Explicit dynamics finite element modelling of defective rolling element bearings

Sarabjeet Singh

Faculty of Engineering, Computer and Mathematical Sciences
School of Mechanical Engineering
The University of Adelaide
South Australia 5005
Australia

Explicit dynamics finite element modelling of defective rolling element bearings

Doctoral thesis

Acoustics, Vibration and Control Group

School of Mechanical Engineering

The University of Adelaide

South Australia 5005 Australia

Copyright © 2014 Sarabjeet Singh.

Printed in Australia.
Abstract

Rolling element bearings are widely used in rotating machinery across various industries and their failure is a dominant factor that contributes to machinery breakdown, consequently causing significant economic losses. Numerous experimental and analytical studies have been conducted in the past to understand the vibration response of non-defective and defective rolling element bearings, which have localised, extended, and distributed defects. Previous models have focused on simulating the defect-related impulses, which are generally observed in practice in measured vibration signals, and they implement envelope analysis to predict the significant defect-related frequency components.

The work presented in this thesis is focused on developing an understanding of the underlying physical mechanism by which defect-related impulses are generated in defective rolling element bearings. A novel explicit dynamics finite element (FE) model of a rolling element bearing having a localised outer raceway defect, line spall, was developed and solved using a commercially available FE software package, LS-DYNA. In addition to simulating the vibration response of the bearing, the dynamic contact interaction between the rolling elements and raceways of the bearing were modelled. An in-depth investigation of the rolling element-to-raceway contact forces was undertaken and variations in the forces, as the rolling elements traverse through the defect, were analysed. The contact force analysis has also led to the development of an understanding of the physics behind the low- and high-frequency characteristic vibration signatures generated by the rolling elements as they enter and exit a defect.
It was found that no impulse-like signals are generated during the gradual de-stressing or unloading of the rolling elements as they enter into a defect, which explains the low-frequency characteristics of the de-stressing event. In contrast, a burst of multiple, short-duration, force impulses is generated as the rolling elements re-stress between the raceways in the vicinity of the end of a defect, which explains the high-frequency impulsive characteristics of the re-stressing event. Based on the results of the FE analysis of the rolling element bearing, a mathematical model was developed to predict the gradual de-stressing of the rolling elements as they enter into a raceway defect.

Experimental testing on a rolling element bearing, commonly used in the railway industry, and having a line spall machined on its outer raceway was undertaken. The numerically modelled vibration response obtained using the FE model of the rolling element bearing was compared with the experimentally measured data, and a favourable agreement between the modelled and measured results was achieved. Numerical rolling element-to-raceway contact forces were compared with corresponding analytical results calculated using a quasi-static load distribution analytical model presented in this thesis.

A parametric study to investigate the effects of varying radial load and rotational speed on the vibration response of the bearing and rolling element-to-raceway contact forces was undertaken. It was found that the magnitude of the defect-related vibration impulses and contact forces generated during the re-stressing of the rolling elements increases with increasing load and speed.

The modelled contact forces were correlated with bearing vibration signals, and it was found that the amplitude of the contact forces and acceleration produced during the re-stressing of the rolling elements is much greater than when the rolling elements strike the defective surface. In other words, although a rolling element can impact the surface of a defect and generate a low amplitude acceleration signal, a much higher acceleration signal is generated when the rolling elements are re-stressed between the raceways as they exit from the defect. These higher acceleration signals, generated
during the re-stressing phase, are the ones that are generally observed in practice, and subsequently used for bearing diagnosis.

The work presented in this thesis has provided definitive physical and quantitative explanations for the impulsive acceleration signals measured when a bearing element passes through a defect.
This page intentionally contains only this sentence.
Statement of Originality

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Sarabjeet Singh
Date: 11 November 2014
This page intentionally contains only this sentence.
Acknowledgements

I would like to acknowledge the efforts of all the people who have contributed towards the work in this thesis. I would like to thank my supervisors Dr Carl Howard and Emeritus Professor Dr Colin Hansen, and external supervisors from Track IQTM, Dr Uwe Köpke and Dr David Rennison, for their guidance and support. I acknowledge the support of Track IQTM who provided extensive project facilities and funding. I am especially thankful to Dr David Rennison for providing me with additional funding without which it is unlikely that this thesis would have been possible. I am extremely grateful to Emeritus Professor Dr Colin Hansen and Dr Carl Howard, who also supervised me during my Master’s (by research) degree, for proof reading this thesis during their extremely busy times. Thanks to Dr Michael Kidner of Vipac Engineers and Scientists Ltd. for many useful discussions on the subject. Thanks to William Bevan for his help with the test rigs used in the experiments. Thanks also to Billy Constantine for his help with the use of supercomputers for the simulations. I also acknowledge the University of Adelaide for providing an APA scholarship, and Australian Research Council for supporting this project.

I would like to thank my parents S. Jagmehar Singh and S. Pawinder Kaur for their support to get me where I am today. Thanks also to my siblings, Arvinder and Gurwinder, for their support.

Most of all, I would like to thank my wife, Lovleen, and our three-year old daughter, Ujjalman, for their endless support and encouragement during the pursuit of my studies. I do sometimes regret spending very less time with my family, especially with
my daughter, during my studies, and I hope to make up for the elapsed time! Special
thanks to Lovleen and my parents for taking care of me when I accidentally squashed
my right-hand thumb in the test rig during the experimentation work. Working with
one hand for three months was tough!

Finally, thanks to the staff at Track IQ™ and Vipac for sharing many laughs: Greg
Huxtable, Jason Hollis, Robert Hudd, Andrew Meyer, Steve Lewis, Alan Wood, Alex
Cowley, and Michael Foo.
Contents

Abstract iii
Statement of Originality vii
Acknowledgements ix
Contents xi
List of Figures xvii
List of Tables xxxvii
Nomenclature xxxix

1 Introduction 1
1.1 Introduction and significance . 1
1.1.1 A wayside bearing acoustic monitor 3
1.1.2 A typical railway axle bearing . 5
1.1.3 Outboard bearings for freight and passenger vehicles 5
1.2 Motivation . 9
1.2.1 Need . 10
1.2.2 Scope . 11
1.3 Aims . 12
1.4 New knowledge . 13
1.5 Structure of the thesis . 14

2 Literature Survey 19
2.1 Introduction . 19
2.1.1 Structure . 20
2.2 Contact fatigue . 20
2.2.1 Fatigue spalling . 21
2.2.2 Rolling element bearing life . 24
2.3 Localised defects . 26
2.3.1 Periodic impulse-train models . 26
2.3.2 Quasi-periodic impulse-train models 30
2.3.3 Non-linear multi-body dynamic models 34
2.3.3.1 Rolling element–raceway contact force 45
2.3.4 Finite element models ... 47
 2.3.4.1 Combination of analytical and implicit FE models 48
 2.3.4.2 Implicit static models 49
 2.3.4.3 Explicit dynamic models 50

2.4 Extended defects .. 60

2.5 Defect-related vibration characteristics 62
 2.5.1 Entry- and exit-related transient features 63
 2.5.2 Double-impulse phenomenon 66
 2.5.2.1 Problems associated with the double-impulse phenomenon 68

2.6 Defect size estimation .. 69
 2.6.1 Limitations of using time separation between entry- and exit-related vibration signatures as a parameter for defect size estimation ... 71
 2.6.2 Entry- and exit-related vibration models 72

2.7 Summary of literature .. 73

2.8 Gaps in current knowledge 78

2.9 Gaps addressed in this thesis 82

3 Quasi-static Load Distribution in Rolling Element Bearings 85
 3.1 Introduction ... 85
 3.1.1 Aims ... 88
 3.1.2 New knowledge ... 88
 3.1.3 Structure .. 89

3.2 Hertz theory of elasticity 89

3.3 Static load distribution 92
 3.3.1 Hertzian contact force-displacement model 95
 3.3.2 Modelling results .. 98

3.4 Defective bearing ... 101
 3.4.1 Defect profile ... 104
 3.4.2 Instantaneous response at the edges of a defect 104
 3.4.2.1 Unrealistic point contacts at rolling element-to-raceway contact interfaces ... 107

3.5 Novel mathematical model for a gradual response at the edges of a defect 109
 3.5.1 Realistic line contacts at rolling element-to-raceway contact interfaces ... 109
 3.5.2 Gradual de-stressing of the rolling elements 110

3.6 Quasi-static load distribution 115
 3.6.1 Bearing kinematics ... 116
 3.6.2 Hertzian contact force-displacement model 116

3.7 Contact force analysis ... 118
 3.7.1 Event #1: Entry of the rolling elements into the defect — the ‘de-stressing’ phase ... 119
 3.7.2 Event #2: Traverse of the rolling elements through the defect .. 122
 3.7.3 Event #3: Re-distribution of a load on the rolling elements — the load compensation phase ... 122
3.7.4 Event #4: Exit of the rolling elements from the defect — the ‘re-stressing’ phase .. 123
3.8 Limitations of the quasi-static model .. 124
3.9 Conclusions .. 126

4 Explicit Finite Element Modelling of Rolling Element Bearings 129
4.1 Introduction .. 129
4.1.1 Aims .. 132
4.1.2 New knowledge .. 132
4.1.3 Structure ... 133
4.2 Numerical FE model of a defective rolling element bearing 134
4.2.1 Description of the model .. 134
4.2.2 Discretisation of the model ... 136
4.2.2.1 Compliance of conditions .. 136
4.2.2.2 Elements-per-wavelength criterion 137
4.2.3 Contact interactions ... 142
4.2.3.1 Contact–impact algorithm 143
4.2.4 Boundary conditions and loads 144
4.2.5 Analysis and control settings ... 148
4.2.5.1 Time step .. 148
4.3 Modal analysis .. 150
4.4 Numerical acceleration time-trace ... 154
4.4.1 Time domain analyses ... 154
4.5 Numerical contact noise — an artefact of the model 156
4.5.1 A short note on general numerical noise 159
4.5.2 Hypothesis for explaining the cause of numerical contact noise 162
4.5.3 Beating phenomenon ... 164
4.5.4 Filtering the rolling contact noise frequencies 167
4.6 Analyses of the modelled vibration response of the defective rolling element bearing .. 172
4.6.1 Time domain analysis ... 172
4.6.2 Time–frequency analysis ... 176
4.6.3 Frequency domain analysis .. 180
4.6.3.1 Spectral kurtosis .. 181
4.6.3.2 Kurtogram .. 184
4.6.3.3 Envelope analysis ... 186
4.6.3.4 Power spectrum .. 187
4.6.4 Summary of the numerical results 193
4.7 Conclusions .. 194

