Using high-throughput DNA sequencing and molecular phylogenies to investigate the evolution and biogeography of the southern hemisphere fauna

Kieren James Mitchell

Australian Centre for Ancient DNA
School of Biological Sciences
Faculty of Sciences
University of Adelaide

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

June 2015
TABLE OF CONTENTS

THESIS ABSTRACT .. v

THESIS DECLARATION ... vii

ACKNOWLEDGEMENTS ... xi

CHAPTER 1: General Introduction .. 1

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>3</td>
</tr>
<tr>
<td>Southern hemisphere biogeography</td>
<td>5</td>
</tr>
<tr>
<td>Phylogenetics for biogeographical hypothesis testing</td>
<td>8</td>
</tr>
<tr>
<td>Ancient DNA and next-generation sequencing</td>
<td>13</td>
</tr>
<tr>
<td>Pros and cons of mitochondrial DNA</td>
<td>18</td>
</tr>
<tr>
<td>Summary</td>
<td>23</td>
</tr>
<tr>
<td>Thesis Overview</td>
<td>24</td>
</tr>
<tr>
<td>References</td>
<td>29</td>
</tr>
</tbody>
</table>

CHAPTER 2: Molecular phylogeny, biogeography, and habitat preference

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplementary Information</td>
<td>57</td>
</tr>
</tbody>
</table>

CHAPTER 3: Ancient DNA reveals elephant birds and kiwi are sister taxa and
clarifies ratite bird evolution .. 77

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplementary Information</td>
<td>85</td>
</tr>
</tbody>
</table>

CHAPTER 4: Origin and evolution of the New Zealand wrens (Acanthisittidae)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>131</td>
</tr>
<tr>
<td>Introduction</td>
<td>132</td>
</tr>
<tr>
<td>Results</td>
<td>136</td>
</tr>
<tr>
<td>Discussion</td>
<td>145</td>
</tr>
<tr>
<td>Methods</td>
<td>151</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>164</td>
</tr>
<tr>
<td>References</td>
<td>165</td>
</tr>
<tr>
<td>Supplementary Information</td>
<td>173</td>
</tr>
</tbody>
</table>
CHAPTER 5: Ancient mitochondrial genome reveals unsuspected taxonomic
affinity of the extinct Chatham duck (*Pachyanas chathamica*) and resolves
divergence times for New Zealand and sub-Antarctic brown teals............... 183

Supplementary Information ... 197

CHAPTER 6: An extinct nectarid parrot (Aves, Psittaciformes, Nestoridae) from
the Chatham Islands, New Zealand... 207

Supplementary Information ... 227

CHAPTER 7: Ancient DNA analyses of mammalian megafauna from La
Chumbiada (Argentina; South America)... 229

Abstract... 231
Introduction.. 232
Methods.. 238
Results.. 250
Discussion... 258
References... 263
Supplementary Information ... 269

CHAPTER 8: General discussion and concluding remarks 273

Summary, synthesis and significance ... 275
Limitations of single loci.. 280
Building better datasets.. 289
Inferring accurate evolutionary timescales .. 294
Future directions.. 306
Conclusion... 312
References... 314

APPENDIX: Molecular dating, genomic data, and the temporal origin of modern
birds ... 327

Abstract... 329
Introduction.. 330
Methods.. 332
Results.. 335
Discussion... 340
Acknowledgements... 342
References... 343
Supplementary Information ... 346
THESIS ABSTRACT

Biogeography is the study of how and why organisms are distributed the way they are, and is consequently intimately tied to evolution. By investigating biogeographic patterns we can learn more about fundamental evolutionary processes and the history of life on Earth. Molecular phylogenies are an invaluable tool for biogeographical hypothesis testing, allowing the relationships among taxa to be confidently reconstructed and the timescale of their evolution to be estimated. However, many biogeographic hypotheses have not been extensively evaluated in a phylogenetic context due to difficulties associated with obtaining sufficient nucleotide sequence data to construct adequately resolved phylogenies. In the past, a major obstacle to this process was the amount of labour and expense involved in generating large quantities of sequence data. However, the recent advent of high-throughput sequencing has revolutionised the collection of nucleotide sequence data, greatly decreasing the costs associated with generating large nucleotide sequence datasets.

A second problem for building molecular phylogenies is obtaining sequence data from degraded sub-fossil remains of extinct species. A large proportion of the world’s terrestrial megafauna became extinct within the last fifty thousand years, and understanding the relationships of these species to their extant relatives is crucial for testing many biogeographical and evolutionary hypotheses. While high-throughput sequencing provides many benefits for the sequencing of ancient DNA, methods are still required to increase the concentration of target endogenous molecules in order to make sequencing cost-effective. One solution to this problem is hybridisation enrichment.
In this thesis I use both hybridisation enrichment and high-throughput sequencing to gather nucleotide sequence data from a range of extant and extinct southern hemisphere species in order to construct well resolved phylogenies. I sequence near-complete mitochondrial genomes from extinct elephant birds from Madagascar (Aepyornis and Mullerornis), acanthisittid wrens from New Zealand (Pachyplichas, Traversia and Xenicus), the Chatham Island duck (Pachyanas), and South American horses (Hippidion) and glyptodontids (Glyptodon). I am also able to retrieve fragments of mitochondrial DNA from the previously undescribed (extinct) Chatham Islands parrot. In addition to data from these extinct species, I obtain mitochondrial genomes from 69 extant marsupial species, tripling the number of marsupials for which mitochondrial genomes are available. Using these new data I investigate how patterns of bird and mammal distribution have been influenced by important geological events that shaped the southern hemisphere over the past 100 million years: the breakup of Gondwana during the Cretaceous, Palaeocene and Eocene; the submergence of Zealandia in the Oligocene; the emergence of New Guinea and Wallacea beginning in the Miocene; and formation of the Isthmus of Panama and emergence of the Chatham Islands archipelago in the Pliocene. Ultimately, I resolve several long-standing evolutionary mysteries, most prominently the geographical origin of the flightless ratite birds: I demonstrate that their modern distribution is the result of overwater dispersal by flighted ancestors rather than Gondwanan vicariance as traditionally thought. I also highlight how taxon sampling, model choice, and calibration of the molecular clock can impact our evaluation of different biogeographical and evolutionary scenarios.
THESIS DECLARATION

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by any other person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

.. ..
Kieren James Mitchell Date
Publications

ACKNOWLEDGEMENTS

Firstly I would like to thank my principal supervisor, Alan Cooper, for giving me the opportunity to work at ACAD, and for his great advice and tuition during my candidature. I’d also like to thank my other supervisors Mike Lee and Matt Phillips for always being available to discuss theoretical and practical issues, and providing valuable feedback on my work.

Thanks to everyone at ACAD (past and present) for maintaining a supporting and collaborative work environment, providing guidance, and partaking in constructive and informative discussions. I would particularly like to acknowledge: Bastien Llamas, Jess Metcalf, Kyle Armstrong, Steve Richards, Janette Edson and Jeremy Austin for their direct tutelage in the wet lab; Bastien Llamas (again), Julien Soubrier and Jimmy Breen for their help with bioinformatics and computer analyses; and Maria Lekis for her tireless administrative efforts. Thanks also to all my collaborators outside of ACAD, both local and international – your assistance has been invaluable.

For providing the financial resources necessary to complete the work I have undertaken I would like to thank the Australian Research Council and the New Zealand Marsden Fund Council, and therefore ultimately the tax-paying public (both of Australia and New Zealand).
I would also like to thank all of my amazing friends, fellow PhD students, and partner Laurati, for their patience, camaraderie, sympathy, understanding and moral support over the last few years.

Finally I would like to thank my biggest fans and number one supporters, my parents Jim and Sally, for their moral and financial support not only throughout my candidature but also in getting me to the point where I could undertake a PhD in the first place. None of my personal achievements could have been possible without their effort, and they have my eternal love and gratitude.
CHAPTER 1:

General Introduction
CHAPTER 1: General Introduction

Background

It can be readily observed that groups of closely related species occupy distinct geographic ranges. For example, marsupial mammals are restricted in distribution to the Americas and Australasia, penguins are almost exclusive to the southern hemisphere, and all living species of lemur are restricted to Madagascar. Such observations were instrumental in the original conception of biological evolution. Charles Darwin recorded that endemic species found on many oceanic islands bear close resemblance to species present on nearby continents (Darwin 1859): “The inhabitants of the Cape de Verde Islands are related to those of Africa, like those of the Galapagos to America. I believe this grand fact can receive no sort of explanation on the ordinary view of independent creation...” Alfred Wallace noted similar patterns of distribution for which there existed no satisfactory explanation (Wallace 1855): “Why are the genera of the Palms and of Orchids in almost every case confined to one hemisphere? Why are the closely allied species of brown-backed Trogons all found in the East, and the green-backed in the West? Why are the Macaws and the Cockatoos similarly restricted?” Even before he and Darwin independently inferred the mechanism of natural selection, Wallace proposed a law governing the origin and distribution of species (Wallace 1855): “Every species has come into existence coincident both in space and time with a pre-existing closely allied species.” This principle provided a biological explanation for geographical patterns exhibited by higher taxa: the distribution of a species reflects its evolutionary history.
Biogeography is the study of species distributions through time, and integrates aspects of geology, geography, ecology and climatology (Gunnell 2013; Wen, et al. 2013). Geology and geography both place obvious physical restrictions on the distributions of organisms. For example, animals that are not predisposed to fly or swim long distances will rarely be found on isolated volcanic islands or coral atolls. In addition, animals and plants may only survive in an area with a suitable climate and ecology: rainfall, temperature, food availability and competition with other species all play a role in determining species distributions. However, the interaction between organisms and their environment is ultimately determined by their evolutionary history. Consequently, biogeographic patterns may provide valuable insights into many evolutionary questions. Striking biogeographic patterns can be observed in many elements of the southern hemisphere biota, so it is little wonder that the evolutionary thinking of both Darwin and Wallace was so heavily influenced by their travels in that region (see Gunnell 2013).
Southern hemisphere biogeography

