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Abstract

Autonomous robotic exploration is the task of building models of an
environment. This task requires robots to rapidly plan, re-plan and execute
their motion trajectories using sensory data that is provisional, uncertain and
noisy. To navigate successfully under these conditions, robots require carefully
designed motion controller software to guide the robot safely, quickly, reliably
and efficiently to intermediate exploration objectives. Conventionally, the basic
design of a motion controller is derived from first principles using simplified
models of motion control and then refined by hand in response to observed
performance. While this approach works in simpler applications, it becomes
more challenging and less effective as applications become more complex and
the number of variables to consider increases. Moreover, changes in robot
configuration and environment can entail costly redesign of the controller.
As such, we argue that this manual approach will become increasingly
impractical as our exploration tasks become more ambitious. In this thesis, we
address the development of motion control using techniques from Evolutionary
Computation (EC). Our approach is to view the motion control design as a
search problem, that can be subject to automation. In this work we present a
novel framework for evolving the core component of motion control based on
a form of EC called Grammatical Evolution (GE). GE systematically refines
populations of potential programatic solutions for a given problem, until an
effective solution is found. In our approach, we use GE to search automatically
for the best motion control for a given set of exploration tasks. GE allows the
user to constrain the search space for programs using Backus-Naur Form (BNF)
grammar specifications. We use these grammars to define the search space for
controllers for each exploration application. We conducted four experiments to
evaluate our proposed approach. Each experiment demonstrates the framework
in different exploration configurations and different requirements. All of our
experiments evolved controller code for unmanned ground vehicles (UGV’s).
Our first experiment evolved numerical parameters for the control of small
teams of UGV’s. Our second experiment evolved control for a single UGV
to optimise exploration performance and energy consumption. Our third
experiment evolved both the structure and parameters of the core control
function. Our fourth experiment evolved the input factor selection and
numerical constants for well-established navigation approach in progressively

viil



more realistic situations - culminating in deployment on real platforms.
In each of our experiments we found that the automated search approach
outperformed carefully designed handwritten control. Moreover the structure
of the evolved equation helped to reveal the nature of the trade-offs inherent in
the exploration task and what factors appear to be most relevant to informing
effective control.
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