5 Experimental Verification ... 199
5.1 Introduction .. 199
5.1.1 Aims .. 200
5.1.2 Structure ... 201
5.2 Experimental setup .. 201
5.2.1 Test bearing with a manufactured line spall 201
5.2.2 Bearing test rig ... 202
5.3 Analyses of the measured vibration response of the test rolling element bearing ... 204
 5.3.1 Time domain analysis 205
 5.3.2 Time–frequency analysis 215
 5.3.3 Frequency domain analysis 222
 5.3.3.1 Spectral kurtosis 222
 5.3.3.2 Kurtogram .. 222
 5.3.3.3 Envelope analysis 224
 5.3.3.4 Frequency spectrum 230
 5.3.4 Spall size estimation 236
 5.3.5 Summary of the comparison between the measured and modelled results ... 237
5.4 Parametric effect of load and speed on the vibration response of the rolling element bearing ... 238
5.5 Conclusions .. 242

6 Analyses of Rolling Element–Raceway Contact Forces and Correlation with Bearing Vibrations ... 245
 6.1 Introduction .. 245
 6.1.1 Aims .. 247
 6.1.2 New knowledge .. 248
 6.1.3 Structure ... 249
 6.2 Validation of numerical Hertzian contact-related parameters ... 249
 6.2.1 Static contact forces 250
 6.2.2 Contact deformation 252
 6.2.3 Dynamic contact forces 256
 6.3 Contact force analysis .. 260
 6.3.1 Event #1: Entry of the rolling elements into the defect — the ‘de-stressing’ phase ... 261
 6.3.2 Event #2: Traverse of the rolling elements through the defect — impact of the rolling elements with the defective surface ... 263
 6.3.3 Event #3: Re-distribution of a load on the rolling elements — the load compensation phase ... 264
 6.3.4 Event #4: Exit of the rolling elements from the defect — the ‘re-stressing’ phase ... 265
 6.4 Correlating contact forces with bearing vibrations ... 268
 6.4.1 Cause of impulsive signals in acceleration results ... 268
 6.4.2 Physical mechanism that generates defect-related impulsive forces ... 284
 6.5 Novel outcomes from the results of the explicit dynamics FE analysis of the rolling element bearing ... 290
 6.6 Parametric effect of load and speed on the rolling element-to-raceway contact forces ... 291
 6.6.1 Effect on static contact forces ... 292
 6.6.2 Effect on dynamic contact forces ... 296
Contents

6.6.2.1 Comparison of the defect-related dynamic contact forces with the static load distribution ... 303
6.7 Conclusions .. 308

7 Summary and Conclusions ... 311
7.1 Summary ... 311
7.2 Conclusions ... 315
7.3 Recommendations for future work .. 315

A Publications Arising from this Thesis .. 319
B Various Types of Bearing Damage ... 321
B.1 Wear — foreign material ... 321
B.1.1 Abrasive wear ... 322
B.1.2 Pitting and bruising ... 322
B.1.3 Grooving ... 322
B.1.4 Debris contamination .. 322
B.2 Etching — corrosion .. 323
B.3 Inadequate lubrication ... 323
B.4 Brinell and impact damage ... 323
B.5 False brinelling .. 324
B.6 Burns from electric current .. 324

C Bearing Defect Frequencies ... 327

D Implicit and Explicit Time Integration Schemes 329
D.1 Description of structural and other second-order systems 330
D.1.1 Newmark time integration scheme for nonlinear systems 331
D.1.2 Central difference time integration scheme for nonlinear systems 333

E Material Model for the Explicit FE Model of the Rolling Element Bearing ... 335

F Contact–Impact Analysis of a Sphere with Plate using LS-DYNA 337
F.1 Introduction .. 338
F.2 Analytical solution ... 338
F.3 Numerical modelling .. 341
F.3.1 Building the model ... 341
F.3.2 Meshing the model .. 341
F.3.3 Contact interactions ... 342
F.3.3.1 Contact–impact algorithm .. 343
F.3.4 Boundary conditions and loads .. 344
F.3.5 Analysis and control settings ... 345
F.4 Numerical FE results ... 345
F.4.1 Influence of different mesh sizes .. 346
F.4.2 Altering the stiffness penalty factor ... 348
F.4.2.1 Mesh element size of 0.2 mm ... 348
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.4.2.2</td>
<td>Mesh element size of 0.1 mm</td>
<td>352</td>
</tr>
<tr>
<td>F.4.2.3</td>
<td>Mesh element size of 0.05 mm</td>
<td>356</td>
</tr>
<tr>
<td>F.5</td>
<td>Conclusions</td>
<td>359</td>
</tr>
</tbody>
</table>

References 361
List of Figures

1.1 A photo of the RailBAM® system [10] showing the wayside cabinets along with a few sensors (courtesy: Track IQ™ [11]). 3
1.2 A photo of the TADS® system [12] showing the wayside cabinets (courtesy: TTCT® [13]). .. 3
1.3 A package bearing unit (courtesy: The Timken Company [54]). 6
 (a) An assembled package bearing unit showing various components. 6
 (b) A disassembled package bearing unit ... 6
1.4 Schematics of axle–wheelsets highlighting the location of outboard and inboard bearings using circular markers [32, Chapter 3, page 41]. 6
1.5 An outboard configuration of a package bearing unit on a railway freight vehicle (courtesy: Track IQ™ [11]). ... 7
 (a) A package bearing unit mounted onto the axle of a railway freight wagon .. 7
 (b) A sectional view of the package bearing unit shown in Figure 1.5a. 7
1.6 A three-piece bogie for railway freight vehicles [32, Chapter 3, page 70]. 7
1.7 An outboard configuration of a package bearing unit on a railway passenger vehicle (courtesy: Track IQ™ [11]). 9
 (a) A trailing arm suspension system that incorporates a bearing is connected to a railway passenger vehicle 9
 (b) A casing of a suspension system that encapsulates a bearing is connected to a railway passenger vehicle 9
2.1 Fatigue spalls on various elements of rolling element bearings (courtesy: The Timken Company [54]). ... 22
 (a) A few point spalls on the rolling elements 22
 (b) An area spall on the inner raceway .. 22
 (c) An area spall on the outer raceway .. 22
 (d) An area spall on the outer raceway .. 22
2.2 Various types of bearing damage (courtesy: The Timken Company [54]). 23
 (a) Pitting due to hard particle contamination of lubricant 23
 (b) Bruising due to particle contamination of lubricant 23
 (c) Corrosion due to etching .. 23
 (d) Severe corrosion due to etching ... 23
 (e) Race deformation due to excessive heat generation 23
 (f) Complete bearing lockup due to inadequate lubrication 23
List of Figures

(g) Impact damage due to shock loading. .. 23
(h) True brinelling due to shock loading. 23
(i) Electric arc fluting. ... 23
(j) Electric arc pitting. ... 23

2.3 A 2-D schematic of a rolling element bearing comprising an outer ring,
an inner ring, a few rolling elements, and a geometric rectangular defect
on the outer raceway. ... 64

2.4 Experimentally measured acceleration response of a rolling element (ball)
bearing having an outer raceway defect of 3.0 mm, taken from references
[161, 162]. .. 65

2.5 Band-pass filtered accelerometer time-trace from a helicopter gearbox
bearing having an outer raceway spall, taken from references [163, 164]. 66

2.6 Band-pass filtered signals (one complete rotation of the shaft) with a
spall in the outer race, taken from reference [105]: (a) measured, (b)
simulated. .. 67

2.7 Schematics of a partial defective raceway of a rolling element bearing
and a few rolling elements. .. 72
(a) A localised defect whose length L_d is smaller than the angular
spacing θ_r between two consecutive rolling elements. 72
(b) An extended defect whose length L_e is greater than the angular
spacing θ_r between two consecutive rolling elements. 72

3.1 Schematics of the geometry of two non-conformal isotropic elastic solid
bodies ‘1’ and ‘2’ in contact. .. 90
(a) A 3-D representation of the unloaded and undeformed bodies ‘1’
and ‘2’ during the initial state of their contact at point o'. 90
(b) A 2-D representation (sectional view in the x-y plane) of the nor-
mally loaded bodies with a radial force W, showing the corre-
sponding deformations δ_1 and δ_2 in the vicinity of their point of
initial contact o', resulting in the generation of a finite contact area. 90

3.2 2-D schematics of a non-defective rolling element bearing, comprising
an outer ring, an inner ring, and a few rolling elements, in different
arrangements. ... 94
(a) A concentric arrangement of the outer and inner rings, highlighting
a uniform radial clearance of $\varsigma/2$ between the outer raceway and
rolling elements. ... 94
(b) An initial contact between the outer raceway and a certain number
of rolling elements due to the displacement of the outer ring by the
amount of the radial clearance $\varsigma/2$. 94
(c) An interference between the raceways and rolling elements due to
the application of a radial load W along the y-axis, resulting in the
deformation of the rolling elements, and outer and inner raceways. 94

3.3 2-D schematics illustrating the load distribution in a rolling element
bearing for different clearances. .. 97
(a) $\epsilon = 0.5$, $\psi'_l = \pm 90^\circ$ for zero clearance. 97
(b) $0 < \epsilon < 0.5$, $0^\circ < \psi'_l < 90^\circ$ for positive clearance. 97
0.5 < \epsilon < 1, 90^\circ < \psi'_l < 180^\circ \text{ for negative clearance or preload.} \hspace{1cm} 97

3.4 Analytically estimated static contact force (load) distribution on the rolling elements of the non-defective rolling element bearing for a radial load \(W \) of 50 kN. The height of the vertical bars corresponds to the magnitude of the contact forces, whereas the red-coloured, dashed lines depict the load profiles. \hspace{1cm} 100
(a) Horizontal contact force (load) distribution. \hspace{1cm} 100
(b) Vertical contact force (load) distribution. \hspace{1cm} 100

3.5 A 2-D schematic of a rolling element bearing comprising an outer ring, an inner ring, a few rolling elements, and a localised rectangular-shaped defect centrally located at the top of the outer raceway; the angular extent and height of the defect are denoted by \(\Delta \psi_d \) and \(H_d \), respectively. The rolling elements filled using solid gray colour represent loaded elements, whereas the others represent non-loaded elements. \hspace{1cm} 103