The principal geological event leading to the current arrangement of the major southern hemisphere landmasses was the breakup of the supercontinent Gondwana (Schellart, et al. 2006; Blakey 2008; Ali and Krause 2011). Around 120 million years ago (mya) the emergent land that now forms Africa, Antarctica, Australia, India, Madagascar, New Zealand and South America was contiguous. Subsequently, plate tectonics caused the southern landmasses to gradually break apart and drift to their current positions while India moved rapidly north and collided with Asia, forming the Himalayas. Many animal and plant groups are distributed across the now separate southern fragments. For example, primates are found in South America, Africa and Madagascar, as well as Asia in the northern hemisphere (Springer, et al. 2012; Gunnell 2013). From a biogeographic perspective there are several possibilities: either primates were already distributed across these landmasses and began to evolve independently once they became separated (vicariance), ancestral primates dispersed across the ocean after the landmasses became isolated (dispersal), or a combination of both. A similar pattern can be observed in the ratites, a group of large flightless birds (Cooper, et al. 2001; Haddrath and Baker 2001; Johnston 2011; Haddrath and Baker 2012): the emu and cassowary from Australia, rhea from South America, ostrich from Africa, kiwi from New Zealand, and the recently extinct moa from New Zealand and elephant birds from Madagascar. Since these birds, being flightless, are apparently ill suited to dispersal, they have long been a textbook example of vicariant speciation. However, the mechanism underlying the distribution of many other groups (including the primates) is more contentious.
The southern hemisphere also contains a large number of small isolated islands with high proportions of endemic fauna, including Lord Howe Island and the Chatham Islands archipelago. We can be certain from the relatively young palaeogeographic history of many of these landmasses that their entire fauna must have descended from dispersing colonists (e.g. McDougall, et al. 1981; Campbell 2008; Campbell, et al. 2008), leaving biogeographers with only the question of where these colonists originated from. However, competing hypotheses of vicariance versus dispersal do surround some of the southern hemisphere’s smaller islands. Of particular interest to biogeographers is Wallacea (Metcalfe, et al. 2001): a group of mainly Indonesian islands separated by deep straits from nearby islands on the Australian continental shelf to the east and the Asian continental shelf to the west. While the islands to the east and west have fauna characteristic of their respective plate, the Wallacean islands support a mixture of members from conventionally Australian and Asian groups. For example, Sulawesi (the largest island in Wallacea) is home to both marsupials (typical of Australia) and primates (typical of Asia). Biogeographers spent the latter half of the 19th century and the beginning of the 20th century attempting to draw a line through Wallacea dividing the islands into an Asian and Australian portion based on the distribution of “Australian” and “Asian” mammals, birds and insects (e.g. Wallace’s line; reviewed in Simpson 1977). In reality no such discrete boundary exists, and would not be expected to given what we know of the region’s geological history (van Ufford and Cloos 2005; Hall 2013). The Wallacean islands have never been closely associated with either bordering plate, instead emerging from the ocean as a result of uplift and volcanism over the last 25 million years (van Ufford and Cloos 2005). Early in this period, land connection with the Australian shelf likely occurred briefly through either a continental promontory
(Hall 2013) or an accreted terrane (Metcalfe, et al. 2001), but the islands have been isolated by deep water ever since. The Wallacean region itself has been very active tectonically and many of the individual islands have likely been connected and separated at some point during their history (Hall 2013). However, the exact palaeogeography is uncertain. Studying the resulting biogeographic patterns may not only reveal the evolution and origins of the Wallacean fauna, but also help to reconstruct the geological history of the region.
Phylogenetics for biogeographical hypothesis testing

In order to answer biogeographical questions such as those above we must first determine the precise relationship between organisms (Crisp, et al. 2011). For example, it was the discovery of a close relationship between the Galapagos and American flycatchers, mockingbirds and doves that caused Darwin to realise that much of the Galapagos fauna had descended from American colonists (Sulloway 1982). Historically, relationships among species were determined on the somewhat subjective basis of overall morphological similarity. The modern discipline concerned with inferring these relationships is phylogenetics: the creation of bifurcating evolutionary trees (phylogenies) based on changes in homologous characters (reviewed in Lemey, et al. 2009; Roy, et al. 2014). Character similarities and differences inherited by descendants of a common ancestor allow relationships to be inferred, and thus the branching order of the phylogeny to be determined. Each node on a phylogeny represents a common ancestor while each tip represents a sampled species; more closely related species share a more recent common ancestor.

Compared with earlier subjective approaches, quantitative phylogenetic approaches have the advantage of being more rigorous, objective and repeatable, as well as allowing the strength of inferred relationships to be evaluated statistically. While morphological characters can still be readily used in this framework, and frequently are (e.g. Lee, et al. 2014), most recent phylogenetic studies focus on molecular data. By far the most commonly employed molecular data today are nucleotide sequences. Nucleotide sequence data obtained from a homologous gene in different organisms can be compared and each site (A, C, G, or T) treated as a single character.
A major advantage of nucleotide sequence data over morphological data for phylogenetic inference is the sheer number of characters available (Hillis 1987). The majority of morphological data matrices comprise at most a few hundred characters (e.g. Worthy, et al. 2010; Beck 2012; Worthy and Scofield 2012), with exceptional datasets having a few thousand (O’Leary, et al. 2013), while the genome of an organism can contain billions of nucleotide sites (though typically only a relatively tiny subset are sampled: see Chapter 8). Generally speaking, analysing a greater number of variable characters provides greater confidence in the branching order of the inferred phylogeny, since each branching event will be based on more characters. Consequently, phylogenies inferred from nucleotide sequence data are generally much better resolved than morphological phylogenies. Additionally, most phylogenetic methods assume that the states of all sampled characters are independent, which is often a problem for morphological characters (Sharon and Hastings 1998). While nucleotide characters may sometimes be non-independent (Nasrallah, et al. 2011), this seems to be less common than for morphology. Another advantage of nucleotide sequence data over morphology is that certain homologous genes can be found shared across almost the entire tree of life, whereas morphological characters can generally only be measured for a narrow subset of taxa (Hillis 1987). This makes nucleotide sequence data more widely comparable than morphological data. Finally, adaptation to similar environments and ecological niches can cause convergent evolutionary changes in otherwise only distantly related species. Convergence is much more likely to mislead phylogenetic inference based on morphological characters than nucleotide sequence data (e.g. Sibley and Ahlquist 1987; Doolittle 1994; Hedges and Sibley 1994; Hedges and Maxson 1996), though in some cases convergent sequence evolution may occur (Parker, et al. 2013).
The evolutionary dynamics of nucleotide sequences have now been well characterised, and a large number of probabilistic models are available for analysing sequence data in a phylogenetic context (Strimmer and von Haessler 2003). These models can allow for differing likelihoods of each class of substitution, different stationary frequencies of each individual nucleotide, and rate heterogeneity among different nucleotide sites. A valuable addition to these models of evolution is the incorporation of the molecular clock, which allows a phylogeny to be calibrated to an absolute timescale (Ho 2007, 2009, 2014). Kimura (1968) posited that most nucleotide substitutions are selectively neutral and thus accumulate in the genome at a steady rate influenced only by the mutation rate. This would mean that the time of divergence between two taxa could be simply estimated using their relative genetic distance, assuming that substitutions occurred according to a constant probabilistic clock. In reality, the mutation rate varies across lineages (e.g. Martin and Palumbi 1993), and so the rate of evolution cannot be assumed to be constant. However, relaxed clock models have been devised, which allow the rate of evolution to vary among lineages (Drummond, et al. 2006). The most commonly used molecular dating methods employ a Bayesian framework in which the age of key nodes on a phylogeny are constrained according to some prior knowledge (Drummond and Rambaut 2007; Yang 2007; Ronquist, et al. 2012), usually from the fossil record (Benton and Donoghue 2007; Donoghue and Benton 2007). For example, the oldest known penguin *Waimanu* is around 61 million years old (Slack, et al. 2006), meaning that the divergence between penguins and their nearest relatives, the albatrosses and petrels (Jarvis, et al. 2014), must have occurred prior to this time. Rates of evolution and divergence times can be estimated for all nodes on the phylogeny using the temporal data from one or more constrained nodes.
Using time-calibrated molecular phylogenies, biogeographers and evolutionary biologists have moved far beyond the foundational work of Darwin and Wallace. Many software packages exist that use a time-calibrated phylogeny and the distribution of living species to infer the distribution of ancestral species (e.g. Pagel, et al. 2004; Ree and Smith 2008). These methods can be useful for determining the geographical origin of island colonists (e.g. Kuriyama, et al. 2011; Fabre, et al. 2012). We can infer that colonisation occurred coincident with (or at some time following) the divergence of the colonist lineage from taxa remaining in the ancestral source region (Crisp, et al. 2011). Further, we can assume that endemic radiation of the colonist lineage occurred following colonisation. This allows a temporal window of colonisation to be identified. For example, the ancestral Darwin’s finch must have dispersed to the Galapagos no earlier than its divergence from its nearest living mainland American relatives but no later than the point when it began to diversify into the many forms we observe today. Temporal windows of colonisation can be compared among different groups, and to known geological events, to test specific biogeographical scenarios.

Certain complex biogeographical scenarios predict a very specific timing and order of divergences among species (Crisp, et al. 2011). One example is the distribution of members of a group across the major southern hemisphere landmasses and the competing hypotheses of Gondwanan vicariance and transoceanic dispersal. Africa and Madagascar were the first of the southern landmasses to become isolated from the rest (Blakey 2008; Ali and Krause 2011), so the vicariance hypothesis predicts that: A) members of a group distributed in South America, Australia and New Zealand should be more closely related to each other
than to African and Madagascan members of the same group, and B) the origin of the African and Madagascan lineages should predate the separation of these landmasses approximately 100 mya. When these predications were tested for the primates it was discovered that the divergences between the South American, African, and Madagascan primates occurred much more recently than expected if their distribution was the result of vicariance (Springer, et al. 2012; Gunnell 2013). Thus, it appears that the ancestors of both the South American monkeys and the Madagascan lemurs in fact dispersed from Africa over the Atlantic Ocean and the Mozambique Channel, respectively, to reach their current homelands. This hypothesis could only be rigorously tested because DNA sequence data is available for primates from all three regions. While obtaining these data was relatively straightforward for the primates because each relevant group contains living representatives, it can be a problem for other groups when some taxa necessary for testing a hypothesis are extinct and represented only by fossil or sub-fossil material.
Ancient DNA and next-generation sequencing

A large proportion of the world’s terrestrial megafauna became extinct within the last fifty thousand years (Barnosky, et al. 2004; Prescott, et al. 2012; Stegner and Holmes 2013). Understanding the origin of these species is crucial for testing many biogeographical and evolutionary hypotheses. For example, two groups of flightless ratites became extinct only recently: moa from New Zealand (13th century; Allentoft, et al. 2014) and elephant birds from Madagascar (after the 11th century, possibly as late as the 17th century; Hawkins and Goodman 2003). Without knowing their phylogenetic position it is impossible to rigorously test the hypothesis of Gondwanan vicariance as has been done for primates. Because these species became extinct only very recently it is theoretically possible to sequence DNA from sub-fossil remains, but this process is much more difficult than for living organisms from which fresh DNA samples can be obtained (reviewed in Hofreiter, et al. 2001). Ancient DNA (aDNA) extracted from sub-fossil remains (e.g. bones, teeth) is generally a mixture of endogenous DNA from the target organism and exogenous DNA from bacteria and other environmental sources. The endogenous DNA is usually at such a low relative concentration that it must be worked on in specially designed clean facilities with stringent decontamination protocols in order to avoid contamination with modern DNA and PCR (polymerase chain reaction) products (Cooper and Poinar 2000). Further, endogenous DNA molecules are usually degraded and suffer from both post-mortem fragmentation and chemical base modifications, principally deamination and depurination (Lindahl 1993; Briggs, et al. 2007; Sawyer, et al. 2012). For this reason, researchers have typically been forced to PCR amplify aDNA in short fragments, often only around 100 base pairs (bp) in length. Since chemical damage can result in
nucleotide misincorporation during PCR and sequencing, PCR replicates must be performed to ensure that multiple template molecules are sequenced, which are unlikely to share the same damage pattern (Cooper and Poinar 2000). While all ancient samples suffer some degree of degradation, the age and thermal history of each sample partially determine the difficulty of isolating endogenous DNA (Smith, et al. 2003; Allentoft, et al. 2012): recent remains generally have better preservation than older remains, while remains from colder environments are generally better preserved than those from warmer environments. Thus, previous studies have been reasonably successful in sequencing DNA from moa remains from cold, dry sites in New Zealand (Cooper, et al. 2001; Haddrath and Baker 2001; Haddrath and Baker 2012) but have had little success with elephant bird remains, which usually come from warmer, swampy sites in Madagascar (see Cooper, et al. 2001).

