 2.1.3 Antibodies .. 37
 2.1.4 Primers .. 38
2.1.5 Mice ... 40
2.1.6 Equipment ... 40
2.1.7 Software .. 41
2.2 Buffers and Solutions .. 42
2.3 General Methods .. 46
 2.3.1 Cell culture ... 46
 2.3.2 Drug treatments and proliferation/death assays 48
 2.3.3 Western blotting ... 49
 2.3.4 Quantitative real-time polymerase chain reaction (qRT-PCR) 50
 2.3.5 Statistical analysis ... 52

Chapter 3: NFKBIA (IκBα) mediates prostate cancer cell death induced by combination treatment with vorinostat and bicalutamide ... 53

Chapter 4: The efficacy of the combination therapy in vivo 117
 4.1 Introduction .. 118
 4.2 Materials and Methods .. 118
 4.2.1 Inoculation of male nude mice with LNCaP cells 119
 4.2.2 Drug treatments and calculation of tumour volume 119
 4.2.3 Immunohistochemistry ... 120
 4.2.4 Video assisted scoring of nuclear ki67 and cleaved caspase 3 staining 121
 4.3 Results .. 123
 4.3.1 Change in tumour volume over time with combination treatment 123
 4.3.2 Fold change in tumour volume over time with combination treatment 123
 4.3.3 End-point and survival analysis .. 127
 4.3.4 Analysis of tumour growth and apoptosis using immunohistochemical markers .. 132
 4.3.5 Tolerability and toxicity ... 136
 4.4 Discussion .. 139

Chapter 5: Combining 17-AAG with androgen receptor modulating agents enhances cell death and minimises the heat shock response in prostate cancer cells 142

Chapter 6: General Discussion ... 184
6.1 Targeting the AR for treatment of prostate cancer .. 185
6.2 Major findings of this thesis .. 186
 6.2.1 Combination therapy for prostate cancer ... 188
6.3 Future directions .. 190
Abstract

Prostate cancer is one of the most commonly diagnosed cancers in Australian men and is the second leading cause of death from cancer. Since the advent of prostate specific antigen (PSA) testing, more men are being diagnosed with early-stage or organ-confined prostate cancer. At this stage of the disease, surgical removal of the prostate and/or radiotherapy is potentially curative. However, approximately 10-30% of men will progress with metastatic disease despite an initial diagnosis of organ-confined cancer, and 5-10% of men are diagnosed in the first instance with metastatic disease. Given that prostate cancer is dependent on androgens for growth and survival, the current standard of treatment for these men is androgen deprivation therapy (ADT). Despite an initial positive response to this treatment, it is not curative and relapse generally occurs within 5 years. At this stage of the disease, further hormonal manipulations or chemotherapy do not typically significantly prolong survival. It is now well accepted that this relapse is due to mechanisms by which the prostate cancer continues to rely on androgen signalling through the androgen receptor, despite the efficacy of androgen deprivation. Our laboratory and others have shown that clinical agents and molecular methods that target the androgen receptor (AR), as opposed to the androgen, are effective at suppressing growth and inducing death in prostate cancer cells.

The objective of this thesis was to characterise the effects of combining clinically different drugs that modulate levels and/or activity of the AR. The histone deacetylase inhibitor vorinostat and the hsp90 inhibitor 17-AAG were investigated in combination with bicalutamide, an AR antagonist currently in clinical use. Both combinations proved to be significantly effective at synergistically suppressing growth and inducing death in prostate cancer cells in vitro, using concentrations of the drugs that are individually sub-effective. Due to factors beyond control, in vivo testing did not result in a definitive answer regarding efficacy in a mouse model of prostate cancer.

Microarray profiling revealed a mechanism for the synergistic interaction between vorinostat and bicalutamide, implicating loss of the gene NFKBIA as a cause of prostate cancer cell death. Furthermore, microarray analysis showed that combining 17-AAG with bicalutamide reduces the characteristic and undesirable heat shock response associated
with 17-AAG, but also implicated *NFkBIA* in the prostate cancer cell death caused by this combination. These insights provide a basis for further investigation into the role that manipulation of *NFkBIA* could play in future therapeutics, and the potential for the use of 17-AAG in a clinical setting despite the development of new generation hsp90 inhibitors. Overall, the information presented in this thesis builds on the pre-clinical characterisation of two different combinations targeting the AR for prostate cancer treatment, and facilitates clinical testing of these treatment options.
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Sarah Carter

March 2015
Acknowledgements

First and foremost, I would like to thank my principal supervisor, A/ Prof. Lisa Butler. Basically, without you, this thesis never would have happened – you certainly put the “super” in “supervisor”. Thank you for your never ending determination to see me through, thank you for your kindness and encouragement, thank you for your friendship over the years, and thank you for instilling in me an overwhelming distaste for unjustified text in documents. To Dr. Luke Selth, thank you so much for signing on to be my co-supervisor halfway through. I suspect it couldn’t have been easy, but you always gave excellent advice and really inspired me to be a better scientist and student. A shout out to my semi supervisor Dr. Maggie Centenera – you really helped me throughout the later years of my PhD and I am grateful for all of your guidance and advice. Finally, to Prof. Wayne Tilley, thank you so much for giving me the opportunity to study in your laboratory, I learned heaps and I have you to thank for helping me see the big picture.

Thank you to my fellow PhD students – the originals who were with me from the start and the ones I picked up along the way – I’m not naming names because I’m sure I’ll forget someone and feel mega guilt for the rest of my life, but you guys made doing a PhD so much fun, and I’m so glad I’ve met you all and am chuffed to have you as friends. I’m sorry to say that my ability to quote the Simpsons has gone downhill since I’ve left, but I’ll always be up for a game of hungry hungry hippos whenever you’re bored of the waiting game. Infinite thanks also to the rest of the staff at the DRMCRL – many of you spent loads of time helping me out, teaching me something, or just being great friends, and I thank you so much for all you’ve done for me.

Thanks to my friends, I’m so grateful that you’ve all been there for me through a lot of tough times, and I can’t thank you all enough for the amazing support network over the years. Special thanks to my Mum, who has given me so much support, whether it was words of encouragement or sneaking into my house to wash a pile of dishes or put on a load of laundry. I don’t know if I can ever express the gratitude I feel (especially for doing the dishes!) and I’m so lucky to have such a great Mum. A dedication of sorts to my Dad –
you had to clock out before I started my PhD, but I know how proud you were that I’d been accepted and I know how proud you would have been that I finished it. I would also like to thank my fantastic “in-laws” – I couldn’t have asked for a better second family and I’m so grateful for the love and support I get from you guys. I’m glad I can finally tell you “it’s done!” when you ask how the thesis is going! To my partner in crime, Tony – words can’t describe how thankful I am for you. You’ve been with me the whole way through, you’ve seen me at my best and you’ve seen a lot of me at my worst, and you’re still here... I suspect that means you’re somewhat crazy, but anyway I’m so blessed I found you and I thank you so much for all the cooked dinners, the pick ups from the lab, hanging out with me for midnight protein sample collection... etc etc. I was trying to keep this short and sweet but I’ve already gone over into two pages so I better wrap it up.

TL;DR – Thanks everyone, you’re all great 😊