Multi-channel Techniques for 3D ISAR

Author: Federica Salvetti

Supervisors: Prof. Marco Martorella
 Prof. Douglas A. Gray
 Ing. Fabrizio Lombardini

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Dottorato di Ricerca in Telerilevamento
Scuola di Dottorato in Ingegneria Leonardo da Vinci
The School of Electrical & Electronic Engineering
SSD ING - INF/03

April 2015
Declaration of Authorship

I, Federica Salvetti, declare that this thesis titled, 'Multi-channel Techniques for 3D ISAR' and the work presented in it are my own. I confirm that:

- This work was done wholly or mainly while in candidature for a research degree at this University.

- Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.

- Where I have consulted the published work of others, this is always clearly attributed.

- Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.

- I have acknowledged all main sources of help.

- Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Signed: ______________________________

Date: ______________________________
“A person who never made a mistake never tried anything new.”

Albert Einstein
Abstract

Doctor of Philosophy

Multi-channel Techniques for 3D ISAR

by Federica Salvetti

This thesis deals with the challenge of forming 3D target reconstruction by using spatial multi-channel ISAR configurations. The standard output of an ISAR imaging system is a 2D projection of the true three-dimensional target reflectivity onto an image plane. The orientation of the image plane cannot be predicted a priori as it strongly depends on the radar-target geometry and on the target motion, which is typically unknown. This leads to a difficult interpretation of the ISAR images. In this scenario, this thesis aim to give possible solutions to such problems by proposing three 3D processing based on interferometry, beamforming techniques and MIMO InISAR systems. The CLEAN method for scattering centres extraction is extended to multichannel ISAR systems and a multistatic 3D target reconstruction that is based on an incoherent technique is suggested.
Contents

Declaration of Authorship ii

Abstract iv

List of Figures ix

List of Tables xiii

Abbreviations xv

Symbols xvii

1 Introduction 1

1.1 Background and Motivation 1

1.2 Thesis Outline and Major Contributions 3

1.2.1 Chapters outline 5

2 Inverse Synthetic Aperture Radar Imaging 9

2.1 Introduction ... 9

2.2 Brief history of radar and radar imaging 11

2.3 Image Resolution .. 15

2.3.1 High Range Resolution 16

2.3.2 High Cross-range Resolution 18

2.4 SAR and ISAR Concepts 19

2.5 ISAR signal model 22

2.6 ISAR image formation 27

2.6.1 Image Contrast Based Autofocus 33

2.7 Conclusion .. 35

3 3D Interferometric ISAR Imaging 37

3.1 Introduction .. 37

3.2 Multi-channel Received Signal Model 39

3.2.1 System geometry 39

3.2.2 Received signal modeling 40

3.3 Multi-Channel CLEAN technique 45
3.3.1 Signal separation
- Page 45

3.3.2 Feature extraction
- Page 46

3.4 Three-dimensional target reconstruction
- Page 48
 - 3.4.1 Joint estimation of the angle ϕ and Ω_{eff}
- Page 50

3.5 Conclusion
- Page 54

4 3D Interferometric ISAR Performance Analysis
- Page 55
 - 4.1 Introduction
- Page 55
 - 4.2 Performance analysis
 - 4.2.1 Scatterers realignment
 - 4.2.2 Soft assignment
 - 4.2.3 Performance indicators
- Page 58
 - 4.3 Simulation results
 - 4.3.1 Simulation 1: Airplane target model
 - 4.3.2 Simulation 2: boat target model
 - 4.3.3 Cross-shaped antenna array
- Page 80
 - 4.4 Conclusion
- Page 83

5 Real Data Analysis
- Page 85
 - 5.1 Introduction
- Page 85
 - 5.2 Case study 1
 - 5.3 Case study 2
 - 5.4 Conclusion
- Page 102