While taxon sampling is an important consideration for hypothesis testing, the resulting phylogeny must also be well resolved. This requires sampling a sufficient number of characters for each taxon, such that enough changes are recorded along each branch to be confident of the inferred branching order. However, sequencing large numbers of genes using traditional PCR and Sanger sequencing is a laborious process even without the additional disadvantages of aDNA. High-throughput sequencing has revolutionised the collection of gene sequence data. High-throughput sequencing technologies allow huge numbers of DNA molecules to be individually sequenced quickly, accurately and at a comparatively low cost per base (van Dijk, et al. 2014). For example, the IonTorrent PGM (Life Technologies) can produce up to 2 Gb of data in less than eight hours. While this has greatly increased the amount of data that can be sequenced from extant organisms (e.g. Jarvis, et al. 2014), next-
generation machines are also very well suited to sequencing ancient DNA (Knapp and Hofreiter 2010; Rizzi, et al. 2012). The short read-length of most machines does not present a disadvantage for ancient DNA, as endogenous DNA molecules are already highly fragmented: usable DNA sequences may be confidently identified at lengths down to around 25-30 bp (Prufer, et al. 2010; Meyer, et al. 2012; Orlando, et al. 2013), and many endogenous aDNA molecules are little larger (Noonan, et al. 2005; Briggs, et al. 2009; Rasmussen, et al. 2010). Most high-throughput sequencing platforms are capable of sequencing such small molecules, providing access to the maximum amount of usable information from an aDNA extract. The huge number of molecules sequenced by high-throughput sequencing also largely overcomes the problem of post-mortem damage in aDNA: so many individual molecules are sequenced that the damaged sites are usually easy to identify. Similarly, mixed templates and contamination can also be identified without the need for costly and time-consuming bacterial cloning.

Shotgun sequencing is the most straightforward approach to high-throughput sequencing: simply sequencing a random sample of molecules from a DNA extract. This approach has been used to successfully sequence whole genomes from a range of living organisms (e.g. Jarvis, et al. 2014). It has also been used to sequence genomic data from a number of exceptionally well-preserved ancient specimens (e.g. Miller, et al. 2008; Rasmussen, et al. 2010; Meyer, et al. 2012). However, for many ancient DNA extracts the concentration of endogenous DNA is too low to make shotgun sequencing economical (Knapp and Hofreiter 2010). It is not uncommon for endogenous DNA to comprise less than 1% of an extract (e.g. Skoglund, et al. 2012), in which case 99% of sequencing effort would be wasted on sequencing non-target DNA. Further, in many
cases only a subset of the whole genome is desired in order to test a hypothesis, making shotgun sequencing even less efficient even for studies of extant species. In these situations, a method for increasing the relative concentration of target endogenous molecules is required in order to make high-throughput sequencing cost-effective.

PCR can be used to enrich a DNA extract for target molecules prior to high-throughput sequencing. By amplifying large (several kilobases) stretches of the target region via long-range PCR, and then shearing the resulting molecules into small fragments compatible with high-throughput sequencing sequencers, large quantities of data can be efficiently produced for many samples in parallel (Meyer, et al. 2007). However, for aDNA this approach still faces one of the main problems for traditional sequencing approaches: the short average fragment length of aDNA molecules. While in some cases this may be circumvented by multiplex PCR targeting many short fragments simultaneously (Stiller, et al. 2009), this would be extremely laborious to implement for non-model organisms. Even then, PCR can realistically only target molecules of around 100 bp or more while the longest fragments in DNA extracts from some highly degraded remains is only 70 bp (Noonan, et al. 2005; Briggs, et al. 2009; Rasmussen, et al. 2010). Consequently, a PCR-based approach to high-throughput sequencing does not allow us to take full advantage of the ability to sequence extremely short endogenous molecules.

Hybridisation enrichment allows the relative concentration of specific molecules within a DNA extract to be increased without the use of targeted PCR (Hodges, et al. 2007; St John and Quinn 2008; Gnirke, et al. 2009; Horn 2012). This
technique involves incubating the pool of extracted DNA molecules with a selection of short synthetic DNA or RNA bait molecules (either in solution or as part of a solid array) that are complementary to the regions of interest. Target molecules anneal to the baits, allowing unbound non-target molecules to be removed with a series of washes. The annealed molecules can then be released from the baits, resulting in an enriched pool of molecules in which the relative concentration of the regions of interest has been increased. Consequently, sequencing the products of hybridisation enrichment is much more cost-effective than shotgun sequencing for samples where the relative concentration of targets is low, such as for highly degraded remains. An additional advantage of hybridisation enrichment is that, unlike conventional PCR based methods, it allows sequence information to be obtained from target molecules as short as 25 bp. A final advantage of hybridisation enrichment is that the bait molecule sequences need not be completely identical to the target gene regions, meaning that this approach can be used for de novo sequencing (Mason, et al. 2011; Li, et al. 2013). Hybridisation enrichment and high-throughput sequencing thus open up a range of new possibilities for studying aDNA.
Pros and cons of mitochondrial DNA

Many past PCR-based aDNA studies have focused on mitochondrial DNA sequences (e.g. Cooper 1994; Cooper, et al. 2001; Haddrath and Baker 2001; Barnes, et al. 2002; Lambert, et al. 2002; Burger, et al. 2004; Shapiro, et al. 2004; Orlando, et al. 2009; Barnett, et al. 2014), and the mitochondrial genome (mitogenome) is also a good target for hybridisation enrichment techniques for similar reasons. Firstly, mitogenomes have a much higher copy-number than the nuclear genome: while a cell only contains two copies of the nuclear genome it may contain thousands of mitochondria, which each contain multiple copies of the mitogenome. As a consequence, mitochondrial DNA molecules are generally overrepresented in aDNA extracts. By length the mitogenome makes up only 0.0004% of the average complete mammal genome (~17 kilobases versus 2.8 – 4 gigabases; Knapp and Hofreiter 2010), while in some aDNA extracts mitochondrial DNA may account for up to 1.99% of molecules (Gilbert, et al. 2007). This means that much less sequencing effort need be expended in order to reconstruct a high-quality mitogenome sequence compared to a nuclear locus of similar length. There is also some evidence to suggest that hybridisation enrichment yields a greater relative increase in concentration of target molecules when the starting concentration of target molecules is already relatively high (Carpenter, et al. 2013). Although this apparent correlation has not been extensively explored, it would constitute an additional argument for targeting mitochondrial DNA from highly degraded samples. A second advantage of mitochondria for aDNA is their conserved structure: for most vertebrates the mitogenome is approximately 17 kilobases long and encodes two RNAs, 22 tRNAs, and 13 peptides that are involved in electron transport (Moritz, et al. 1987). This is an
important consideration for de novo sequencing as it makes primer design easier for PCR-based methods, and bait molecule design easier for hybridisation enrichment. The conserved structure and gene order of the mitogenome also provides a scaffold for bioinformatically assembling high-throughput sequencing data.

An additional advantage of mitochondria, specifically for phylogenetic studies of animals, is that mitochondrial genes have a higher evolutionary rate than nuclear genes (e.g. Brown, et al. 1979; Moritz, et al. 1987). This means that for a given number of nucleotides sequenced, mitochondrial genes will generally record more changes than nuclear genes per unit of time (Rubinoff and Holland 2005). More changes recorded mean a greater chance of observing synapomorphies for a given branch, resulting in an increase in the strength of inferred relationships. However, this high evolutionary rate can also be a disadvantage. Over time, quickly evolving nucleotide sites will undergo multiple consecutive changes. While probabilistic models of nucleotide evolution can partially account for superimposed substitutions, eventually these sites will become saturated and phylogenetic signal will be diminished (Strimmer and von Haessler 2003). Saturation can affect branch length estimation (e.g. Hugall and Lee 2004; Phillips 2009) and mislead phylogenetic inference in cases where some taxa display base composition bias (Phillips and Penny 2003; Gibson, et al. 2005). Fortunately, methods exist to detect saturation (e.g. Xia, et al. 2003; Xia and Lemey 2009). The effects of saturation can then be mitigated by either excluding the affected sites or by recoding the data to increase the signal-to-noise ratio. RY-coding pools together the four bases into two: purines (A and G: R) and pyrimidines (C and T: Y). This overcomes problems with commonly observed AT versus CG biases. RY-coding also lessens the erosion of phylogenetic signal, as transitions are effectively
ignored: transitions (purine replacing another purine, or pyrimidine replacing another pyrimidine) occur much more rapidly than transversions (replacement of a pyrimidine by a purine, or vice versa). In mitochondria saturation is most frequently a problem at third codon positions of protein coding genes, where most changes are synonymous and consequently under little evolutionary constraint, and RY-coding third codon positions has been effective in numerous previous studies (e.g. Phillips, et al. 2001; Phillips and Penny 2003; Harrison, et al. 2004; Phillips, et al. 2006; Phillips and Pratt 2008; Phillips, et al. 2010). When saturation is accounted for, mitochondria can effectively be used to infer evolutionary events as deep as ~80 mya (e.g. Phillips, et al. 2010): a temporal window that covers much of the evolution of birds and mammals and includes the KPg boundary.

Past PCR-based studies have identified non-functional copies of mitochondrial genes residing in the nuclear genome. These nuclear mitochondrial genes (NUMTs) can cause problems when they are preferentially amplified over the authentic mitochondrial sequence (e.g. Collura and Stewart 1995; Sorenson and Quinn 1998). NUMTs are common in many eukaryote species (Bensasson, et al. 2001). For example, the human genome contains at least 755 fragments of nuclear mitochondrial DNA varying in length from 38 to 14835 bp, though most are less than 500 bp (Ramos, et al. 2011). If a NUMT is mistaken for an authentic mitochondrial sequence then phylogenetic inference may be compromised: once the NUMT is transposed into the nuclear genome it evolves independently from the original, subject to a slower evolutionary rate (in animals) and different selection pressures (e.g. Fukuda, et al. 1985; Lopez, et al. 1994; Collura and Stewart 1995; Perna and Kocher 1996). Consequently, if the transposition event predates multiple speciation events then the
branching order among the effected species may be reconstructed incorrectly. Fortunately, NUMTs only appear to be a major problem for PCR-based methods: hybridisation enrichment techniques do not appear to be affected to the same extent (Li, et al. 2012; Hahn, et al. 2013). Nuclear copies appear at such low frequencies in high-throughput sequencing data that the authentic mitochondrial sequence is easily identified.