3.6 A rectangular-shaped step-like profile of the bearing raceway defect shown in Figure 3.5. \hspace{1cm} 105

3.7 Analytically estimated rolling element-to-outer raceway contact forces for a non-defective and a defective rolling element bearing for a radial load \(W \) of 50 kN, depicting the instantaneous step-like decrease and subsequent increase in the contact forces for simulating the entry and exit of a rolling element into and out of the defect, respectively. The gray-coloured shaded area highlights the angular extent \(\Delta \psi_d \) of the rectangular-shaped defect. \hspace{1cm} 106
(a) Horizontal contact forces. \hspace{1cm} 106
(b) Vertical contact forces. \hspace{1cm} 106

3.8 A partial and zoomed view of the schematic in Figure 3.5, showing the outer raceway defect and a rolling element in its vicinity; the consideration of point contacts between the rolling element and raceways explains the erroneous instantaneous step-like changes in the rolling element-to-raceway contact forces as implemented by previous researchers. \hspace{1cm} 108

3.9 A partial and zoomed view of the schematic in Figure 3.5, showing an outer raceway defect and a rolling element in the vicinity of the defect; the realistic line contacts (width \(2b \) and angular extent \(\Delta \psi_{cw} \)) between the rolling element and raceways will result in the gradual loss of contact as the rolling element rolls over the defect. \hspace{1cm} 110

3.10 Comparison of the analytically estimated rolling element-to-outer raceway contact forces, highlighting the difference between the erroneous instantaneous step-like and gradual response at the edges of the defect for simulating the entry and exit of a rolling element into and out of the defect, respectively. The gray-coloured shaded area highlights the angular extent \(\Delta \psi_d \) of the rectangular-shaped defect. \hspace{1cm} 114
(a) Horizontal contact forces. \hspace{1cm} 114
(b) Vertical contact forces. \hspace{1cm} 114
3.11 Comparison of the analytically estimated rolling element-to-outer raceway contact width and area, highlighting the difference between the erroneous instantaneous step-like and gradual response at the edges of the defect for simulating the entry and exit of a rolling element into and out of the defect, respectively. The gray-coloured shaded area highlights the angular extent $\Delta \psi_d$ of the rectangular-shaped defect.

3.12 Analytically estimated rolling element-to-outer raceway contact forces for a non-defective and a defective rolling element bearing for a radial load W of 50 kN, obtained using the developed quasi-static analytical model. The difference between the erroneous instantaneous step-like and gradual response at the edges of the defect, which is not clearly visible here, is shown in Figure 3.13.

(a) Horizontal contact forces.
(b) Vertical contact forces.

3.13 The zoomed version of the quasi-static rolling element-to-outer raceway contact forces in Figure 3.12, highlighting the difference between the erroneous instantaneous and gradual responses.

(a) Horizontal contact forces.
(b) Vertical contact force.

3.14 Analytically estimated rolling element-to-outer raceway contact forces as the rolling elements traverse through the outer raceway defect for a radial load W of 50 kN and rotational speed n_s of 500 RPM.

(a) Horizontal contact forces.
(b) Vertical contact forces.

4.1 Photos of actual defects on the outer raceway of axle rolling element bearings generated during operational use in the railway industry [378] (courtesy: Track IQ™ [11]).

(a) A line spall.
(b) An extended spall.

4.2 Images of the 2-D finite element model of the defective rolling element bearing.

(a) The meshed FE model of the bearing along with the adapter.
(b) A partially zoomed version of Figure 4.2a, showing the 1-element deep rectangular defect on the outer raceway, highlighted using the ellipse; the centre of the rolling element to the left-hand side of the defect is offset by 4° from the y-axis.

4.3 Schematics of a ball on a flat surface.

(a) Frictionless ball–surface contact causes the ball to slide.
(b) Frictional ball–surface contact causes the ball to roll.

4.4 Comparison of the numerically and analytically estimated natural frequencies of the outer ring of the FE model of the rolling element bearing for two different boundary conditions.

(a) No boundary condition at the edges of the outer ring.
(b) Edges of the outer ring were simply supported.
List of Figures

4.5 Numerically modelled, unfiltered, acceleration a_y time-trace for a node located on the outer surface of the outer ring of the FE model of the rolling element bearing for a radial load W of 50 kN and a rotational speed n_s of 500 RPM. ... 155

4.6 Power spectral density of the nodal acceleration a_y time-trace shown in Figure 4.5, highlighting one of the dominant numerical noise frequencies, $f_{noise}^o = 4671$ Hz observed in the FE simulation results. .. 157

4.7 Partial time-traces of the numerically modelled, unfiltered, acceleration a_y signal shown in Figure 4.5 zoomed between the defect-related impulses. The time separation between the consecutive circular- and square-shaped data cursor pairs corresponds to the numerical noise frequency component of 4545 Hz. ... 158
 (a) Time-trace zoomed between the first and second defect-related impulses. ... 158
 (b) Time-trace zoomed between the second and third defect-related impulses. ... 158

4.8 Variation in the time step Δt_{stable} as the numerical solution advances. 161

4.9 A 2-D schematic of a polygonised rolling element having 15 edges or points (not to scale). ... 162

4.10 Demonstration of the beating effect due to the interference of two sinusoidal waves at the two analytically estimated rolling contact noise frequencies $f_{noise}^o = 4712$ Hz and $f_{noise}^i = 3864$ Hz. ... 166
 (a) The resultant sinusoidal wave. ... 166
 (b) The sinusoidal wave in Figure 4.10a along with its envelope zoomed for clarity. ... 166

4.11 Frequency response of the second-order notch filter designed to eliminate the rolling element-to-outer raceway rolling contact noise at $f_{noise}^o = 4671$ Hz from the numerical simulation results. ... 168
 (a) Magnitude response of the filter. ... 168
 (b) Phase response of the filter. ... 168

4.12 Pole-zero plot of the second-order notch filter shown in Figure 4.11. ... 169

4.13 Effect of filtering out the rolling element-to-outer raceway rolling contact noise at $f_{noise}^o = 4671$ Hz on the numerically modelled acceleration a_y time-trace shown in Figure 4.5 for a radial load W of 50 kN and rotational speed n_s of 500 RPM. ... 169

4.14 Power spectrum of the numerically modelled, unfiltered and notch filtered acceleration a_y time-traces shown in Figure 4.13 for a radial load W of 50 kN and rotational speed n_s of 500 RPM. ... 171
 (a) Power spectral densities of the unfiltered and notch filtered acceleration a_y time-traces, highlighting the tonal noise at $f_{noise}^o = 4671$ Hz for the unfiltered time-trace. ... 171
 (b) Comparison of the power spectral densities shown in Figure 4.14a on a zoomed frequency scale of 4–6 kHz, highlighting the attenuation of the tonal noise by 25 dB after filtering. ... 171
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.15</td>
<td>Numerically modelled, unfiltered and notch filtered, velocity v_y time-traces for a node located on the outer surface of the outer ring of the FE model of the bearing for a radial load W of 50 kN and rotational speed n_s of 500 RPM.</td>
<td>173</td>
</tr>
<tr>
<td>4.16</td>
<td>Numerically modelled, unfiltered and notch filtered, displacement u_y time-traces for a node located on the outer surface of the outer ring of the FE model of the bearing for a radial load W of 50 kN and rotational speed n_s of 500 RPM.</td>
<td>173</td>
</tr>
<tr>
<td>4.17</td>
<td>Numerically modelled, notch filtered, velocity v_y time-trace shown in Figure 4.15, highlighting the low-frequency de-stressing (entry) and high-frequency re-stressing (exit) events using the elliptical and rectangular markers, respectively.</td>
<td>175</td>
</tr>
<tr>
<td>4.18</td>
<td>Numerically modelled, notch filtered, displacement u_y time-trace shown in Figure 4.16, highlighting the low-frequency de-stressing (entry) and high-frequency re-stressing (exit) events using the elliptical and rectangular markers, respectively.</td>
<td>175</td>
</tr>
<tr>
<td>4.19</td>
<td>A spectrogram of the numerically modelled, unfiltered, acceleration a_y time-trace shown in Figure 4.5, highlighting the low-frequency de-stressing and high-frequency re-stressing events using the elliptical and rectangular markers, respectively.</td>
<td>178</td>
</tr>
<tr>
<td>4.20</td>
<td>A spectrogram of the numerically modelled, unfiltered, velocity v_y time-trace shown in Figure 4.15, highlighting the low-frequency de-stressing and high-frequency re-stressing events using the elliptical and rectangular markers, respectively.</td>
<td>178</td>
</tr>
<tr>
<td>4.21</td>
<td>A spectrogram of the numerically modelled, unfiltered, displacement u_y time-trace shown in Figure 4.16, highlighting the low-frequency de-stressing and high-frequency re-stressing events using the elliptical and rectangular markers, respectively.</td>
<td>179</td>
</tr>
<tr>
<td>4.22</td>
<td>Numerically modelled, unfiltered, acceleration a_y time-trace shown in Figure 4.13 has been low-pass filtered, highlighting the low-frequency de-stressing (entry) and re-stressing (exit) events using the elliptical and rectangular markers, respectively.</td>
<td>179</td>
</tr>
<tr>
<td>4.23</td>
<td>A spectral kurtosis plot of the numerically modelled, notch filtered, acceleration a_y time-trace shown in Figure 4.13 corresponding to a radial load W of 50 kN and rotational speed n_s of 500 RPM for various window lengths N_w.</td>
<td>183</td>
</tr>
<tr>
<td>4.24</td>
<td>A spectral kurtosis plot of the numerically modelled, notch filtered, velocity v_y time-trace shown in Figure 4.17 corresponding to a radial load W of 50 kN and rotational speed n_s of 500 RPM for various window lengths N_w.</td>
<td>183</td>
</tr>
<tr>
<td>4.25</td>
<td>A spectral kurtosis plot of the numerically modelled, notch filtered, displacement u_y time-trace shown in Figure 4.18 corresponding to a radial load W of 50 kN and rotational speed n_s of 500 RPM for various window lengths N_w.</td>
<td>184</td>
</tr>
</tbody>
</table>
List of Figures

4.26 A kurtogram of the numerically modelled, notch filtered, acceleration a_y time-trace shown in Figure 4.13 for a radial load W of 50 kN and rotational speed n_s of 500 RPM. ... 185