6 Multistatic 3D ISAR Imaging Reconstruction
- Page 105
 - 6.1 Introduction
- Page 105
 - 6.2 Multistatic 3D Interferometric ISAR
 - 6.2.1 Pre-alignment processing
 - 6.2.2 Multistatic 3D reconstruction fusion
 - 6.2.3 Simulation results
 - 6.2.4 Conclusion
- Page 115

7 Joint Use of Two-dimensional Tomography and ISAR Imaging for Three-dimensional Image Formation of Non-cooperative Targets
- Page 117
 - 7.1 Introduction
 - 7.2 ISAR System Model
 - 7.2.1 System Geometry
 - 7.2.2 2D ISAR Imaging
 - 7.3 Three-dimensional ISAR Beamforming
 - 7.4 Simulation Results
 - 7.4.1 Simulation 1
 - 7.4.2 Simulation 2
 - 7.5 Conclusion
- Page 130

8 3D Colocated MIMO ISAR Imaging
- Page 133
Contents

8.1 Introduction .. 133
8.2 Principles of MIMO radar: the virtual array 134
8.3 3D target reconstruction 136
8.4 Simulation results ... 141
8.5 Conclusion .. 142

9 Conclusion ... 149

Bibliography ... 151
List of Figures

1.1 2D ISAR image .. 2
2.1 The Telemobiloscope ... 11
2.2 First page and azimuth encoding of the original patent DE 165546, Hülsmeyer, 1904 ... 12
2.3 Matched Filter’s block diagram .. 17
2.4 Synthetic aperture radar vs real aperture array 19
2.5 ISAR system concept ... 21
2.6 ISAR system geometry ... 22
2.7 Straight iso-range approximation .. 25
2.8 Fourier domain .. 29
2.9 Fourier domain-rectangular approximation 30
2.10 ISAR image processing block diagram 33
3.1 ISAR system geometry ... 39
3.2 MC-CLEAN block diagram .. 49
3.3 3D reconstruction processing flowchart 53
4.1 Performance analysis flowchart ... 56
4.2 Airplane model target ... 60
4.3 Airplane model target ... 60
4.4 Airplane set-up geometry .. 61
4.5 Simulated raw data. (a) SNR=0 dB; (b) SNR=-15 dB 62
4.6 Amplitude ISAR images. (a) SNR=0 dB; (b) SNR=-15 dB 63
4.7 Scattering centres extracted by the MC-CLEAN. (a) SNR=0 dB; (b) SNR=-15 dB ... 64
4.8 MC-CLEAN residual image. (a) SNR=0 dB; (b) SNR=-15 dB 65
4.9 Results of the 3D reconstruction - airplane 66
4.10 Results of the 3D reconstruction - airplane 66
4.11 Height error - Airplane. (a) Height error with unreliable assignments; (b) Height error without unreliable assignments 67
4.12 Standard deviation of the height error - Airplane. (a) With unreliable assignments; (b) without unreliable assignments 68
4.13 Signed error without unreliable assignments - Airplane 69
4.14 Mean error of the estimate of Ω_{eff} - Airplane 69
4.15 Standard deviation of the estimate of Ω_{eff} - Airplane 70
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.16</td>
<td>Mean error of the estimate of ϕ - Airplane.</td>
<td>70</td>
</tr>
<tr>
<td>4.17</td>
<td>Standard deviation of the estimate of ϕ - Airplane.</td>
<td>70</td>
</tr>
<tr>
<td>4.18</td>
<td>Boat model target.</td>
<td>71</td>
</tr>
<tr>
<td>4.19</td>
<td>Boat set-up geometry.</td>
<td>72</td>
</tr>
<tr>
<td>4.20</td>
<td>Simulated raw data. (a) SNR=0 dB; (b) SNR=-15 dB.</td>
<td>72</td>
</tr>
<tr>
<td>4.21</td>
<td>Amplitude ISAR images. (a) SNR=0 dB; (b) SNR=-15 dB.</td>
<td>73</td>
</tr>
<tr>
<td>4.22</td>