An additional concern when relying on a single locus such as the mitogenome to infer phylogenies is incongruence between the locus tree and the species tree (Maddison 1997). One mechanism by which this incongruence can arise is through incomplete lineage sorting. Incomplete lineage sorting occurs when multiple alleles at a locus persist in a population through multiple speciation events and there is differential sorting and fixation/sampling of these alleles in the descendent lineages. Species tree inference is most likely to be affected by incomplete lineage sorting when multiple consecutive speciation events occur in a short space of time (Rosenberg 2013). This is because the ancestral allelic diversity that can potentially lead to incomplete lineage sorting will be lost from descendent lineages over longer timescales due to genetic drift (Rosenberg 2003). Genetic drift occurs more quickly when population sizes are small, so mitochondria are less susceptible to the effects of incomplete lineage sorting than any single nuclear loci (Zink and Barrowclough 2008): being both haploid and uniparentally inherited, mitochondria have an effective population one quarter the size of an autosomal nuclear locus. However, if incomplete lineage sorting does occur, phylogenetic inference from mitochondrial sequence data will be misled to a greater degree as minimal recombination means
that the mitogenome generally represents only a single molecular history (Ballard and Whitlock 2004).

In addition to incomplete lineage sorting, incongruence between a gene tree and the species tree can occur when the species boundary is breached (e.g. introgressive hybridisation in vertebrates) and a foreign allele is captured and reaches fixation (or a high enough frequency that it is sampled). Some studies suggest that hybridisation occurs in up to 10% of bird and mammal species (Grant and Grant 1992; Mallet 2005), but it is not clear how often hybridisation will actually result in sufficient gene flow to mislead phylogenetic inference. In reality, this will be species-dependent and determined by a range of factors including demography and hybrid fitness/fertility. However, mitochondria may be more susceptible to introgression than nuclear loci: low effective population size and lack of recombination may lead mitogenomes into fitness traps via Muller’s ratchet (Moran 1996; Lynch and Blanchard 1998), which may make them vulnerable to selective sweeps driven by more fit mitochondrial lineages entering a population through hybridisation (Phillips, et al. 2013).
Summary

Ultimately, mitochondria have several advantages for constructing phylogenies for biogeographical inference. Mitochondrial DNA sequences can be isolated from highly degraded remains using hybridisation enrichment, so can be sequenced for extinct species from environments where DNA preservation is especially poor. They also have high information content and provide good resolution over timescales relevant to much of the evolutionary history of birds and mammals. While using mitochondria to infer phylogenies has disadvantages, these can be mitigated in many cases by accounting for them methodologically (e.g. excluding/RY-coding quickly evolving sites) or through cautious interpretation of results (e.g. when consecutive short internodes increase the likelihood of incomplete lineage sorting). Still other disadvantages of mitochondrial DNA (e.g. nuclear mitochondrial gene copies; NUMTs) may be effectively circumvented through the use of high-throughput sequencing.

The advent of new sequencing technology now allows us to produce more DNA sequence data than ever before, and from samples and species that were previously too degraded to work with. These data permit us to reconstruct phylogenies and infer evolutionary relationships with greater confidence than previously possible. As a consequence, we now have an opportunity to test many biogeographical and evolutionary hypotheses in a phylogenetic framework for the first time. The time is ripe to renew investigation of outstanding questions regarding the origin and evolution of the southern hemisphere fauna.
Thesis Overview

In this thesis I take advantage of recent advances in hybridisation enrichment and high-throughput sequencing to generate data for building well resolved phylogenies. The chapters of this thesis describe my application of these tools to a number of different bird and mammal groups, including both living and extinct species. My primary objectives are to test long-standing biogeographic and phylogenetic hypotheses regarding elements of the southern hemisphere fauna, and identify patterns and processes that may increase our understanding of taxon distributions and movement more broadly.

CHAPTER 2

Molecular phylogeny, biogeography, and habitat preference evolution of marsupials

Marsupials are distributed across the Americas, Australia, New Guinea and Wallacea. The separation and divergence of the extant American and Australasian groups was been extensively studied. However, at least ten marsupial lineages are distributed throughout New Guinea and Wallacea, and their biogeographic history is less certain. In Chapter 2, I present 69 new marsupial mitogenomes obtained using both shotgun and PCR-enriched high-throughput sequencing techniques coupled with traditional Sanger sequencing. By combining these new mitogenome sequences with existing data I produce a comprehensive time-calibrated phylogeny of marsupials. Using this phylogeny, I compare the ages of New Guinean/Wallacean lineages both to one another and what is known about the palaeogeography of the Australasian region.
in order to determine the origin of these groups. I also infer the environmental preferences of ancestral marsupials and explore how this corresponds to their biogeography and to changing environmental conditions in Australia and South America during the Cenozoic.

CHAPTER 3

Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution

The distribution of ratites has been widely assumed to have resulted from Gondwanan vicariance. However, this hypothesis has never been fully tested, as the phylogenetic position of the extinct Madagascan elephant birds has remained unresolved. In Chapter 3, I describe a procedure for in-solution hybridisation enrichment of mitochondrial DNA from extinct species, which uses an RNA probe array based on sequences from a pool of extant bird species. I use this enrichment strategy coupled with high-throughput sequencing to obtain partial mitochondrial genomes from two species of elephant bird: Aepyornis hildebrandti and Mullerornis agilis. These new data allow the relationships of the elephant birds to the other ratites to be inferred with high confidence, and I re-asses the hypothesis of Gondwanan vicariance in light of this new information.
CHAPTER 4

Origin and evolution of the New Zealand wrens (Acanthisittidae)

New Zealand historically supported a diverse endemic avian fauna. However, a large proportion of this avifauna became extinct following the arrival of humans, leaving much of its evolution and origins uncertain. In particular, it is unclear to what extent the current fauna represents Gondwanan vicariant elements and how many species actually represent more recent arrivals. Some authors have suggested that the entire fauna is descended from recent colonists arriving in New Zealand following an extensive marine transgression ~24 mya (see Landis, et al. 2008). This hypothesis can be tested in biogeographical framework. In Chapter 4, I use the methods first presented in Chapter 3 to obtain data from three extinct members of New Zealand’s most diverse group of passerines: the acanthisittid wrens. I use these new aDNA data and sequences from the two extant species to determine phylogenetic relationships within the group. Determining whether the acanthisittid wren radiation predates the marine transgression requires an accurate estimate of the rate of bird evolution, which remains contentious (Appendix). I examine how assumptions about the age of birds affect our understanding of acanthisittid biogeography and the palaeogeography of New Zealand.
CHAPTER 5

Ancient mitochondrial genome reveals unsuspected taxonomic affinity of the extinct Chatham duck (Pachyanas chathamica) and resolves divergence times for New Zealand and sub-Antarctic brown teals.

The Chatham Islands archipelago lies ~850 km east of New Zealand and like New Zealand historically supported a diverse endemic avifauna, much of which became extinct following the arrival of humans. In Chapter 5, I employ the techniques described in Chapter 3, this time applied to the extinct Chatham duck (Pachyanas chathamica). I use the resultant DNA sequence data to test whether the divergence of the Chatham duck corresponds to the uplift of the Chatham Islands 2-3 mya, and to identify the geographic origin of the Chatham duck lineage and its taxonomic affinities.

CHAPTER 6

An extinct nestorid parrot (Aves, Psittaciformes, Nestoridae) from the Chatham Islands, New Zealand

Chapter 6 focuses on a second member of the extinct Chatham Islands avifauna: the Chatham Island parrot. This chapter identifies it as a distinct species (Nestor chathamensis sp. nov.) and includes a comprehensive description, as well as an examination of its biogeographic origin, palaeoecology, and relationships to the New Zealand kea and kaka.
CHAPTER 7

Ancient DNA analyses of mammalian megafauna from La Chumbiada (Argentina; South America)

In Chapter 7 I adapt the hybridisation enrichment technique from Chapter 3 to enrich for mammalian mitochondrial DNA. I then use this approach to survey the aDNA content of some mammalian megafaunal remains from La Chumbiada, Argentina. DNA preservation was sufficient to reconstruct partial mitogenomes from two extinct species: a glyptodontid (Glyptodon sp.) and a horse (Hippidion sp.). I investigate how inclusion of these taxa in the phylogenies of their respective groups changes our understanding of their evolution and the estimation of molecular dates. In particular, I test whether the origin of the Hippidion lineage corresponds with the timing of the Great American Interchange ~3 mya.

CHAPTER 8

General discussion and concluding remarks

This concluding chapter consolidates my most significant findings. I also identify areas of methodology and interpretation where caution is needed and improvements could be made, particularly with regard to calibration of molecular dating analyses and the inference of evolutionary timescales. Finally, I provide a perspective on the future direction and objectives of biogeography as we enter the era of high-throughput sequencing.
References

CHAPTER 2:

Molecular phylogeny, biogeography, and habitat preference evolution of marsupials

doi: 10.1093/molbev/msu176
Statement of Authorship

<table>
<thead>
<tr>
<th>Title of Paper</th>
<th>Molecular phylogeny, biogeography, and habitat preference evolution of marsupials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication Status</td>
<td>• Published, O Accepted for Publication, O Submitted for Publication, O Publication style</td>
</tr>
</tbody>
</table>

Author Contributions

By signing the Statement of Authorship, each author certifies that their stated contribution to the publication is accurate and that permission is granted for the publication to be included in the candidate's thesis.