4.27 A kurtogram of the numerically modelled, notch filtered, velocity v_y time-trace shown in Figure 4.17 for a radial load W of 50 kN and rotational speed n_s of 500 RPM. ... 185

4.28 A kurtogram of the numerically modelled, notch filtered, displacement u_y time-trace shown in Figure 4.18 for a radial load W of 50 kN and rotational speed n_s of 500 RPM. ... 186

4.29 Envelope (demodulated) power spectrum of the numerically modelled, band-pass filtered, acceleration a_y time-trace shown in Figure 4.13 for $W = 50$ kN and $n_s = 500$ RPM; the vertical lines indicate the fundamental f_{bpo} and its harmonics. ... 188

4.30 Envelope (demodulated) power spectrum of the numerically modelled, band-pass filtered, velocity v_y time-trace shown in Figure 4.17 for $W = 50$ kN and $n_s = 500$ RPM; the vertical lines indicate the fundamental f_{bpo} and its harmonics. ... 188

4.31 Envelope (demodulated) power spectrum of the numerically modelled, band-pass filtered, displacement u_y time-trace shown in Figure 4.18 for $W = 50$ kN and $n_s = 500$ RPM; the vertical lines indicate the fundamental f_{bpo} and its harmonics. ... 189

4.32 Power spectrum of the numerically modelled, unfiltered and notch filtered, velocity v_y time-traces shown in Figure 4.15 for a radial load W of 50 kN and rotational speed n_s of 500 RPM. 190

(a) Power spectral densities of the unfiltered and notch filtered velocity v_y time-traces, highlighting the tonal noise at $f_{noise}^0 = 4671$ Hz for the unfiltered time-trace. 190

(b) Comparison of the power spectral densities shown in Figure 4.32a on a zoomed frequency scale of 4–6 kHz, highlighting the attenuation of the tonal noise by 25 dB after filtering. 190

4.33 Power spectrum of the numerically modelled, unfiltered and notch filtered, displacement u_y time-traces shown in Figure 4.16 for a radial load W of 50 kN and rotational speed n_s of 500 RPM. 191

(a) Power spectral densities of the unfiltered and notch filtered displacement u_y time-traces, highlighting the tonal noise at $f_{noise}^0 = 4671$ Hz for the unfiltered time-trace. 191

(b) Comparison of the power spectral densities shown in Figure 4.33a on a zoomed frequency scale of 4–6 kHz, highlighting the attenuation of the tonal noise by 25 dB after filtering. 191

4.34 One-third octave band spectrum of the numerically modelled, unfiltered and notch filtered, acceleration a_y time-traces shown in Figure 4.13 for a radial load W of 50 kN and rotational speed n_s of 500 RPM. 192

4.35 One-third octave band spectrum of the numerically modelled, unfiltered and notch filtered, velocity v_y time-traces shown in Figure 4.15 for a radial load W of 50 kN and rotational speed n_s of 500 RPM. 192
4.36 One-third octave band spectrum of the numerically modelled, unfiltered and notch filtered, displacement u_y time-traces shown in Figure 4.16 for a radial load W of 50 kN and rotational speed n_s of 500 RPM. 193

5.1 A photo of the line spall of circumferential length $L_d = 10$ mm and depth $H_d = 0.2$ mm machined on the outer raceway of the bearing using electric spark erosion. 202

5.2 A photo of the bearing test rig used to conduct the testing of the defective rolling element bearing. 203

5.3 Experimentally measured acceleration a_y of the defective test bearing for $W = 50$ kN and $n_s = 500$ RPM, highlighting the de-stressing and re-stressing events using the elliptical and rectangular markers, respectively. 206

5.4 Numerically modelled acceleration a_y time-trace that has been notch and low-pass filtered as shown in Figures 4.13 and 4.22, respectively; the de-stressing and re-stressing events are highlighted using the elliptical and rectangular markers, respectively. 206

5.5 Comparison of the experimentally measured and numerically modelled acceleration a_y time-traces of the rolling element bearing for a rotational speed n_s of 500 RPM, and radial loads W of 25 kN and 80 kN. 211

(a) Measured acceleration a_y time-trace for $W = 25$ kN and $n_s = 500$ RPM. 211

(b) Modelled acceleration a_y time-trace for $W = 25$ kN and $n_s = 500$ RPM. 211

(c) Measured acceleration a_y time-trace for $W = 80$ kN and $n_s = 500$ RPM. 211

(d) Modelled acceleration a_y time-trace for $W = 80$ kN and $n_s = 500$ RPM. 211

5.6 Comparison of the experimentally measured and numerically modelled acceleration a_y time-traces of the rolling element bearing for a radial load W of 25 kN, and rotational speeds n_s of 300 RPM and 800 RPM. 212

(a) Measured acceleration a_y time-trace for $W = 25$ kN and $n_s = 300$ RPM. 212

(b) Modelled acceleration a_y time-trace for $W = 25$ kN and $n_s = 300$ RPM. 212

(c) Measured acceleration a_y time-trace for $W = 25$ kN and $n_s = 800$ RPM. 212

(d) Modelled acceleration a_y time-trace for $W = 25$ kN and $n_s = 800$ RPM. 212

5.7 Comparison of the experimentally measured and numerically modelled acceleration a_y time-traces of the rolling element bearing for a radial load W of 50 kN, and rotational speeds n_s of 300 RPM and 800 RPM. 213

(a) Measured acceleration a_y time-trace for $W = 50$ kN and $n_s = 300$ RPM. 213

(b) Modelled acceleration a_y time-trace for $W = 50$ kN and $n_s = 300$ RPM. 213
List of Figures

(c) Measured acceleration a_y time-trace for $W = 50$ kN and $n_s = 800$ RPM. ... 213
(d) Modelled acceleration a_y time-trace for $W = 50$ kN and $n_s = 800$ RPM. ... 213

5.8 Comparison of the experimentally measured and numerically modelled acceleration a_y times-traces of the rolling element bearing for a radial load W of 50 kN, and rotational speeds n_s of 300 RPM and 800 RPM. .. 214
(a) Measured acceleration a_y time-trace for $W = 80$ kN and $n_s = 300$ RPM. .. 214
(b) Modelled acceleration a_y time-trace for $W = 80$ kN and $n_s = 300$ RPM. .. 214
(c) Measured acceleration a_y time-trace for $W = 80$ kN and $n_s = 800$ RPM. .. 214
(d) Modelled acceleration a_y time-trace for $W = 80$ kN and $n_s = 800$ RPM. .. 214

5.9 A spectrogram of the experimentally measured acceleration a_y time-trace shown in Figure 5.3 for a radial load W of 50 kN and rotational speed n_s of 500 RPM, highlighting the de-stressing and re-stressing events using the elliptical and rectangular markers, respectively. ... 216

5.10 Comparison of the spectrograms of the experimentally measured and numerically modelled acceleration a_y time-traces of the rolling element bearing for a rotational speed n_s of 500 RPM, and radial loads W of 25 kN and 80 kN. ... 218
(a) A spectrogram of the measured acceleration a_y time-trace shown in Figure 5.5a for $W = 25$ kN and $n_s = 500$ RPM. ... 218
(b) A spectrogram of the modelled acceleration a_y time-trace shown in Figure 5.5b for $W = 25$ kN and $n_s = 500$ RPM. ... 218
(c) A spectrogram of the measured acceleration a_y time-trace shown in Figure 5.5c for $W = 80$ kN and $n_s = 500$ RPM. ... 218
(d) A spectrogram of the modelled acceleration a_y time-trace shown in Figure 5.5d for $W = 80$ kN and $n_s = 500$ RPM. ... 218

5.11 Comparison of the spectrograms of the experimentally measured and numerically modelled acceleration a_y time-traces of the rolling element bearing for a radial load W of 25 kN, and rotational speeds n_s of 300 RPM and 800 RPM. ... 219
(a) A spectrogram of the measured acceleration a_y time-trace shown in Figure 5.6a for $W = 25$ kN and $n_s = 300$ RPM. ... 219
(b) A spectrogram of the modelled acceleration a_y time-trace shown in Figure 5.6b for $W = 25$ kN and $n_s = 300$ RPM. ... 219
(c) A spectrogram of the measured acceleration a_y time-trace shown in Figure 5.6c for $W = 25$ kN and $n_s = 800$ RPM. ... 219
(d) A spectrogram of the modelled acceleration a_y time-trace shown in Figure 5.6d for $W = 25$ kN and $n_s = 800$ RPM. ... 219
5.12 Comparison of the spectrograms of the experimentally measured and numerically modelled acceleration a_y time-traces of the rolling element bearing for a radial load W of 50 kN, and rotational speeds n_s of 300 RPM and 800 RPM. .. 220
(a) A spectrogram of the measured acceleration a_y time-trace shown in Figure 5.7a for $W = 50$ kN and $n_s = 300$ RPM. 220
(b) A spectrogram of the modelled acceleration a_y time-trace shown in Figure 5.7b for $W = 50$ kN and $n_s = 300$ RPM. 220
(c) A spectrogram of the measured acceleration a_y time-trace shown in Figure 5.7c for $W = 50$ kN and $n_s = 800$ RPM. 220
(d) A spectrogram of the modelled acceleration a_y time-trace shown in Figure 5.7d for $W = 50$ kN and $n_s = 800$ RPM. 220

5.13 Comparison of the spectrograms of the experimentally measured and numerically modelled acceleration a_y time-traces of the rolling element bearing for a radial load W of 80 kN, and rotational speeds n_s of 300 RPM and 800 RPM. .. 221
(a) A spectrogram of the measured acceleration a_y time-trace shown in Figure 5.8a for $W = 80$ kN and $n_s = 300$ RPM. 221
(b) A spectrogram of the modelled acceleration a_y time-trace shown in Figure 5.8b for $W = 80$ kN and $n_s = 300$ RPM. 221
(c) A spectrogram of the measured acceleration a_y time-trace shown in Figure 5.8c for $W = 80$ kN and $n_s = 800$ RPM. 221
(d) A spectrogram of the modelled acceleration a_y time-trace shown in Figure 5.8d for $W = 80$ kN and $n_s = 800$ RPM. 221

5.14 A spectral kurtosis plot of the experimentally measured acceleration a_y time-trace shown in Figure 5.3 corresponding to a radial load W of 50 kN and rotational speed n_s of 500 RPM for various window lengths N_w. 223