<td>Scattering centres extracted by the MC-CLEAN. (a) SNR=0 dB; (b) SNR=-15 dB.</td>
<td>74</td>
</tr>
<tr>
<td>4.23</td>
<td>MC-CLEAN residual image. (a) SNR=0 dB; (b) SNR=-15 dB.</td>
<td>75</td>
</tr>
<tr>
<td>4.24</td>
<td>Results of the 3D reconstruction - boat.</td>
<td>76</td>
</tr>
<tr>
<td>4.25</td>
<td>Height error - Boat. (a) Height error with unreliable assignments; (b) Height error without unreliable assignments.</td>
<td>77</td>
</tr>
<tr>
<td>4.26</td>
<td>Standard deviation of the height error - Boat. (a) With unreliable assignments; (b) without unreliable assignments.</td>
<td>78</td>
</tr>
<tr>
<td>4.27</td>
<td>Signed error without unreliable assignments - Boat.</td>
<td>79</td>
</tr>
<tr>
<td>4.28</td>
<td>Mean error of the estimate of Ω_{eff} - Boat.</td>
<td>79</td>
</tr>
<tr>
<td>4.29</td>
<td>Standard deviation of the estimate of Ω_{eff} - Boat.</td>
<td>79</td>
</tr>
<tr>
<td>4.30</td>
<td>Mean error of the estimate of ϕ - Boat.</td>
<td>80</td>
</tr>
<tr>
<td>4.31</td>
<td>Standard deviation of the estimate of ϕ - Boat.</td>
<td>80</td>
</tr>
<tr>
<td>4.32</td>
<td>System geometry - cross-shaped array.</td>
<td>80</td>
</tr>
<tr>
<td>4.33</td>
<td>MC-CLEAN processing, SNR = -20 dB. (a) Amplitude ISAR image; (b) Extracted scatterers; (c) Residual image.</td>
<td>81</td>
</tr>
<tr>
<td>4.34</td>
<td>3D reconstruction.</td>
<td>82</td>
</tr>
<tr>
<td>4.35</td>
<td>Height error. (a) Height error with unreliable assignments; (b) Height error without unreliable assignments.</td>
<td>82</td>
</tr>
<tr>
<td>4.36</td>
<td>Standard deviation of the height error. (a) Standard deviation of the height error with unreliable assignments; (b) Standard deviation of the height error without unreliable assignments.</td>
<td>82</td>
</tr>
<tr>
<td>4.37</td>
<td>Signed error without unreliable assignments.</td>
<td>83</td>
</tr>
<tr>
<td>5.1</td>
<td>HABRA 2.</td>
<td>86</td>
</tr>
<tr>
<td>5.2</td>
<td>HABRA 2 - Antenna.</td>
<td>86</td>
</tr>
<tr>
<td>5.3</td>
<td>Measure campaign scenario - ‘G. Valauri’ institute@the Naval Academy of Livorno.</td>
<td>87</td>
</tr>
<tr>
<td>5.4</td>
<td>Range-Doppler map.</td>
<td>88</td>
</tr>
<tr>
<td>5.5</td>
<td>ISAR image before motion compensation.</td>
<td>88</td>
</tr>
<tr>
<td>5.6</td>
<td>Radon transform.</td>
<td>89</td>
</tr>
<tr>
<td>5.7</td>
<td>Image Contrast maximization.</td>
<td>90</td>
</tr>
<tr>
<td>5.8</td>
<td>Range profiles after motion compensation.</td>
<td>90</td>
</tr>
<tr>
<td>5.9</td>
<td>ISAR image after motion compensation.</td>
<td>91</td>
</tr>
<tr>
<td>5.10</td>
<td>Scattering centres extracted by using the MC-CLEAN technique.</td>
<td>91</td>
</tr>
<tr>
<td>5.11</td>
<td>3D reconstruction.</td>
<td>92</td>
</tr>
<tr>
<td>5.12</td>
<td>3D reconstruction - Range/Cross-range.</td>
<td>93</td>
</tr>
<tr>
<td>5.13</td>
<td>3D reconstruction - Height/Cross-range.</td>
<td>93</td>
</tr>
<tr>
<td>5.15</td>
<td>Gulf Express cargo ship</td>
<td>93</td>
</tr>
</tbody>
</table>
List of Figures