<table>
<thead>
<tr>
<th>Name of Candidate</th>
<th>Kieren J Mitchell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to the Paper</td>
<td>Performed DNA extractions and PCR amplifications in preparation for Sanger and Illumina sequencing. Performed final bioinformatic data processing and consensus sequence construction. Performed phylogenetic analyses, molecular dating, and ancestral state reconstruction. Interpreted results. Wrote the manuscript and created the figures.</td>
</tr>
<tr>
<td>Signature</td>
<td>Date 6/2/15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Co-Author</th>
<th>Renae C Pratt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to the Paper</td>
<td>Performed optimisation of PCR and extraction protocols. Helped perform DNA extractions and PCR amplifications in preparation for 454 sequencing. Helped with initial bioinformatic data processing and consensus sequence construction. Edited the manuscript.</td>
</tr>
<tr>
<td>Signature</td>
<td>Date 10/12/14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Co-Author</th>
<th>Laura N Watson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to the Paper</td>
<td>Helped perform DNA extractions and PCR amplifications in preparation for 454 sequencing. Edited the manuscript.</td>
</tr>
<tr>
<td>Signature</td>
<td>Date 4/12/14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Co-Author</th>
<th>Gillian C Gibb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to the Paper</td>
<td>Helped perform DNA extractions and PCR amplifications in preparation for 454 and Sanger sequencing. Edited the manuscript.</td>
</tr>
<tr>
<td>Signature</td>
<td>Date 16/12/14</td>
</tr>
<tr>
<td>Name of Co-Author</td>
<td>Contribution to the Paper</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Bastien Llanas</td>
<td>Helped perform DNA extractions and PCR amplifications in preparation for 454 sequencing.</td>
</tr>
<tr>
<td>Marta Kasper</td>
<td>Helped perform DNA extractions and PCR amplifications in preparation for 454 sequencing.</td>
</tr>
<tr>
<td>Janette Edson</td>
<td>Helped perform DNA extractions and PCR amplifications in preparation for 454 sequencing.</td>
</tr>
<tr>
<td>Blair Hopwood</td>
<td>Helped perform DNA extractions and PCR amplifications in preparation for 454 sequencing.</td>
</tr>
<tr>
<td>Dean Male</td>
<td>Helped perform DNA extractions and PCR amplifications in preparation for 454 sequencing.</td>
</tr>
<tr>
<td>Kyle N Armstrong</td>
<td>Helped perform DNA extractions and PCR amplifications in preparation for 454 sequencing.</td>
</tr>
<tr>
<td>Name of Co-Author</td>
<td>Contribution to the Paper</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Matthias Meyer</td>
<td>Performed 454 sequencing and initial bioinformatic data processing. Helped with study design and edited the manuscript.</td>
</tr>
<tr>
<td>Michael Hofreiter</td>
<td>Performed 454 sequencing and initial bioinformatic data processing. Helped with study design and edited the manuscript.</td>
</tr>
<tr>
<td>Jeremy Austin</td>
<td>Helped with study design and edited the manuscript.</td>
</tr>
<tr>
<td>Stephen C. Donnellan</td>
<td>Helped with access to samples and study design, and edited the manuscript.</td>
</tr>
<tr>
<td>Michael S.Y. Lee</td>
<td>Advised on phylogenetic analyses and edited the manuscript.</td>
</tr>
<tr>
<td>Matthew J. Phillips</td>
<td>Helped perform PCR amplifications in preparation for 454 and Sanger sequencing. Helped with study design, data processing, and consensus sequence construction. Advised on phylogenetic analyses.Edited the manuscript.</td>
</tr>
<tr>
<td>Name of Co-Author</td>
<td>Alan Cooper</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Contribution to the Paper</td>
<td>Helped with study design and edited the manuscript.</td>
</tr>
<tr>
<td>Signature</td>
<td>Date 18.12.14</td>
</tr>
</tbody>
</table>
Molecular Biology and Evolution, v. 31 (9), pp. 2322-2330

NOTE:
This publication is included on pages 47 - 76 in the print copy of the thesis held in the University of Adelaide Library.

It is also available online to authorised users at:
http://dx.doi.org/10.1093/molbev/msu176
CHAPTER 3:

Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution

doi: 10.1126/science.1251981
Statement of Authorship

<table>
<thead>
<tr>
<th>Title of Paper</th>
<th>Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies rattle bird evolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication Status</td>
<td>• Published, ○ Accepted for Publication, ○ Submitted for Publication, ○ Publication style</td>
</tr>
</tbody>
</table>

Author Contributions

By signing the Statement of Authorship, each author certifies that their stated contribution to the publication is accurate and that permission is granted for the publication to be included in the candidate's thesis.

<table>
<thead>
<tr>
<th>Name of Candidate</th>
<th>Contribution to the Paper</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kieren J Mitchell</td>
<td>Performed DNA library construction, library amplification, hybridisation enrichment, IonTorrent sequencing, and bioinformatic processing of sequencing data. Performed phylogenetic analyses and molecular dating, and interpreted results. Wrote the manuscript and designed and created figures.</td>
<td></td>
<td>6/2/15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Co-Author</th>
<th>Contribution to the Paper</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bastien Llamas</td>
<td>Performed DNA library construction. Advised on phylogenetic analyses and bioinformatic processing. Edited the manuscript and helped with figure creation.</td>
<td></td>
<td>22/01/2015</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Co-Author</th>
<th>Contribution to the Paper</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Julien Soubrier</td>
<td>Advised on phylogenetic analyses and bioinformatic processing. Edited the manuscript and helped with figure creation.</td>
<td></td>
<td>22/01/15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Co-Author</th>
<th>Contribution to the Paper</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicolas J Rawlence</td>
<td>Helped with sample screening and edited the manuscript.</td>
<td></td>
<td>13/12/14</td>
</tr>
<tr>
<td>Name of Co-Author</td>
<td>Contribution to the Paper</td>
<td>Signature</td>
<td>Date</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>Trevor H Worthy</td>
<td>Provided specimens, helped with study design and edited the manuscript.</td>
<td></td>
<td>19 February 2015</td>
</tr>
<tr>
<td>Jamie R Wood</td>
<td>Helped with study design and edited the manuscript.</td>
<td></td>
<td>13.1.15</td>
</tr>
<tr>
<td>Michael S Y Lee</td>
<td>Helped with study design, advised on phylogenetic analyses, and edited the manuscript.</td>
<td></td>
<td>2.1.15</td>
</tr>
<tr>
<td>Alan Cooper</td>
<td>Provided specimens, performed DNA extractions, helped with study design and edited the manuscript.</td>
<td></td>
<td>18.12.14</td>
</tr>
</tbody>
</table>

NOTE:
This publication is included on pages 81 - 126 in the print copy of the thesis held in the University of Adelaide Library.
It is also available online to authorised users at:
http://dx.doi.org/10.1126/science.1251981
CHAPTER 4:

Origin and evolution of the New Zealand wrens (Acanthisittidae)

In preparation for submission to Proceedings of the National Academy of Sciences of the United States of America (PNAS).
Statement of Authorship

Title of Paper
Origin and evolution of the New Zealand wrens (Acanthisittidae)

Publication Status
☐ Published, ☐ Accepted for Publication, ☐ Submitted for Publication, ☒ Publication style

Publication Details
Prepared for submission.

Author Contributions

By signing the Statement of Authorship, each author certifies that their stated contribution to the publication is accurate and that permission is granted for the publication to be included in the candidate's thesis.

<table>
<thead>
<tr>
<th>Name of Candidate</th>
<th>Contraction to the Paper</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kieren J Mitchell</td>
<td>Performed DNA library construction, library amplification, hybridisation enrichment, IonTorrent sequencing, and bioinformatic processing of sequencing data. Performed phylogenetic analyses and molecular dating, and interpreted results. Wrote the manuscript and designed and created figures.</td>
<td>6/2/15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Co-Author</th>
<th>Contribution to the Paper</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jamie R Wood</td>
<td>Prepared specimens and performed DNA extractions. Edited manuscript.</td>
<td>13/1/15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Co-Author</th>
<th>Contribution to the Paper</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bastien Llamas</td>
<td>Performed DNA library construction. Edited manuscript.</td>
<td>22/10/2015</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Co-Author</th>
<th>Contribution to the Paper</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patricia A McNenachan</td>
<td>Performed PCR amplification and Sanger sequencing for Xenicus gilviventris. Edited the manuscript.</td>
<td>20/1/15</td>
<td></td>
</tr>
<tr>
<td>Name of Co-Author</td>
<td>Contribution to the Paper</td>
<td>Signature</td>
<td>Date</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>Olga Kardelsky</td>
<td>Performed PCR amplification and Sanger sequencing for Xenicus gilviventris. Edited the manuscript.</td>
<td></td>
<td>8/01/15</td>
</tr>
<tr>
<td>R Paul Scofield</td>
<td>Provided samples, helped with study design and edited the manuscript.</td>
<td></td>
<td>1/26/15</td>
</tr>
<tr>
<td>Trevor H Worthy</td>
<td>Provided samples, helped with study design and edited the manuscript.</td>
<td></td>
<td>19 January 2015</td>
</tr>
<tr>
<td>Alan Cooper</td>
<td>Provided specimens. Helped with DNA extractions and study design. Edited the manuscript.</td>
<td></td>
<td>18·12·14</td>
</tr>
</tbody>
</table>

129
CHAPTER 4:

Origin and evolution of the New Zealand wrens (Acanthisittidae)

Kieren J. Mitchell¹, Jamie R. Wood², Bastien Llamas¹, Patricia A. McLenachan³, Olga Kardailsky⁴, R. Paul Scofield⁵, Trevor H. Worthy⁶, Alan Cooper¹

¹ Australian Centre for Ancient DNA, School of Earth and Environmental Science, University of Adelaide, North Terrace Campus, South Australia 5005, Australia
² Landcare Research, Post Office Box 40, Lincoln 7640, New Zealand
³ Institute of Fundamental Sciences, Massey University, Palmerston North 4474, New Zealand.
⁴ Department of Anatomy, Otago University, Dunedin 9054, New Zealand
⁵ Canterbury Museum, Rolleston Avenue, Christchurch 8013, New Zealand
⁶ School of Biological Sciences, Flinders University, South Australia 5001, Australia

Abstract

It has long been thought that the unique biota of New Zealand comprises two distinct elements: vicariant groups that have persisted on the landmass since its separation from Gondwana (>55 Ma), and groups descending from ancestors that arrived later via over-water dispersal. However, it has also been suggested that Zealandia (the continental fragment of which New Zealand is today the largest emergent portion) became completely submerged for a period during the Late Oligocene/earliest Miocene and that all modern New Zealand flora and fauna are descendants of subsequent colonists. Few molecular studies of endemic New Zealand clades have been able to convincingly refute this hypothesis; however, the New Zealand biota has not been exhaustively surveyed. In the present study we use the acanthisittid wrens, New Zealand’s second largest endemic bird radiation, as a biogeographical test for the persistence of a Gondwanan fauna in Zealandia throughout the Cenozoic. We sequenced mitochondrial genomes from four acanthisittid species (including three
extinct species) and analysed these new data alongside existing molecular and morphological data to produce a comprehensive total-evidence phylogeny. Molecular dating of our phylogeny suggests that at least two acanthisittid lineages persisted in Zealandia during the Oligocene/Early Miocene marine transgression, providing evidence for the continuous presence of emergent land. In addition, our phylogeny resolves several long-standing questions regarding the evolution of the acanthisittid wrens and reveals patterns that parallel those observed in several other New Zealand bird taxa.

Introduction

New Zealand is a unique natural laboratory for studying evolutionary processes, and is characterised foremost by its paucity of endemic terrestrial mammals. Unlike other largely mammal-free islands and archipelagos (e.g. Lord Howe Island and Hawaii) that formed volcanically during the last ten million years (1, 2), New Zealand has been isolated since its separation from the supercontinent Gondwana over 55 million years ago (3). In addition to its great age, New Zealand is also much larger (~270,000 km²) and more geologically complex than most other islands, providing a range of habitats largely unrivalled outside of the major continental landmasses. These factors combined to produce a diverse vertebrate fauna where ecological niches dominated elsewhere by mammals are instead filled primarily by birds (4). However, despite decades of research into this distinctive biota, the origins of much of New Zealand's flora and fauna are still poorly understood and are currently the subject of renewed debate and controversy (5-7).
It has generally been recognised that the modern biota of New Zealand comprises two components: lineages that have persisted on the landmass since its separation from Gondwana (vicariance), and lineages descending from colonists that arrived via later trans-oceanic dispersal (8). Vicariant species have historically been thought to include animals such as leiopelmatid frogs, velvet worms (Onychophora), ratites (the moa and kiwi) and the tuatara (Sphenodon), and plants such as the southern beech (Nothofagaceae) and kauri (Agathis). However, recent studies have revealed that many of these groups are potentially only relatively recent arrivals. For example, it now appears that the moa and kiwi descended from flighted ancestors that dispersed to New Zealand following its isolation (9, 10), and molecular dating has cast doubt on the antiquity of New Zealand Nothofagaceae (11) and Agathis (12). These findings have called into question the true contribution of ancient Gondwanan lineages to the modern New Zealand biota and consequently the central dogma surrounding the origins of the New Zealand flora and fauna (6).