5.15 A kurtogram of the experimentally measured acceleration a_y time-trace shown in Figure 5.3 for a radial load W of 50 kN and rotational speed n_s of 500 RPM. .. 223

5.16 Envelopes of the experimentally measured acceleration a_y time-traces, for a rotational speed n_s of 500 RPM, and radial loads W of 25 kN, 50 kN and 80 kN, estimated using the Hilbert transform H of the band-pass filtered acceleration signals from 18–23 kHz. 225
(a) Band-pass filtered envelope of the measured acceleration a_y time-trace shown in Figure 5.5a for $W = 25$ kN and $n_s = 500$ RPM. 225
(b) Band-pass filtered envelope of the measured acceleration a_y time-trace shown in Figure 5.3 for $W = 50$ kN and $n_s = 500$ RPM. 225
(c) Band-pass filtered envelope of the measured acceleration a_y time-trace shown in Figure 5.5c for $W = 80$ kN and $n_s = 500$ RPM. 225

5.17 Comparison of the envelope (demodulated) power spectra of the experimentally measured and numerically modelled acceleration a_y time-traces of the rolling element bearing for a rotational speed n_s of 500 RPM, and radial loads W of 25 kN, 50 kN and 80 kN; the vertical lines in the subplots correspond to the fundamental f_{bpe} and its harmonics. 226
(a) Measured and modelled envelope power spectra for $W = 25$ kN and $n_s = 500$ RPM. .. 226
(b) Measured and modelled envelope power spectra for $W = 50$ kN and $n_s = 500$ RPM. .. 226
(c) Measured and modelled envelope power spectra for $W = 80$ kN and $n_s = 500$ RPM. .. 226

5.18 Comparison of the envelope (demodulated) power spectra of the experimentally measured and numerically modelled acceleration a_y time-traces of the rolling element bearing for a rotational speed n_s of 300 RPM, and radial loads W of 25 kN, 50 kN and 80 kN; the vertical lines in the subplots correspond to the fundamental f_{bpo} and its harmonics. 228
(a) Measured and modelled envelope power spectra for $W = 25$ kN and $n_s = 300$ RPM. .. 228
(b) Measured and modelled envelope power spectra for $W = 50$ kN and $n_s = 300$ RPM. .. 228
(c) Measured and modelled envelope power spectra for $W = 80$ kN and $n_s = 300$ RPM. .. 228

5.19 Comparison of the envelope (demodulated) power spectra of the experimentally measured and numerically modelled acceleration a_y time-traces of the rolling element bearing for a rotational speed n_s of 800 RPM, and radial loads W of 25 kN, 50 kN and 80 kN; the vertical lines in the subplots correspond to the fundamental f_{bpo} and its harmonics. 229
(a) Measured and modelled envelope power spectra for $W = 25$ kN and $n_s = 800$ RPM. .. 229
(b) Measured and modelled envelope power spectra for $W = 50$ kN and $n_s = 800$ RPM. .. 229
(c) Measured and modelled envelope power spectra for $W = 80$ kN and $n_s = 800$ RPM. .. 229

5.20 Comparison of the power spectral densities of the experimentally measured and numerically modelled, notch filtered, acceleration a_y time-traces of the rolling element bearing shown in Figures 5.3 and 5.4, respectively, for a radial load W of 50 kN and rotational speed n_s of 500 RPM. 231

5.21 Comparison of the one-third octave band spectra of the experimentally measured and numerically modelled, notch filtered, acceleration a_y time-traces of the rolling element bearing for a rotational speed n_s of 500 RPM, and radial loads W of 25 kN, 50 kN and 80 kN. 232
(a) Measured and modelled acceleration spectra for $W = 25$ kN and $n_s = 500$ RPM. .. 232
(b) Measured and modelled acceleration spectra for $W = 50$ kN and $n_s = 500$ RPM. .. 232
(c) Measured and modelled acceleration spectra for $W = 80$ kN and $n_s = 500$ RPM. .. 232
5.22 Comparison of the one-third octave band spectra of the experimentally measured and numerically modelled, notch filtered, acceleration a_y time-traces of the rolling element bearing for a rotational speed n_s of 300 RPM, and radial loads W of 25 kN, 50 kN and 80 kN.
(a) Measured and modelled acceleration spectra for $W = 25$ kN and $n_s = 300$ RPM.
(b) Measured and modelled acceleration spectra for $W = 50$ kN and $n_s = 300$ RPM.
(c) Measured and modelled acceleration spectra for $W = 80$ kN and $n_s = 300$ RPM.

5.23 Comparison of the one-third octave band spectra of the experimentally measured and numerically modelled, notch filtered, acceleration a_y time-traces of the rolling element bearing for a rotational speed n_s of 800 RPM, and radial loads W of 25 kN, 50 kN and 80 kN.
(a) Measured and modelled acceleration spectra for $W = 25$ kN and $n_s = 800$ RPM.
(b) Measured and modelled acceleration spectra for $W = 50$ kN and $n_s = 800$ RPM.
(c) Measured and modelled acceleration spectra for $W = 80$ kN and $n_s = 800$ RPM.

5.24 Comparison of the envelope (demodulated) power spectra of the experimentally measured and numerically modelled acceleration a_y time-traces of the rolling element bearing for radial loads W of 25 kN, 50 kN and 80 kN, and rotational speeds n_s of 300 RPM, 500 RPM and 800 RPM. For clarity, the scale of y-axis in subplots (a–d) ranges from 0–400 (m/s2)2/Hz compared to 0–1200 (m/s2)2/Hz in subplots (e, f). The vertical lines in the subplots correspond to the fundamental f_{bpo} and its harmonics.
(a) Measured envelope power spectra for $n_s = 300$ RPM, and $W = 25$ kN, 50 kN and 80 kN.
(b) Modelled envelope power spectra for $n_s = 300$ RPM, and $W = 25$ kN, 50 kN and 80 kN.
(c) Measured envelope power spectra for $n_s = 500$ RPM, and $W = 25$ kN, 50 kN and 80 kN.
(d) Modelled envelope power spectra for $n_s = 500$ RPM, and $W = 25$ kN, 50 kN and 80 kN.
(e) Measured envelope power spectra for $n_s = 800$ RPM, and $W = 25$ kN, 50 kN and 80 kN.
(f) Modelled envelope power spectra for $n_s = 800$ RPM, and $W = 25$ kN, 50 kN and 80 kN.

5.25 Comparison of the envelope (demodulated) power spectrum levels at the fundamental outer raceway defect frequency f_{bpo} for the experimentally measured and numerically modelled acceleration a_y time-traces shown in Figure 5.24 for varying radial load W and rotational speed n_s.

xxviii
List of Figures

6.1 Comparison of the analytically and numerically modelled contact forces at the rolling element-to-outer raceway contact interfaces for a radial load W of 50 kN; the numerical values correspond to mechanically stressed levels at time $t = 0$, prior to the commencement of the dynamic analysis. 251
(a) Horizontal contact force (load) F_x distribution. 251
(b) Vertical contact force (load) F_y distribution. 251

6.2 Comparison of the analytically and numerically modelled displacement at the rolling element-to-outer raceway contact interfaces for a radial load W of 50 kN; the numerical values correspond to mechanically stressed levels at time $t = 0$, prior to the commencement of the dynamic analysis. 253
(a) Horizontal contact displacement δ_x. 253
(b) Vertical contact displacement δ_y. 253

6.3 Comparison of the analytically and numerically modelled contact width at the rolling element-to-outer raceway contact interfaces for a radial load W of 50 kN; the numerical values correspond to mechanically stressed levels at time $t = 0$, prior to the commencement of the dynamic analysis. 255
(a) Horizontal contact width $2b_x$. 255
(b) Vertical contact width $2b_y$. 255

6.4 Comparison of the numerically (notch filtered) and analytically modelled horizontal rolling element-to-outer raceway contact forces F_x as three rolling elements $j = 1, 2, 3$ traverse through the outer raceway defect for a radial load W of 50 kN and rotational speed n_s of 500 RPM. 257
(a) Horizontal contact force between the first rolling element $j = 1$ and outer raceway. 257
(b) Horizontal contact force between the second rolling element $j = 2$ and outer raceway. 257
(c) Horizontal contact force between the third rolling element $j = 3$ and outer raceway. 257

6.5 Comparison of the numerically (notch filtered) and analytically modelled vertical rolling element-to-outer raceway contact forces F_y as three rolling elements $j = 1, 2, 3$ traverse through the outer raceway defect for a radial load W of 50 kN and rotational speed n_s of 500 RPM. 258
(a) Vertical contact force between the first rolling element $j = 1$ and outer raceway. 258
(b) Vertical contact force between the second rolling element $j = 2$ and outer raceway. 258
(c) Vertical contact force between the third rolling element $j = 3$ and outer raceway. 258

6.6 A 2-D schematic of a rolling element bearing comprising an outer ring, an inner ring, a few rolling elements, and a localised rectangular-shaped defect centrally located at the top of the outer raceway. The rolling elements filled using solid gray colour represent loaded elements, whereas the others represent non-loaded elements. 261

xxix
6.7 Numerically modelled, notch filtered, horizontal F_x and vertical F_y rolling element-to-outer raceway contact forces shown in Figures 6.4 and 6.5, respectively, are zoomed in the vicinity of rolling elements $j = 1, 2, 3$ being re-stressed between the raceways. For clarity, the y-axis in (a, c, e) scales from 0–1 kN, and in (b, d, f) from 0–10 kN.