5.14 3D reconstruction - Height/Range. ... 94
5.16 HABRA 2 .. 95
5.17 Measure campaign scenario - 'G. Valauri' institute@the Naval Academy
of Livorno ... 96
5.18 Astice A 5379 .. 96
5.19 Trajectory of the ship Astice. ... 97
5.20 Corner reflector locations on Astice. ... 97
5.21 Range-Doppler map ... 98
5.22 ISAR image before motion compensation. 98
5.23 Radon transform .. 99
5.24 Image Contrast maximisation ... 99
5.25 Range profiles after motion compensation. 100
5.26 ISAR image after motion compensation. 100
5.27 Corner reflectors position on Astice. .. 100
5.28 MC-CLEAN- extracted scatterers ... 101
5.29 3D reconstruction .. 101
5.30 3D reconstruction - Height/Cross-range. 102
6.1 Example of multistatic configuration ... 106
6.2 Algorithm flowchart ... 108
6.3 Algorithm block scheme for a single pair of 3D reconstructions 110
6.4 Target model ... 111
6.5 Visible scatterers identification .. 112
6.6 Pre-alignment result ... 113
6.7 Partial 3D reconstructions ... 114
6.8 Complete 3D reconstruction .. 115
6.9 Complete 3D reconstruction and model top views 115
7.1 Imaging system geometry.. 119
7.2 Model - Airplane ... 125
7.3 3D target reconstruction .. 126
7.4 3D target reconstruction .. 126
7.5 3D target reconstruction with respect to the imaging plane for
SNR=-10 dB ... 127
7.6 Amplitude ISAR image and Tomographic ISAR image relative to
scatterer M1 for SNR=-10 dB. .. 127
7.7 Mean height error, Standard deviation of the height error, Signed
error and Height resolution .. 128
7.8 3D reconstruction - SNR=0 dB. ... 129
7.9 3D reconstruction - SNR=0 dB. ... 130
7.10 3D reconstruction - SNR=-20 dB. .. 130
7.11 3D reconstruction - SNR=-20 dB. .. 131
8.1 InISAR system geometry. ... 136
8.2 MIMO ISAR equivalent virtual antenna array. 137
8.3 L-shaped configurations associated to the signal received at antenna V, C and H .. 138
8.4 Block diagram of the proposed method 138
8.5 Results of the target reconstruction along three different planes. (a) superimposition of the model and the reconstructed target - Multichannel; (b) superimposition of the model and the reconstructed target - Colocated MIMO .. 143
8.6 Height error. (a) Height error with unreliable assignments - Multichannel; (b) Height error with unreliable assignments - Colocated MIMO; (c) Height error without unreliable assignments - Multichannel; (d) Height error without unreliable assignments - Colocated MIMO .. 144
8.7 Standard deviation of the height error. (a) Standard deviation of the height error with unreliable assignments - Monostatic; (b) Standard deviation of the height error with unreliable assignments - Colocated MIMO; (c) Standard deviation of the height error without unreliable assignments - Multichannel; (d) Standard deviation of the height error without unreliable assignments - Colocated MIMO .. 145
8.8 Cross-range error. (a) Cross-range error with unreliable assignments - Multichannel; (b) Cross-range error with unreliable assignments - Colocated MIMO; (c) Cross-range error without unreliable assignments - Multichannel; (d) Cross-range error without unreliable assignments - Colocated MIMO .. 146
8.9 Signed error without unreliable assignments. (a) Signed error - Multichannel; (b) Signed error - Colocated MIMO .. 146
8.10 (a) Mean error of the estimate of Ω_{eff} - Multichannel; (b) Mean error of the estimate of Ω_{eff} - Colocated MIMO .. 147
8.11 (a) Standard deviation of the estimate of Ω_{eff} - Multichannel; (b) Standard deviation of the estimate of Ω_{eff} - Colocated MIMO .. 147
8.12 (a) Mean error of the estimate of ϕ - Multichannel; (b) Mean error of the estimate of ϕ - Colocated MIMO .. 147
8.13 (a) Standard deviation of the estimate of ϕ - Multichannel; (b) Standard deviation of the estimate of ϕ - Colocated MIMO .. 148
List of Tables