The land area of Zealandia (the continental plate of which New Zealand is today the largest emergent portion) was drastically reduced during a marine transgression, the “Oligocene drowning” (13), which likely resulted in a reduction in available ecological niches, and widespread extinction. However, some researchers have recently gone so far as to suggest that Zealandia became completely submerged during the Waitakian (21.7-25.2 mya: Late Oligocene/earliest Miocene), completely extirpating the resident biota (7, 14, 15). This alternative scenario suggests that the modern flora and fauna of New Zealand are purely the result of post-inundation dispersal since the Early Miocene. While several studies have provided geological evidence for emergent land existing at least ephemerally during this period (16-18),
none have yet provided unequivocal evidence for continuously emergent land throughout the Cenozoic. Similarly, palaeontological studies have yet to convincingly demonstrate persistence of plant or animal lineages through the Oligocene/Early Miocene marine transgression. However, molecular studies of biogeography can also be used to test this hypothesis (5, 19).

Molecular phylogenetic analyses can provide evidence against the total submergence of Zealandia by demonstrating that diversification of an endemic New Zealand clade began prior to the marine transgression (19). That is, two or more lineages within a clade have existed since at least 22-25 mya. The rationale for this test is that post-inundation dispersal to Zealandia by multiple lineages within a single clade followed by the complete extinction of that clade outside of New Zealand is unlikely. Most endemic groups studied to date do not satisfy the conditions of this test and so their presence in New Zealand can plausibly be explained by diversification following post-inundation dispersal (5). Possible instances of pre-inundation diversification have recently been identified in several animal clades (20-23); however, the diversity of New Zealand’s recent (Holocene) biota has not yet been exhaustively studied, partly because a large proportion of the fauna became extinct following the arrival of human colonists. Thus, ancient DNA analysis of museum specimens from extinct species may be valuable in further investigating the persistence of emergent land during the Oligocene/Early Miocene marine transgression.

One group that remains poorly studied is New Zealand’s endemic passerine family Acanthisittidae (or New Zealand wrens). Little is known about the
relationships among these six or seven small (0.15 – 0.5 gram) and cryptic birds (24).

Entirely distinct from the “true” wrens (Troglodytidae), the acanthisittids represent
the most ancient lineage of the largest order of birds: Passeriformes. The acanthisittid
wrens are particularly notable for including four of the five known flightless
passerines (25-28): the long-billed wren (*Dendroscansor decurvoirostris*), Lyall’s wren
(*Traversia lyalli*) and both North and South Island forms of the stout-legged wren
[*Pachyplichas jagmi* and *Pachyplichas yaldwyni*, respectively, although these taxa may
actually represent a single species (24, 29)]. However, all four of these birds, along
with the bush wren (*Xenicus longipes*), became extinct following the arrival of humans
(26, 30), likely through predation by the introduced Pacific rat (*Rattus exulans*).

Consequently, the rifleman (*Acanthisitta chloris*) and rock wren (*Xenicus gilviventris*)
arere the only extant representatives of the family.

Previous molecular studies have concluded that the recent diversity of
acanthisittid wrens likely arose during the Miocene (13, 30), suggesting that
acanthisittids may be post-inundation colonists. However, these past studies sampled
only a few acanthisittid species, and included no formal molecular dating analyses. In
the present study we construct a more comprehensively sampled phylogeny of
acanthisittid wrens including extinct and extant taxa, and using both molecular and
morphological data. This allows us to more thoroughly assess the probability of
continuous emergent land existing in Zealandia since its separation from the other
Gondwanan landmasses.
Results

We obtained near-complete mitochondrial genome (mitogenome) sequences from three extinct acanthisittid species (Lyall’s wren, *Traversia lyalli*, 15,657 bp; South Island stout-legged wren, *Pachyplichas yaldwyni*, 16,060 bp; bush wren, *Xenicus longipes*, 16,017 bp) and one of the two extant species (the rock wren, *Xenicus gilviventris*, 14,359 bp). In order to reconstruct the phylogeny of acanthisittids we combined these new data with existing mitogenome sequences for the remaining extant acanthisittid (the rifleman; *Acanthisitta chloris*) and a number of outgroup taxa (Table S1). We further augmented this dataset with the addition of a previously published matrix of 53 morphological characters (31), which allowed us to include the two acanthisittid genera that still lacked nucleotide sequence data: *Dendroscansor decurvirostris* (the recently extinct, monotypic long-billed wren) and *Kuiornis indicator* (a fossil taxon from the Miocene).

Analyses of the nucleotide sequence data alone confirm the monophyly of Acanthisittidae, and strongly suggest that the basal divergence among the sequenced acanthisittid species is between *T. lyalli* and the ancestor of *Acanthisitta, Pachyplichas* and *Xenicus* (Figure 1). Within this latter clade, *Acanthisitta* appears to be sister-taxon to a clade comprising *Xenicus* and *Pachyplichas*, within which *Xenicus* is paraphyletic with respect to *P. yaldwyni*. Analyses of the morphological data alone support the monophyly of Acanthisittidae but do not support any particular arrangement of taxa (see also 31). An exception is the clade comprising *Acanthisitta* and *Kuiornis*, which receives somewhat strong support in analyses of the morphological data alone. Notably, support for this node increases when the molecular and morphological data
are combined. In addition, both analyses of the combined data and morphological data alone suggest that *Dendroscansor* falls outside the diversity of sequenced taxa, although support for this position is moderate to weak, and removing *Dendroscansor* from the dataset improves support for all nodes in the combined analysis (Table 1).

We compared the acanthisittid mitochondrial genome sequences from the phylogenetic analyses above to previously published sequences for a 201 bp fragment of 12S rRNA from the rifleman, bush wren and rock wren (see 30). Genetic distances (Table 2) reveal that the intraspecific distance among sampled rock wrens is equal to the distance between the rock wren and the stout-legged wren (0.5-1%; 1-2 base changes). Thus, the rock wren and stout-legged wren cannot readily be distinguished using this short region without more extensive sampling from each taxon. In contrast, intraspecific diversity within the bush wren is comparatively high (3%; 6 base changes).
Figure 1: Relationships among acanthisittid wrens inferred from total evidence analyses (combined morphological and molecular data) in MrBayes, RAxML and PAUP*. Relationships among outgroups not depicted (but see Figure 2). Extinct taxa are coloured red. Extinct taxa for which no nucleotide sequence data are available are marked with a red dot. Scale is in substitutions per site as estimated for the nucleotide data partitions using MrBayes. Branch support values are listed in Table 1.

Table 1: Branch support values for relationships among acanthisittids (Bayesian posterior probability / maximum likelihood bootstrap % / maximum parsimony bootstrap %). Nodes are labelled as for Figure 1. Analyses were run in MrBayes, RAxML and PAUP* for the molecular (mitogenomic) data alone, the morphological data alone, and the combined molecular and morphological data (total evidence). Total evidence analyses, and analyses of the morphological data alone, were run both with and without *Dendroscansor decurvirostris*.
Table 3: Genetic distance matrix (% identity between taxa) comparing new sequences presented in the present study with those from previous publications (30, 32) for the 201bp region of 12S rRNA for which all taxa are sampled. Highly similar sequence pairs (>95% identity) are highlighted. Pairwise distance calculated in Geneious v6.1.2 (Biomatters; http://www.geneious.com).

<table>
<thead>
<tr>
<th></th>
<th>A. chloris (Cooper, 1994)</th>
<th>X. longipes (Cooper, 1994)</th>
<th>X. gilviventris "gilviventris" (Cooper, 1994)</th>
<th>X. gilviventris "rineyi" (Cooper, 1994)</th>
<th>P. yaldwyni (this study)</th>
<th>X. longipes (this study)</th>
<th>A. chloris (AY325307; Harrison et al. 2004)</th>
<th>T. lyalli (this study)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. chloris (AY325307; Harrison et al. 2004)</td>
<td>88.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A. chloris (Cooper, 1994)</td>
<td>88.6</td>
</tr>
<tr>
<td>A. chloris (Cooper, 1994)</td>
<td>87.6</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X. longipes (Cooper, 1994)</td>
<td>90.5</td>
</tr>
<tr>
<td>X. longipes (this study)</td>
<td>89.6</td>
<td>95.5</td>
<td>95.5</td>
<td>P. yaldwyni (this study)</td>
<td>94</td>
<td>94</td>
<td>X. gilviventris (this study)</td>
<td>89.6</td>
</tr>
<tr>
<td>X. longipes (Cooper, 1994)</td>
<td>90.5</td>
<td>94.5</td>
<td>94.5</td>
<td>X. gilviventris "gilviventris" (Cooper, 1994)</td>
<td>95</td>
<td>94</td>
<td>A. chloris (AY325307; Harrison et al. 2004)</td>
<td>89.1</td>
</tr>
<tr>
<td>X. gilviventris (this study)</td>
<td>89.6</td>
<td>94</td>
<td>94.5</td>
<td>X. gilviventris "gilviventris" (Cooper, 1994)</td>
<td>95</td>
<td>94</td>
<td>A. chloris (Cooper, 1994)</td>
<td>90.5</td>
</tr>
<tr>
<td>X. gilviventris "rineyi" (Cooper, 1994)</td>
<td>89.1</td>
<td>94.5</td>
<td>94.5</td>
<td>X. gilviventris "gilviventris" (Cooper, 1994)</td>
<td>95</td>
<td>94</td>
<td>A. chloris (AY325307; Harrison et al. 2004)</td>
<td>90.5</td>
</tr>
<tr>
<td>X. gilviventris "rineyi" (Cooper, 1994)</td>
<td>89.6</td>
<td>95</td>
<td>94.5</td>
<td>X. gilviventris "gilviventris" (Cooper, 1994)</td>
<td>95</td>
<td>94</td>
<td>A. chloris (Cooper, 1994)</td>
<td>90.5</td>
</tr>
</tbody>
</table>
To investigate the timing of acanthisittid diversification, we conducted molecular dating analyses on our nucleotide sequence dataset using BEAST (33). Since all analyses strongly suggest that the Miocene *Kuiornis indicator* is a crown-group acanthisittid (Table 1), this taxon potentially provides a useful temporal calibration for estimating the age of the group. Consequently, we constrained the minimum age for the divergence between *Acanthisitta* and *Pachypliches/Xenicus* to 16 mya (31). We also implemented seven additional fossil-based minima throughout the rest of the tree (see Methods). The timeframe for the early evolution of birds is contentious (see Appendix), so we tested the effect of three different maximum age constraints for our phylogeny (64, 84.11 and 125.3 mya). These maxima were secondarily derived from analyses of a large genome-scale dataset (34), and span the range of plausible hypotheses for the timescale of bird evolution (see Methods, Appendix). Figure 2 displays age estimates for all nodes using the least extreme maximum constraint (84.11 mya); estimates obtained using the alternative constraints are displayed in Table 3. Posterior node ages varied substantially based on the choice of maximum constraint, particularly for nodes towards the root of the tree (Table 3). For example, mean node age estimates for the divergence between acanthisittids and the remaining passeriforms (Figure 2: node D) varied between 52.7 and 92.3 mya depending on the maximum constraint implemented.