(a) Horizontal contact force between the first rolling element $j = 1$ and outer raceway. 267
(b) Vertical contact force between the first rolling element $j = 1$ and outer raceway. 267
(c) Horizontal contact force between the second rolling element $j = 2$ and outer raceway. 267
(d) Vertical contact force between the second rolling element $j = 2$ and outer raceway. 267
(e) Horizontal contact force between the third rolling element $j = 3$ and outer raceway. 267
(f) Vertical contact force between the third rolling element $j = 3$ and outer raceway. 267

6.8 Correlation between the numerically modelled, notch filtered, acceleration a_y time-trace shown in Figure 4.13, Chapter 4, and vertical contact forces F_y between the outer raceway and three rolling elements $j = 1, 2, 3$ that traversed through the defect shown in Figure 6.5 for a radial load W of 50 kN and rotational speed n_s of 500 RPM; (a) nodal acceleration, (b) contact force: outer raceway-to-rolling element $j = 1$, (c) contact force: outer raceway-to-rolling element $j = 2$, and (d) contact force: outer raceway-to-rolling element $j = 3$. 270

6.9 Numerically modelled, notch filtered, acceleration a_y time-trace shown in Figure 6.8a: (a) complete time-trace showing the three defect-impulses that occurred during the numerical simulation, (b) partial time-trace zoomed in the vicinity of the second impulse generated due to the re-stressing of rolling element $j = 2$, and (c) partial time-trace zoomed in the vicinity of the third impulse generated due to the re-stressing of rolling element $j = 3$. 271

6.10 Correlation between the numerically modelled, low-pass filtered, acceleration a_y time-trace shown in Figure 4.22, Chapter 4, and vertical contact forces F_y between the outer raceway and three rolling elements $j = 1, 2, 3$ that traversed through the defect shown in Figure 6.5 for a radial load W of 50 kN and rotational speed n_s of 500 RPM; (a) nodal acceleration, (b) contact force: outer raceway-to-rolling element $j = 1$, (c) contact force: outer raceway-to-rolling element $j = 2$, and (d) contact force: outer raceway-to-rolling element $j = 3$. 273
List of Figures

6.11 Correlation between the numerically modelled, notch filtered, velocity v_y time-trace shown in Figure 4.17, Chapter 4, and vertical contact forces F_y between the outer raceway and three rolling elements $j = 1, 2, 3$ that traversed through the defect shown in Figure 6.5 for a radial load W of 50 kN and rotational speed n_s of 500 RPM; (a) nodal velocity, (b) contact force: outer raceway-to-rolling element $j = 1$, (c) contact force: outer raceway-to-rolling element $j = 2$, and (d) contact force: outer raceway-to-rolling element $j = 3$. .. 274

6.12 Correlation between the numerically modelled, notch filtered, displacement u_y time-trace shown in Figure 4.18, Chapter 4, and vertical contact forces F_y between the outer raceway and three rolling elements $j = 1, 2, 3$ that traversed through the defect shown in Figure 6.5 for a radial load W of 50 kN and rotational speed n_s of 500 RPM; (a) nodal displacement, (b) contact force: outer raceway-to-rolling element $j = 1$, (c) contact force: outer raceway-to-rolling element $j = 2$, and (d) contact force: outer raceway-to-rolling element $j = 3$. .. 275

6.13 Correlation between the numerically modelled, notch filtered, acceleration a_y time-trace shown in Figure 5.5b, Chapter 5, and vertical contact forces F_y between the outer raceway and three rolling elements $j = 1, 2, 3$ that traversed through the defect for a radial load W of 25 kN and rotational speed n_s of 500 RPM; (a) nodal acceleration, (b) contact force: outer raceway-to-rolling element $j = 1$, (c) contact force: outer raceway-to-rolling element $j = 2$, and (d) contact force: outer raceway-to-rolling element $j = 3$. .. 278

6.14 Correlation between the numerically modelled, notch filtered, acceleration a_y time-trace shown in Figure 5.5d, Chapter 5, and vertical contact forces F_y between the outer raceway and three rolling elements $j = 1, 2, 3$ that traversed through the defect for a radial load W of 80 kN and rotational speed n_s of 500 RPM; (a) nodal acceleration, (b) contact force: outer raceway-to-rolling element $j = 1$, (c) contact force: outer raceway-to-rolling element $j = 2$, and (d) contact force: outer raceway-to-rolling element $j = 3$. .. 279

6.15 Numerically modelled, notch filtered, acceleration a_y time-trace shown in Figure 6.13a; (a) complete time-trace showing the three defect-impulses that occurred during the numerical simulation, (b) partial time-trace zoomed in the vicinity of the second impulse generated due to the re-stressing of rolling element $j = 2$, and (c) partial time-trace zoomed in the vicinity of the third impulse generated due to the re-stressing of rolling element $j = 3$. .. 280
6.16 Numerically modelled, notch filtered, acceleration a_y time-trace shown in Figure 6.14a; (a) complete time-trace showing the three defect-impulses that occurred during the numerical simulation, (b) partial time-trace zoomed in the vicinity of the second impulse generated due to the re-stressing of rolling element $j = 2$, and (c) partial time-trace zoomed in the vicinity of the third impulse generated due to the re-stressing of rolling element $j = 3$.

6.17 Correlation between the numerically modelled, low-pass filtered, acceleration a_y time-trace shown in Figure 5.5b, Chapter 5, and vertical contact forces F_y between the outer raceway and three rolling elements $j = 1, 2, 3$ that traversed through the defect shown in Figure 6.13 for a radial load W of 25 kN and rotational speed n_s of 500 RPM; (a) nodal acceleration, (b) contact force: outer raceway-to-rolling element $j = 1$, (c) contact force: outer raceway-to-rolling element $j = 2$, and (d) contact force: outer raceway-to-rolling element $j = 3$.

6.18 Correlation between the numerically modelled, low-pass filtered, acceleration a_y time-trace shown in Figure 5.5d, Chapter 5, and vertical contact forces F_y between the outer raceway and three rolling elements $j = 1, 2, 3$ that traversed through the defect shown in Figure 6.14 for a radial load W of 80 kN and rotational speed n_s of 500 RPM; (a) nodal acceleration, (b) contact force: outer raceway-to-rolling element $j = 1$, (c) contact force: outer raceway-to-rolling element $j = 2$, and (d) contact force: outer raceway-to-rolling element $j = 3$.

6.19 Numerically modelled, notch filtered, vertical contact forces F_y between two contact interfaces for a radial load W of 50 kN and rotational speed n_s of 500 RPM: 1) rolling element-to-outer raceway interface, and 2) rolling element-to-inner raceway interface; the rolling element-to-inner raceway contact forces represented by the dashed lines in (a, c, e) were inversed and changed to the solid, thick lines in (b, d, f) for clarity.

(a) Vertical contact forces on the first rolling element $j = 1$ due to the compression between the outer and inner raceways.

(b) Vertical contact forces in Figure 6.19a zoomed in the vicinity of rolling element $j = 1$ being re-stressed.

(c) Vertical contact forces on the second rolling element $j = 2$ due to the compression between the outer and inner raceways.

(d) Vertical contact forces in Figure 6.19c zoomed in the vicinity of rolling element $j = 2$ being re-stressed.

(e) Vertical contact forces on the third rolling element $j = 3$ due to the compression between the outer and inner raceways.

(f) Vertical contact forces in Figure 6.19e zoomed in the vicinity of rolling element $j = 3$ being re-stressed.
6.20 Numerically modelled, notch filtered, vertical contact forces F_y between two contact interfaces for a radial load W of 25 kN and rotational speed n_s of 500 RPM: 1) rolling element-to-outer raceway interface, and 2) rolling element-to-inner raceway interface; the rolling element-to-inner raceway contact forces represented by the dashed lines in (a, c, e) were inversed and changed to the solid, thick lines in (b, d, f).

(a) Vertical contact forces on the first rolling element $j = 1$ due to the compression between the outer and inner raceways. 288

(b) Vertical contact forces in Figure 6.20a zoomed in the vicinity of rolling element $j = 1$ being re-stressed. 288

(c) Vertical contact forces on the second rolling element $j = 2$ due to the compression between the outer and inner raceways. 288

(d) Vertical contact forces in Figure 6.20c zoomed in the vicinity of rolling element $j = 2$ being re-stressed. 288

(e) Vertical contact forces on the third rolling element $j = 3$ due to the compression between the outer and inner raceways. 288

(f) Vertical contact forces in Figure 6.20e zoomed in the vicinity of rolling element $j = 3$ being re-stressed. 288

6.21 Numerically modelled, notch filtered, vertical contact forces F_y between two contact interfaces for a radial load W of 80 kN and rotational speed n_s of 500 RPM: 1) rolling element-to-outer raceway interface, and 2) rolling element-to-inner raceway interface; the rolling element-to-inner raceway contact forces represented by the dashed lines in (a, c, e) were inversed and changed to the solid, thick lines in (b, d, f).

(a) Vertical contact forces on the first rolling element $j = 1$ due to the compression between the outer and inner raceways. 289

(b) Vertical contact forces in Figure 6.21a zoomed in the vicinity of rolling element $j = 1$ being re-stressed. 289

(c) Vertical contact forces on the second rolling element $j = 2$ due to the compression between the outer and inner raceways. 289

(d) Vertical contact forces in Figure 6.21c zoomed in the vicinity of rolling element $j = 2$ being re-stressed. 289

(e) Vertical contact forces on the third rolling element $j = 3$ due to the compression between the outer and inner raceways. 289

(f) Vertical contact forces in Figure 6.21e zoomed in the vicinity of rolling element $j = 3$ being re-stressed. 289

6.22 Numerically modelled, notch filtered, vertical contact forces F_y between the rolling elements and outer raceway for various radial loads and rotational speeds; (a, c, e) complete time-traces, (b, d, f) partial time-traces zoomed in the vicinity of the rolling elements being re-stressed between the raceways; green-, blue-, and red-coloured lines correspond to radial loads W of 25 kN, 50 kN, and 80 kN, respectively.

(a) Vertical rolling element-to-outer raceway contact forces for $n_s = 300$ RPM, and $W = 25$ kN, 50 kN and 80 kN. 293
6.23 Numerically modelled, notch filtered, vertical contact forces F_y between the rolling elements and inner raceway for various radial loads and rotational speeds; (a, c, e) full time-traces, (b, d, f) partial time-traces zoomed in the vicinity of the rolling elements being re-stressed between the raceways; green-, blue-, and red-coloured lines correspond to radial loads W of 25 kN, 50 kN, and 80 kN, respectively.
(a) Vertical rolling element-to-inner raceway contact forces for $n_s = 300$ RPM, and $W = 25$ kN, 50 kN and 80 kN.
(b) Vertical rolling element-to-inner raceway contact forces in Figure 6.23a zoomed in the vicinity of the rolling elements being re-stressed.
(c) Vertical rolling element-to-inner raceway contact forces for $n_s = 500$ RPM, and $W = 25$ kN, 50 kN and 80 kN.
(d) Vertical rolling element-to-inner raceway contact forces in Figure 6.23c zoomed in the vicinity of the rolling elements being re-stressed.
(e) Vertical rolling element-to-inner raceway contact forces for $n_s = 800$ RPM, and $W = 25$ kN, 50 kN and 80 kN.
(f) Vertical rolling element-to-inner raceway contact forces in Figure 6.23e zoomed in the vicinity of the rolling elements being re-stressed.