4.1 Simulation Parameters - Airplane ... 61
4.2 Simulation Parameters - Boat .. 71
4.3 Simulation Parameters .. 81

5.1 Radar Parameters ... 87
5.2 Gulf Express master data ... 93
5.3 Radar Parameters ... 94
5.4 Radars coordinates (latitude and longitude) and pointing direction 95
5.5 Gulf Express master data ... 96

7.1 Simulation Parameters .. 125
7.2 Simulation Parameters .. 129
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>2 Dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>3 Dimensional</td>
</tr>
<tr>
<td>DSTO</td>
<td>Defence Science Technology Organization</td>
</tr>
<tr>
<td>EM</td>
<td>ElectroMagnetic</td>
</tr>
<tr>
<td>FMCW</td>
<td>Frequency Modulated Continuous Wave</td>
</tr>
<tr>
<td>FT</td>
<td>Fourier Transform</td>
</tr>
<tr>
<td>IC</td>
<td>Image Contrast</td>
</tr>
<tr>
<td>ICBA</td>
<td>Image Contrast Based Autofocus</td>
</tr>
<tr>
<td>IFT</td>
<td>Inverse Fourier Transform</td>
</tr>
<tr>
<td>InISAR</td>
<td>Interferometric Inverse Synthetic Aperture Radar</td>
</tr>
<tr>
<td>ISAR</td>
<td>Inverse Synthetic Aperture Radar</td>
</tr>
<tr>
<td>IPP</td>
<td>Image Projection Plane</td>
</tr>
<tr>
<td>LoS</td>
<td>Line of Sight</td>
</tr>
<tr>
<td>MC-CLEAN</td>
<td>MultiChannel CLEAN</td>
</tr>
<tr>
<td>M-ICBA</td>
<td>Multichannel Image Contrast Based Autofocus</td>
</tr>
<tr>
<td>MIMO</td>
<td>Multiple Input Multiple Output</td>
</tr>
<tr>
<td>MF</td>
<td>Matched Filter</td>
</tr>
<tr>
<td>PLS</td>
<td>Probabilistic Least Square</td>
</tr>
<tr>
<td>Pol-CLEAN</td>
<td>Polarimetric CLEAN</td>
</tr>
<tr>
<td>PSF</td>
<td>Point Spread Function</td>
</tr>
<tr>
<td>PRF</td>
<td>Pulse Repetition Frequency</td>
</tr>
<tr>
<td>PRI</td>
<td>Pulse Repetition Interval</td>
</tr>
<tr>
<td>RADAR</td>
<td>RAdio Detection And Ranging</td>
</tr>
<tr>
<td>RCS</td>
<td>Radar Cross Section</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>RD</td>
<td>Range Doppler</td>
</tr>
<tr>
<td>RT</td>
<td>Radon Transform</td>
</tr>
<tr>
<td>RX</td>
<td>Reciving</td>
</tr>
<tr>
<td>SAR</td>
<td>Synthetic Aperture Radar</td>
</tr>
<tr>
<td>SLL</td>
<td>Side Lobe Level</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal to Noise Ratio</td>
</tr>
<tr>
<td>TX</td>
<td>Transmitting</td>
</tr>
</tbody>
</table>
Symbols