In order to test whether acanthisittids began diversifying prior to the New Zealand Oligocene/Miocene marine transgression we compared the crown age of Acanthisittidae (Figure 2, Table 3: node E) to the timing of peak inundation, which occurred during the Waitakian (21.7-25.2 mya). Under all maximum constraints, the mean age of the divergence between *Traversia* and the remaining acanthisittids
preceded the Waitakian: varying between 27.2 and 36.8 mya (Figure 3, Table 3). However, under the two more restrictive maxima, the 95% HPD (Highest Posterior Density) of the posterior age distribution for this node at least partially overlapped the Waitakian.

In addition to assessing how different maximum age constraints affect our posterior node age estimates, we also tested the effect of removing the 16 mya minimum constraint on the divergence between *Acanthisitta* and *Pachyplichas/Xenicus*. Removing this constraint resulted in large differences in the posterior age estimates for most nodes (Figure 3, Table 3), although this effect was most pronounced when the maximum age constraint on the phylogeny was relaxed (Table 3). When the minimum age constraint on *Acanthisitta* was excluded, the 95% HPDs for the divergence of *Traversia* from the remaining acanthisittids overlapped the Waitakian substantially. Further, the mean age of this node either immediately preceded, coincided with, or followed the Waitakian, depending on the maximum constraint implemented (Figure 3, Table 3).
Figure 2: Phylogeny of Coraciopasseres ("core landbirds"; sensu 34). Tree topology estimated using MrBayes, RAxML and PAUP*; branch lengths estimated using BEAST assuming a 16 mya minimum bound on the divergence between Acanthisitta and Pachyplicas/Xenicus and a maximum of 84.11 mya on the age of Coraciopasseres (Table 3: 2A; see Methods for details). Scale is in millions of years before present. Bars associated with nodes reflect the 95% HPD of the posterior age distribution. Acanthisittidae is shaded grey. Extinct taxa are highlighted in red.
Table 2: Mean node ages (and 95% HPDs) estimated (A) with and (B) without a 16 mya minimum bound on the divergence between *Acanthisitta* and *Pachyplichas/Xenicus*, and under three different maxima for the diversification of all Coraciopasseres (1: < 125.3 mya, 2: < 84.11 mya, 3: < 64 mya – see main text). Nodes are labelled as for Figure 2.

<table>
<thead>
<tr>
<th>Node</th>
<th>1: Root < 125.3 mya</th>
<th>2: Root < 84.11 mya</th>
<th>3: Root < 64 mya</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A: Node F > 16 mya</td>
<td>B: No node F constraint</td>
<td>A: Node F > 16 mya</td>
</tr>
<tr>
<td>A</td>
<td>109.3 87.1-125.3</td>
<td>81.7 56.8-116.8</td>
<td>78.4 68.7-84.1</td>
</tr>
<tr>
<td>B</td>
<td>106.2 84.2-124.6</td>
<td>79.3 55.4-113.4</td>
<td>76.3 66.2-83.8</td>
</tr>
<tr>
<td>C</td>
<td>104.5 82.4-122.7</td>
<td>78.1 54.6-111.4</td>
<td>75.0 64.8-82.8</td>
</tr>
<tr>
<td>D</td>
<td>92.3 71.2-109.9</td>
<td>68.9 47.9-99.5</td>
<td>66.4 56.4-75.2</td>
</tr>
<tr>
<td>E</td>
<td>36.8 25.8-49.7</td>
<td>25.4 14.2-39.9</td>
<td>30.4 22.5-39.4</td>
</tr>
<tr>
<td>F</td>
<td>18.1 16.0-22.0</td>
<td>11.3 6.4-17.8</td>
<td>17.2 16.0-19.7</td>
</tr>
<tr>
<td>G</td>
<td>14.1 10.1-18.3</td>
<td>8.8 4.5-13.9</td>
<td>13.4 9.6-17.0</td>
</tr>
<tr>
<td>H</td>
<td>3.47 1.9-5.4</td>
<td>2.4 1.1-4.0</td>
<td>2.8 1.2-4.5</td>
</tr>
<tr>
<td>I</td>
<td>87.6 67.3-105.1</td>
<td>65.5 45.0-94.6</td>
<td>62.9 53.0-71.8</td>
</tr>
<tr>
<td>J</td>
<td>71.8 51.7-90.4</td>
<td>53.9 34.9-80.1</td>
<td>50.8 38.2-62.2</td>
</tr>
<tr>
<td>K</td>
<td>65.7 49.2-80.5</td>
<td>49.0 33.1-71.2</td>
<td>47.9 39.0-56.6</td>
</tr>
<tr>
<td>L</td>
<td>54.6 30.6-68.2</td>
<td>40.7 27.7-59.4</td>
<td>39.8 31.7-47.8</td>
</tr>
<tr>
<td>M</td>
<td>43.0 29.1-56.0</td>
<td>32.3 20.4-48.9</td>
<td>31.1 21.9-20.1</td>
</tr>
<tr>
<td>N</td>
<td>47.1 33.8-59.2</td>
<td>35.3 23.8-51.3</td>
<td>34.3 26.9-41.9</td>
</tr>
<tr>
<td>O</td>
<td>34.2 22.7-45.3</td>
<td>25.9 18.0-38.1</td>
<td>24.9 18.0-31.2</td>
</tr>
<tr>
<td>P</td>
<td>35.0 22.6-46.4</td>
<td>26.4 16.5-38.9</td>
<td>25.3 17.9-32.9</td>
</tr>
<tr>
<td>Q</td>
<td>48.2 27.6-69.4</td>
<td>36.2 18.9-57.7</td>
<td>35.0 20.5-50.1</td>
</tr>
<tr>
<td>R</td>
<td>72.1 46.6-96.1</td>
<td>54.1 32.2-83.7</td>
<td>50.7 33.3-67.4</td>
</tr>
<tr>
<td>S</td>
<td>102.6 79.4-123.0</td>
<td>77.1 52.6-111.4</td>
<td>73.0 61.6-82.9</td>
</tr>
</tbody>
</table>

/Xenicus/.
Figure 3: Posterior age distributions for the crown divergence amongst acanthisittids (Figure 2, Table 3: node E): the divergence between *Traversia lyalli* and the remaining wrens, estimated (A) with and (B) without a 16 mya minimum bound on the divergence between *Acanthisitta* and *Pachypliches/Xenicus*, and under three difference maxima for the diversification of all Coraciopasseres (1: < 125.3 mya, 2: < 84.11 mya, 3: < 64 mya – see main text). The grey shaded area denotes the time period (Waitakian) during which the peak inundation of Zealandia is thought to have occurred. Time scale is in millions of years before the present.
Discussion

Our results provide evidence against the total submergence of Zealandia during the Oligocene/Early Miocene marine transgression. Two lineages of acanthisittid wren likely predate the period of peak inundation (Figure 2, Table 3): the ancestor of *Traversia* and the ancestor of the clade comprising *Acanthisitta, Kuiornis, Xenicus* and *Pachyplichas*. While the validity of this conclusion depends heavily on the implementation of a minimum constraint on the divergence between *Acanthisitta* and *Pachyplichas/Xenicus* (16 mya), we have demonstrated that this calibration is phylogenetically well justified: there is strong support for a close relationship between the *Acanthisitta* lineage and the Miocene fossil taxon *Kuiornis* (Figure 1, Table 1). When the node age constraint based on *Kuiornis* was included, the mean age estimate for the divergence of *Traversia* from the remaining acanthisittids preceded the beginning of the Waitakian (the period during which peak inundation occurred) regardless of the maximum bound placed on the root of the phylogeny (Figure 3, Table 3). However, the 95% HPDs of the posterior distribution overlapped the Waitakian to varying degrees depending on choice of constraint. If the origin of crown-birds occurred deep in the Cretaceous (Figure 3: A1) then pre-inundation diversification of the acanthisittids was highly probable (lower bound of the 95% HPD = 25.6 mya), but if modern bird orders predominantly originated in the Cenozoic (Figure 3: A3) then the biogeographic history of acanthisittids appears less certain (lower bound of the 95% HPD = 20.3 mya). The timescale of early bird evolution is a matter of contention (see Appendix) (35, 36), making it difficult to determine which of these constraints is more realistic. A less extreme constraint may be most appropriate based on current evidence. For example, a maximum bound of 83 mya on
Coraciopasseres allows for the possibility that many taxonomically ambiguous fossils from the latest Cretaceous/earliest Palaeocene (e.g. Polarornis, Tythostonyx, unnamed putative sphenisciform from Chatham Islands; see 37, 38) are actually representatives of the neoavian crown group, but without presuming the existence of deep ghost lineages for a large number of bird orders (36). Under this conservative assumption (Figure 3: A2), pre-inundation history of acanthisittids in New Zealand appeared likely (lower bound of the 95% HPD = 22.5 mya). Further, the tentative position of *Dendroscansor decurvirostris* at the base of the acanthisittid tree in analyses including the morphological data suggests that *Dendroscansor* may represent a third pre-inundation acanthisittid lineage.

Diversification of acanthisittids preceding peak inundation suggests that they were present in New Zealand prior to (and survived throughout) the marine transgression, which implies the existence of persistent emergent land. However, it does not necessarily imply that acanthisittids represent a vicariant group (as has often been assumed; e.g. 39, 40): an ancestral acanthisittid could equally have dispersed to New Zealand following its separation, yet before the marine transgression. If the origin of the acanthisittid wrens were the result of vicariance, then we should expect the divergence between acanthisittids and the remaining passerines to closely reflect the geological separation between Australia and New Zealand. Using a conservative maximum bound on the age of Coraciopasseres and a 16 mya minimum bound on the divergence between *Acanthisitta* and *Pachyplichas/Xenicus*, we estimated that the origin of acanthisittids occurred between 56.4-75.2 mya (Figure 2, Table 3), which is close to the 55-60 mya separation of Australia and New Zealand suggested by recent geological reconstructions (3).
result would strongly suggest a vicariant origin of acanthisittid wrens. However, the mean age for this particular divergence in the present study varied by ~40 My depending on prior assumptions (Table 3), and previously published estimates for the equivalent node range from ~38 mya (34) to 91.8 mya (41). Consequently, it remains uncertain whether the presence of acanthisittids in New Zealand prior to marine transgression was due to vicariance or pre-inundation colonisation via long-distance dispersal. Certainly, several other elements of New Zealand’s avifauna appear to have arisen from dispersal. For example, the ancestors of the moa and kiwis likely flew to New Zealand following its separation (9, 10), and the origin of New Zealand’s endemic nestorid parrot lineage (e.g. kakapo, Strigops habroptilus) inferred by some analyses appears too recent to be explained by vicariance (Figure 2, Table 3, Appendix). However, more accurate dating analyses will need to be performed before reliable conclusions about the origin of these bird groups can be made. Incorporation of additional fossil data will be a necessary component of this future work, in order to better characterise evolutionary rate heterogeneity across the phylogeny of birds: including temporal data from Kuiornis had a large effect on posterior age estimates in the present study. Consequently, Kuiornis will likely constitute an important calibration for future studies.