6.24 Numerically modelled, notch filtered, vertical contact forces F_y between the rolling elements and outer raceway for various radial loads and rotational speeds; green-, blue-, and red-coloured lines correspond to radial loads W of 25 kN, 50 kN, and 80 kN, respectively; thin lines correspond to the defect-related dynamic contact forces generated during the re-stressing of the rolling elements, and thick lines correspond to the band-pass filtered envelopes of the contact forces.
(a) Vertical rolling element-to-outer raceway contact forces shown in Figure 6.22b along with their respective band-pass filtered envelopes.
(b) Vertical rolling element-to-outer raceway contact forces shown in Figure 6.22d along with their respective band-pass filtered envelopes.
List of Figures

(c) Vertical rolling element-to-outer raceway contact forces shown in Figure 6.22f along with their respective band-pass filtered envelopes. 298

6.25 Numerically modelled, notch filtered, vertical contact forces F_y between the rolling elements and inner raceway for various radial loads and rotational speeds; green-, blue-, and red-coloured lines correspond to radial loads W of 25 kN, 50 kN, and 80 kN, respectively; thin lines correspond to the defect-related dynamic contact forces generated during the re-stressing of the rolling elements, and thick lines correspond to the band-pass filtered envelopes of the contact forces. 299

(a) Vertical rolling element-to-outer raceway contact forces shown in Figure 6.23b along with their respective band-pass filtered envelopes. 299

(b) Vertical rolling element-to-outer raceway contact forces shown in Figure 6.23d along with their respective band-pass filtered envelopes. 299

(c) Vertical rolling element-to-inner raceway contact forces shown in Figure 6.23f along with their respective band-pass filtered envelopes. 299

6.26 Maximum of the envelopes of the band-pass filtered rolling element-to-raceway contact forces F_y shown in Figures 6.24 and 6.25 for various radial loads and rotational speeds; the horizontal lines along with dotted markers represent the static rolling element-to-raceway contact force levels immediately prior or subsequent to the de-stressing or re-stressing events, respectively, for radial loads W of 25 kN, 50 kN, and 80 kN. . . . 300

(a) Rolling element-to-outer raceway contact forces. 300

(b) Rolling element-to-inner raceway contact forces. 300

F.1 A plot showing differences between peak contact force magnitudes obtained using Equations (F.4) and (F.5). 340

F.2 A 3-D quarter model of a sphere and plate displaying the meshing. . . 343

F.3 Numerical and analytical contact forces generated during the free fall normal impact of the sphere, from the height h_f of 100 mm, with the plate, modelled as a half-space; the numerical results are shown for three different mesh element sizes of 0.2 mm, 0.1 mm, and 0.05 mm. 346

F.4 Numerical and analytical contact forces F_c generated during the free fall impact of the sphere, from the height $h_f = 100$ mm, with the plate for various penalty factors; the sphere-plate model was meshed using 0.2 mm-sized elements. 349

F.5 Numerical and analytical contact–impact durations τ for the free fall impact of the sphere, from the height $h_f = 100$ mm, with the plate for various penalty factors; the sphere-plate model was meshed using 0.2 mm-sized elements. 351

F.6 Numerical and analytical maximum displacements δ_m for the free fall impact of the sphere, from the height $h_f = 100$ mm, with the plate for various penalty factors; the sphere-plate model was meshed using 0.2 mm-sized elements. 352

xxxv
List of Figures

F.7 Numerical and analytical contact forces F_c generated during the free fall impact of the sphere, from the height $h_f = 100\,\text{mm}$, with the plate for various penalty factors; the sphere-plate model was meshed using 0.1 mm-sized elements. ... 353

F.8 Numerical and analytical contact–impact durations τ for the free fall impact of the sphere, from the height $h_f = 100\,\text{mm}$, with the plate for various penalty factors; the sphere-plate model was meshed using 0.1 mm-sized elements. ... 354

F.9 Numerical and analytical maximum displacements δ_m for the free fall impact of the sphere, from the height $h_f = 100\,\text{mm}$, with the plate for various penalty factors; the sphere-plate model was meshed using 0.1 mm-sized elements. ... 355

F.10 Numerical and analytical contact forces F_c generated during the free fall impact of the sphere, from the height $h_f = 100\,\text{mm}$, with the plate for various penalty factors; the sphere-plate model was meshed using 0.05 mm-sized elements. ... 356

F.11 Numerical and analytical contact–impact durations τ for the free fall impact of the sphere, from the height $h_f = 100\,\text{mm}$, with the plate for various penalty factors; the sphere-plate model was meshed using 0.05 mm-sized elements. ... 358

F.12 Numerical and analytical maximum displacements δ_m for the free fall impact of the sphere, from the height $h_f = 100\,\text{mm}$, with the plate for various penalty factors; the sphere-plate model was meshed using 0.05 mm-sized elements. ... 358

F.13 Analytical and numerical estimates of the contact duration τ corresponding to the impact of the sphere with half-space for various free fall heights h_f. ... 359
List of Tables

3.1 Analytically estimated contact-related parameters at the rolling element-to-outer raceway contact interfaces of the non-defective rolling element bearing for a radial load W of 50 kN. 101

4.1 Dimensions of the components within the finite element model of the rolling element bearing. .. 135

5.1 A matrix for the experimental testing of the rolling element bearing subjected to various radial loads W and rotational speeds n_s. 205

5.2 Percentage increase in the envelope power spectrum levels of the measured acceleration a_y signals at the fundamental outer raceway defect frequency f_{bpo} shown in Figure 5.25. 240

6.1 Percentage increase in the maximum of the envelopes of the band-pass filtered rolling element-to-outer raceway dynamic, defect-related, contact forces F_y shown in Figure 6.26a for various radial loads and rotational speeds. .. 301

6.2 Percentage increase in the maximum of the envelopes of the band-pass filtered rolling element-to-inner raceway dynamic, defect-related, contact forces F_y shown in Figure 6.26b for various radial loads and rotational speeds. .. 302

6.3 Percentage difference between the vertical static force components and the maximum of the envelopes of the band-pass filtered rolling element-to-outer raceway dynamic, defect-related, contact forces shown in Figure 6.26a for various radial loads and rotational speeds. 305

6.4 Percentage difference between the vertical static force components and the maximum of the envelopes of the band-pass filtered rolling element-to-inner raceway dynamic, defect-related, contact forces shown in Figure 6.26b for various radial loads and rotational speeds. 305

F.1 Numerical and analytical results for the maximum displacement δ_m during the contact-impact of the sphere and plate. 347
This page intentionally contains only this sentence.
Nomenclature

Roman Symbols

\(a_y \) acceleration of a node within the FE model of the rolling element bearing in the global cartesian \(y \)-direction

\(b \) half-contact width at the interface of two contacting isotropic elastic solid bodies

\(b', b'' \) extremeties of contact width \(2b \) at the rolling element-to-raceway contact interfaces within a rolling element bearing

\(b_x, b_y \) half-contact width at the rolling element-to-outer raceway contact interfaces within a rolling element bearing in the global cartesian \(x \)- and \(y \)-directions, respectively

\(B \) bending stiffness of a plate / the outer ring of the FE model of the rolling element bearing

\(c \) local material sound speed

\(c_b \) velocity of bending waves

\(D_c \) outer diameter of the cage within the FE model of the rolling element bearing

\(D_i \) diameter of the inner raceway of a rolling element bearing

\(D_o \) diameter of the outer raceway of a rolling element bearing

\(D_p \) bearing pitch diameter

\(D_r \) diameter of the rolling elements within a rolling element bearing

\(E' \) equivalent modulus of elasticity of two contacting isotropic elastic solid bodies

\(E_1, E_2 \) modulus of elasticity of isotropic elastic solid bodies ‘1’ and ‘2’

\(F \) Hertzian contact force at the interface of two isotropic elastic solid bodies

\(f_{bpi} \) inner raceway defect frequency or ball pass frequency inner raceway
Nomenclature

\(f_{bpo} \)
outer raceway defect frequency or ball pass frequency outer raceway

\(f_c \)
cage (rotational) frequency

\(F_{dj(\text{grad})} \)
gradual variation in the contact forces at the rolling element-to-raceway contact interfaces within a defective rolling element bearing

\(F_{dj} \)
contact force at a \(j \)th rolling element-to-raceway contact interface within a defective rolling element bearing

\(F_{dx} \)
horizontal rolling element-to-raceway contact force for a defective rolling element bearing in the global cartesian \(x \)-direction

\(F_{dy} \)
vertical rolling element-to-raceway contact force for a defective rolling element bearing in the global cartesian \(y \)-direction

\(f_{\text{noise}}^{i} \)
rolling element-to-inner raceway rolling contact noise frequency

\(f_{\text{noise}}^{i-o} \)
beating noise frequency

\(F_{j} \)
contact force at a \(j \)th rolling element-to-raceway contact interface within a non-defective rolling element bearing

\(F_{\text{max}} \)
maximum force at a rolling element-to-raceway contact interface within a rolling element bearing along the load line (\(y \)-axis)

\(f_{\text{noise}}^{o} \)
rolling element-to-outer raceway rolling contact noise frequency

\(f_{rc} \)
ring frequency of a cylindrical shell

\(f_s \)
shaft rotational (run speed) frequency

\(F_x \)
horizontal rolling element-to-raceway contact force for a non-defective rolling element bearing in the global cartesian \(x \)-direction

\(F_y \)
vertical rolling element-to-raceway contact force for a non-defective rolling element bearing in the global cartesian \(y \)-direction

\(H_a \)
height of the adapter within the FE model of the rolling element bearing

\(h_c \)
thickness of the cage within the FE model of the rolling element bearing

\(H_d \)
deepth (height) of the outer raceway defect within a rolling element bearing

\(h_i \)
thickness of the inner ring within the FE model of the rolling element bearing

\(h_o \)
thickness of the outer ring within the FE model of the rolling element bearing

\(I \)
impulsive force
Nomenclature

\(i\) \hspace{1cm} \text{imaginary unit (} = \sqrt{-1}\text{)}

\(j\) \hspace{1cm} \text{rolling element}

\(K\) \hspace{1cm} \text{contact stiffness at the interface of two isotropic elastic solid bodies}

\(k_{zm}\) \hspace{1cm} \text{modal wavenumbers}

\(k_{cs}\) \hspace{1cm} \text{contact or spring stiffness at the interface of two contacting segments in an FE model}