\begin{itemize}
\item \(A \): received signal amplitude of the \(i^{th} \) spatial channel
\item \(A^i \): focusing parameter of the ICBA algorithm corresponding to the acceleration
\item \(B \): signal bandwidth
\item \(c \): speed of light
\item \(C_m \): model coordinates
\item \(C_{rt} \): coordinates of the model rotated along the trajectory
\item \(d_H \): horizontal baseline length
\item \(d_V \): vertical baseline length
\item \(D_{cr} \): size of the antenna along a given cross-range direction
\item \(E_{g,*} \): energy of a time-delay section in the \(i^{th} \) spatial channel
\item \(f_0 \): carrier frequency
\item \(f_d \): Doppler frequency
\item \(F \): percentage of initial energy of the ISAR image
\item \(h_H \): scatterer’s height along the horizontal baseline
\item \(h_V \): scatterer’s height along the vertical baseline
\end{itemize}
\(\mathbf{I} \)
- LoS unit vector

\(i_{\text{LoS}} \)
- ISAR image in the range-Doppler domain

\(J(\alpha) \)
- cost function of the soft assignment

\(\mathbf{K} \)
- wavenumber

\(k_0 \)
- rotation matrix

\(\mathbf{M} \)
- mean matching distance

\(mmd_k(n) \)
- centre of the reference system

\(O \)
- position at time \(t = 0 \) for a generic scatterer in the local reference system \(T_j \)

\(P_j \)
- \(m^{th} \) tx coordinates in the local system of reference

\(p_{rm} \)
- \(n^{th} \) rx coordinates in the local system of reference

\(Q \)
- number of sensor in the multistatic network

\(\mathbf{R} \)
- radar-target distance

\(R_0 \)
- yaw matrix

\(R_\mu \)
- pitch matrix

\(R_\nu \)
- roll matrix

\(R_\xi \)
- spectrum of the time-varying spatial multichannel received signal

\(S_R(f,t) \)
- transmitted pulse duration

\(T_i \)
- reference system embedded in the radar

\(T_\xi \)
- transmitted pulse duration
Symbols

T_{obs}
observation time

T_R
pulse repetition interval

T_x
time-varying reference system embedded in the target

T_y
reference system T_x at $t = 0$

U

V

v_r
radial velocity

W

$w(\tau, \nu)$
Point Spread Function

$W(f, t)$
domain where the 2D FT of the reflectivity function is defined

X

Y

y_{ij}
i^{th} y-coordinate in the local reference system T_j

Z

Greek Symbols

α

azimuth angle

α_{cr}
angular resolution of a rectangular antenna

α
soft assignment matrix

$\alpha_{i,k}$
assignment probability between the k^{th} and the i^{th} scatterer

β

γ

dominant parameter to adjust the threshold Λ

δ

cross-range resolution

δ_r
range resolution

δ_r
pulse duration at the output of the MF

Δ_ν
Doppler resolution

Δ_r
time delay resolution

Δ_{y_1}
spatial resolution along y_1
Δ_{y_2} spatial resolution along y_2

ϵ euclidean distance between k^{th} and the i^{th} scatterer

ϵ_h height error

ϵ_ϕ ϕ error

ϵ_Ω effective rotation angle error

ζ compression factor

θ elevation angle

λ wavelength

Λ threshold to identify unreliable assignments

μ chirp rate

ν Doppler frequency

ρ reflectivity function

σ standard deviation of ϵ_h

τ time delay

ϕ rotation angle between T_ξ and T_x

φ angle between the scatterer's trace and the abscissa axis

χ function to be minimised for the estimation of Ω_{eff} and ϕ

$\Psi(a, b)$ function to be minimised for the estimation of Ω_{eff} and ϕ
Symbols

\(\Omega_{\text{eff}} \) effective rotation vector
\(\Omega_T \) total angular rotation vector

Math Operators

\(A\{\} \) expectation
\(E\{\} \) expectation
\(\delta_{i,j} \) Dirac delta function
\(T \) transpose operator