\(K_{dj}\) \hspace{1cm} \text{stiffness at a } j\text{th rolling element-to-raceway contact interface within a defective rolling element bearing}

\(l\) \hspace{1cm} \text{length of two contacting isotropic elastic solid bodies}

\(L_{10}\) \hspace{1cm} \text{life of a rolling element bearing}

\(L_d\) \hspace{1cm} \text{length of a localised raceway defect}

\(L_e\) \hspace{1cm} \text{length of an extended defect}

\(l_{fe}\) \hspace{1cm} \text{smallest characteristic dimension of an element within an FE model}

\(l_r\) \hspace{1cm} \text{length of the rolling elements within a bearing}

\(m\) \hspace{1cm} \text{axial mode numbers}

\(m_1, m_2\) \hspace{1cm} \text{masses of two segments in contact within an FE model}

\(n\) \hspace{1cm} \text{circumferential mode numbers}

\(N_r\) \hspace{1cm} \text{number of rolling elements within a bearing}

\(n_s\) \hspace{1cm} \text{rotational speed of a rolling element bearing}

\(N_w\) \hspace{1cm} \text{window length}

\(o'\) \hspace{1cm} \text{initial point of contact between two non-conformal isotropic elastic solid bodies}

\(P_{\max}\) \hspace{1cm} \text{maximum pressure at the interface of two contacting isotropic elastic solid bodies}

\(Q\) \hspace{1cm} \text{quality factor of a second-order notch filter}

\(r_c\) \hspace{1cm} \text{mean radius of a cylindrical shell}

\(R'_d\) \hspace{1cm} \text{curvature difference of two contacting isotropic elastic solid bodies}

\(R'\) \hspace{1cm} \text{curvature sum of two contacting isotropic elastic solid bodies}

xli
Nomenclature

\(R_x \) equivalent radius of curvature of two contacting isotropic elastic solid bodies in the global cartesian \(x \)-direction

\(R_z \) equivalent radius of curvature of two contacting isotropic elastic solid bodies in the global cartesian \(z \)-direction

\(S_d \) profile of the outer raceway defect within a rolling element bearing

\(T \) time period of defect-related impulses

\(t \) time vector

\(u_y \) displacement of a node within the FE model of the rolling element bearing in the global cartesian \(y \)-direction

\(V \) stressed volume of the bearing material

\(v_y \) velocity of a node within the FE model of the rolling element bearing in the global cartesian \(y \)-direction

\(W \) radial (vertical) load in the global cartesian \(y \)-direction

\(w_a \) width of the adapter within the FE model of the rolling element bearing

\(x(t) \) time-varying signal

\(\hat{x}(t) \) analytic signal

\(Z \) number of cycles of repeated (stress) loading within a rolling element bearing

\(z_0 \) depth at which maximum stress at the rolling element-to-raceway contact interfaces occurs

Greek Symbols

\(\alpha \) contact angle within a rolling element bearing

\(\beta_j \) a factor for introducing gradual changes at the entry and exit edges of a defect within a rolling element bearing

\(\delta_1, \delta_2 \) deformation of isotropic solid elastic bodies ‘1’ and ‘2’

\(\delta \) total deformation at the contact interface of two isotropic elastic solid bodies

\(\delta_{lj} \) total contact deformation at a \(j \)th rolling element-to-raceway contact interface within a defective rolling element bearing

\(\delta_i \) displacement of the inner ring of a rolling element bearing

\(\delta_j \) displacement at a \(j \)th rolling element-to-raceway contact interface within a rolling element bearing
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ_{max}</td>
<td>maximum displacement at the rolling element-to-raceway contact interface within a rolling element bearing along the load line (y-axis)</td>
</tr>
<tr>
<td>δ_o</td>
<td>displacement of the outer ring of a rolling element bearing</td>
</tr>
<tr>
<td>δ_x, δ_y</td>
<td>deformation at the rolling element-to-outer raceway contact interfaces within a rolling element bearing in the global cartesian x- and y-directions, respectively</td>
</tr>
<tr>
<td>ϵ</td>
<td>load distribution factor for a rolling element bearing</td>
</tr>
<tr>
<td>γ_j</td>
<td>a factor that zeros the load distribution outside the load zone within a rolling element bearing</td>
</tr>
<tr>
<td>κ</td>
<td>Weibull slope for the experimental life of a rolling element bearing</td>
</tr>
<tr>
<td>λ_b</td>
<td>bending wavelength</td>
</tr>
<tr>
<td>μ</td>
<td>coefficient of friction between mating bearing components in the FE model of the bearing</td>
</tr>
<tr>
<td>ω_{mn}</td>
<td>natural frequencies of the outer ring of the FE model of the rolling element bearing</td>
</tr>
<tr>
<td>ν_1, ν_2</td>
<td>Poisson’s ratio of isotropic elastic solid bodies ‘1’ and ‘2’</td>
</tr>
<tr>
<td>$\Delta \Omega$</td>
<td>band width of a second-order notch filter</td>
</tr>
<tr>
<td>ω_c</td>
<td>angular velocity of the cage or rolling elements within a bearing</td>
</tr>
<tr>
<td>Ω_o</td>
<td>notch frequency of a second-order notch filter</td>
</tr>
<tr>
<td>ω_s</td>
<td>angular velocity of the shaft on which a rolling element bearing is installed</td>
</tr>
<tr>
<td>ψ_0</td>
<td>initial angular position of the cage within a rolling element bearing</td>
</tr>
<tr>
<td>ψ_c</td>
<td>angular position of the cage within a rolling element bearing</td>
</tr>
<tr>
<td>$\Delta \psi_{\text{cw}}$</td>
<td>angular extent of contact width $2b$ at the rolling element-to-raceway contact interfaces within a rolling element bearing</td>
</tr>
<tr>
<td>$\Delta \psi_d$</td>
<td>angular extent of the outer raceway defect within a rolling element bearing</td>
</tr>
<tr>
<td>ψ_d</td>
<td>centre of the outer raceway defect within a rolling element bearing</td>
</tr>
<tr>
<td>ψ_j</td>
<td>angular position of a jth rolling element</td>
</tr>
<tr>
<td>ψ'_l</td>
<td>half-angular extent of the bearing load zone centred at ψ_{lc}</td>
</tr>
<tr>
<td>ψ_{lc}</td>
<td>centre of the bearing load zone</td>
</tr>
</tbody>
</table>
Nomenclature

ρ
material density

$\Delta t_{\text{critical}}$
critical time step for the explicit time integration scheme used in LS-DYNA

Δt_{event}
time difference between the consecutive de-stressing or re-stressing events

Δt_{stable}
stable time step used in LS-DYNA

θ_r
angular spacing between the rolling elements within a bearing

Υ
probability of survival of a rolling element bearing

ε_0
maximum orthogonal shear stress in the rolling element-to-raceway contact interfaces

ς
diametral clearance within a rolling element bearing

ζ
damping ratio

Miscellaneous Symbols

\mathcal{D}
Dirac delta function

\mathcal{F}
Fourier transform

\mathcal{H}
Hilbert transform

\mathcal{K}
spectral kurtosis

\mathcal{S}
short-time Fourier transform

Superscripts

i
inner raceway

$i-o$
inner-to-outer raceway

n
exponent — $n = 3/2$ for point, circular and elliptical contacts, and $n = 10/9$ for line and rectangular contacts

o
outer raceway

Subscripts

1, 2
isotropic elastic solid bodies ‘1’ and ‘2’

b
bending waves

b_{pi}
ball pass inner raceway

b_{po}
ball pass outer raceway

c
cage for retaining the rolling elements within a bearing
Nomenclature

\(cw\) contact width

\(d\) defective rolling element bearing

\(e\) extended defect

\(fe\) finite element

\(i\) inner raceway

\(j\) rolling element

\(lc\) centre of the load zone

\(\text{max}\) maximum

\(o\) outer raceway

\(p\) bearing pitch

\(rc\) cylindrical shell

\(s\) shaft

\(x\) global cartesian \(x\)-direction

\(y\) global cartesian \(y\)-direction

\(z\) global cartesian \(z\)-direction

Abbreviations

2-D two-dimensional

3-D three-dimensional

AAR Association of American Railroads

ABMA American Bearing Manufacturers Association, Inc.

ADINA Automatic Dynamic Incremental Nonlinear Analysis

ADORE Advanced Dynamics of Rolling Elements

ANSI American National Standards Institute, Inc.

BEAST Bearing Simulation Tool

BEAT BEAring Toolbox

BPFI ball pass frequency inner raceway

BPFO ball pass frequency outer raceway
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COBRA</td>
<td>Computer Optimized Ball and Roller Bearing Analysis software</td>
</tr>
<tr>
<td>CW</td>
<td>clockwise</td>
</tr>
<tr>
<td>CWRU</td>
<td>Case Western Reserve University</td>
</tr>
<tr>
<td>DOF</td>
<td>degree-of-freedom</td>
</tr>
<tr>
<td>EHL</td>
<td>elasto-hydrodynamic lubrication</td>
</tr>
<tr>
<td>EPW</td>
<td>elements-per-wavelength</td>
</tr>
<tr>
<td>FE</td>
<td>finite element</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier Transform</td>
</tr>
<tr>
<td>IBDAS</td>
<td>Integrated Bearing Dynamic Analysis System</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>PSD</td>
<td>Power Spectral Density</td>
</tr>
<tr>
<td>RailBAM®</td>
<td>Railway Bearing Acoustic Monitor</td>
</tr>
<tr>
<td>RMS</td>
<td>root mean square</td>
</tr>
<tr>
<td>RPM</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>SFM</td>
<td>scale factor on default master penalty stiffness</td>
</tr>
<tr>
<td>SFS</td>
<td>scale factor on default slave penalty stiffness</td>
</tr>
<tr>
<td>SK</td>
<td>spectral kurtosis</td>
</tr>
<tr>
<td>SLSFAC</td>
<td>scale factor for sliding interface penalties</td>
</tr>
<tr>
<td>STFT</td>
<td>short-time Fourier transform</td>
</tr>
<tr>
<td>TADS®</td>
<td>Trackside Acoustic Detection System</td>
</tr>
<tr>
<td>Track IQ™</td>
<td>Trackside Intelligence Pty. Ltd.</td>
</tr>
<tr>
<td>TTCI®</td>
<td>Transportation Technology Center, Inc.</td>
</tr>
</tbody>
</table>