Results in the present study not only provide insight into the biogeographical history of Acanthisittidae, but also allowed us to better assess the diversity of the group and understand their evolution within New Zealand. For example, the taxonomic status of Lyall’s wren (Traversia lyalli, Rothschild 1894) has been contentious since its original description (see 42): if not for a delay in article preparation, Lyall’s wren would instead have been described as Xenicus insularis (43).
Even recently the taxonomy of Lyall’s wren has remained controversial with some authors instead favouring *Xenicus lyalli* (e.g. 44). However, our results unequivocally confirm the taxonomic distinctness of *Traversia*, and indicate that the morphologically “aberrant” (27) Lyall’s wren is the result of a long period (>20 My) of independent evolution (Figure 2 and 3, Table 3). Conversely, we demonstrate convincingly that *Pachyplichas* is not distinct from *Xenicus* (Figure 1, Table 1): the stout-legged wren (*P. yaldwyni*) is clearly a closer relative to the rock wren (*X. gilviventris*) than either is to the bush wren (*X. longipes*). Consequently, we synonymize *Pachyplichas* Millener, 1988 with *Xenicus* Gray 1855, so that *Pachyplichas jagmi* Millener 1988 and *P. yaldwyni* Millener 1988 become *Xenicus jagmi* and *Xenicus yaldwyni*, respectively. Finally, we note that the bush wren (*Xenicus longipes*) as currently recognised may in fact comprise several cryptic species: the genetic distance observed between the bush wren individual sequenced in this study and another individual for which some data was already available (see 30) is three-fold greater that the distance observed between the rock wren and the stout-legged wren (Table 2). A comprehensive molecular survey of wren remains from across New Zealand will be necessary to further explore this possibility.

Even accounting for uncertainty in determining the precise timescale of acanthisittid evolution, age estimates in the present study allow tentative identification of potential drivers of the radiation of acanthisittids. The rock wren (*X. gilviventris*) primarily inhabits New Zealand’s alpine and sub-alpine zones, particularly the Southern Alps (45). It is consequently notable that the divergence of the rock wren from the stout-legged wren (< 5 mya; Figure 2, Table 3: node H) roughly coincides with both the origin of another primarily alpine endemic bird, the
kea (2.7 - 8.0 mya; 46), and evidence for the uplift of New Zealand’s Southern Alps (beginning ~5 mya; e.g. 47). It is possible that availability of an alpine niche drove the evolution of the rock wren. However, it is unclear whether the rock wren’s current alpine distribution actually reflects its fundamental niche or is the result of range reduction following human colonisation. Differentiating between these two scenarios is complicated by difficulties in discriminating sub-fossil remains of the rock wren from those of the bush wren (24). However, the methods and reference data presented herein may make this problem tractable by allowing cost-effective molecular species identification from degraded and morphologically non-diagnostic remains.

The stout-legged wren had a maximum body mass 50% greater than any other acanthisittid, and also had a more robust pelvis and hind limbs than its relatives (24). Since the stout-legged wren presumably descended from a more Xenicus-like form following its divergence from the ancestor of the rock wren, the larger and heavier morphology of the stout-legged wren must have evolved only relatively recently. The rapid evolution of a completely flightless and stout-legged bird from a primitively slender and gracile group is rare among passerines but well documented among rails (e.g. 48, 49). A particularly striking comparison can be drawn to New Zealand’s endemic swamphen, the takahē (Porphyrio hochstetteri). The ancestors of the takahē became large and flightless no more than ~5 Mya (48), a similar timescale to the evolution of Pachypliches. However, a key difference between the stout-legged wren and the takahē is that the takahē evolved in geographic isolation after its ancestors dispersed to New Zealand (49) while the stout-legged wren apparently evolved sympatrically with its more gracile relatives (27). The preference of the stout-legged
wren for lowland forests (24) perhaps partially explains its origin. If the evolution of the rock wren was truly driven by availability and exploitation of an alpine niche, then altitudinal separation may have eventually led to cessation of gene flow between the ancestors of the rock wren and stout-legged wren and permitted the morphological divergence of the stout-legged wren.

Although some acanthisittids have progressed further towards complete flightlessness than others, most described species are (or were) largely terrestrial in habit. Flight is energetically expensive (50, 51), so if the terrestrial habits and small body size of recent acanthisittids is representative of their Oligocene ancestors then these factors likely contributed to the survival of acanthisittids through the marine transgression. Stephens Island (~1.5 km²) presumably supported a stable population of Lyall’s wren over a long time period, demonstrating how multiple lineages of acanthisittid may have survived even if New Zealand had been reduced to an archipelago of small islands. Small body size is also a characteristic of other endemic taxa that have been demonstrated to exhibit pre-inundation diversification: one family of frogs (Leiopelmatidae; 23), a clade of geckoes (Hoplodactylus/Naultinus; 21), two genera of harvestmen (Aoraki and Rakaia; 20) and four clades of midge (Anzacladius, Eukieffriella, Pirara and Naonella/Tonnoirocladius/Paulfreemania; 22). An extensive reduction in habitable area would have proved a more severe bottleneck for larger organisms (e.g. moa). Consequently, we are less likely to observe multiple pre-inundation lineages in these taxa (see 5). However, our results contribute to the growing body of evidence (both biogeographical and geological) that habitable emergent land has been present in Zealandia continuously throughout
the Cenozoic, and suggest that pre-Oligocene fossil representatives of larger vertebrate taxa may yet be discovered.

Methods

Processing of modern material

A specimen of *Xenicus gilviventris* was provided by Canterbury Museum, New Zealand. DNA was extracted from a ~3x3mm³ section of muscle tissue using a DNeasy Blood and Tissue kit (Qiagen) following the manufacturer's protocol.

The mitochondrial genome of *X. gilviventris* was first amplified as four overlapping fragments using an Expand Long Template PCR kit (Roche). Each individual PCR (50 μL) contained 1.4 mM dNTPs, 3.75 U Polymerase (Taq and Tgo; Roche), 1 × Buffer, 1.75 mM MgCl₂, 20 pmol each primer (see Table S2) and up to 500 ng DNA. Cycling conditions were as follows: 94 °C for 2 min; 10 cycles of 94 °C for 10 s, 50 °C for 30 s, 72 °C for 4 min; 25 cycles of 94 °C for 10 s, 50 °C for 30 s, 72 °C for 4 min (plus 20 s/cycle); and 68 °C for 7 min. The resulting long DNA fragments were subsequently used as the template for PCR amplification of shorter 1-2 kb fragments using the primers listed in Table S2. Each individual PCR (20 μL) contained: 1 × buffer, 125 μM dNTPs, 10 pmol each primer (see Table S2), 1.5 mM MgCl₂, 1 U Taq Polymerase (Roche) and up to 50 ng DNA template. Cycling conditions were as follows: 94 °C for 3 min; 35 cycles of 94 °C for 30 s, 50 °C for 30 s, 72 °C for 90 s; and 72 °C for 5 min. Prior to sequencing, PCR products were treated using 0.5 U Shrimp
Alkaline Phosphatase (FastAP; ThermoFisher Scientific) and 5 U Exonuclease I (ThermoFisher Scientific). The Massey Genome Service (Massey University, New Zealand) performed dideoxy chain-termination sequencing and capillary electrophoresis (on an ABI3730). Resulting chromatograms were trimmed and assembled into a single consensus sequence using Geneious v6.1.2 (Biomatters; http://www.geneious.com).

Processing of ancient material

We obtained bone samples from three extinct acanthisittid species: *Pachyplichas yaldwyni* (Hawk’s Cave tarsometatarsus, Canterbury Museum), *Traversia lyalli* (S27777, Museum of New Zealand Te Papa Tongarewa) and *Xenicus longipes* (Av37320, Canterbury Museum). All DNA extraction and library preparation steps were performed in a purpose-built, physically isolated, ancient DNA laboratory at the Australian Centre for Ancient DNA, University of Adelaide.

DNA Extraction from Xenicus longipes and Pachyplichas yaldwyni specimens

Potential contamination of the *X. longipes* and *P. yaldwyni* bone samples was minimised by removing surfaces (c. 1 mm) using a Dremel tool, followed by wiping the freshly exposed surfaces with bleach, and UV irradiation for 15 min. Each sample (0.2 g) was powdered using a mikrodismembrator (Sartorius). The powdered bone was then lysed by rotational incubation at 37 °C overnight in 4 mL of 0.5 M EDTA pH 8.0 followed by a further incubation at 55 °C for 2 hr with the addition of 60 μL of
proteinase-K. The released DNA was bound, washed and eluted (final volume 200 μL) using the silica-based method of Rohland and Hofreiter (52).

DNA Extraction from Traversia lyalli specimen

A Dremel tool was used to remove approximately 1 mm of the exterior surface of the *T. lyalli* bone, and 0.1 g of newly exposed bone material was collected. The bone fragment was powdered using an 8 mm tungsten ball bearing in a Braun Mikrodismembrator U (B. Braun Biotech International, Germany). The powder was decalcified overnight in 10-30 vol of 0.5 M EDTA pH 8.0 at room temperature. The resulting sediment was collected by centrifugation and digested with proteinase-K/DTT overnight at 50-55 °C, then extracted twice with Tris-saturated phenol and once with chloroform. The DNA was desalted using Centricon-30 filter units (Millipore) and concentrated to approximately 100-150 μL.

Library preparation and hybridisation enrichment

Extracted DNA from all three ancient samples (*P. yaldwyni, T. lyalli, X. longipes*) was enzymatically repaired and blunt-ended, and custom adapters (Table S3) were ligated following the protocol of Meyer and Kircher (53). The 5’ adapter sequence featured a unique index in order to allow identification and exclusion of any downstream contamination. Libraries were subjected to a series of short PCR amplifications (12 cycles in primary amplification and 13 cycles in secondary and tertiary amplifications) to increase the total quantity of DNA using primers complementary to the adapter sequences (53). Cycle number was kept low and each
round of amplification was split into eight separate PCRs in order to minimise PCR bias. Each individual PCR (25 μL) contained 1× PCR buffer, 2.5 mM MgCl₂, 1 mM dNTPs, 0.5 mM each primer (Table S4), 0.1 U AmpliTaq Gold and 2 μL DNA. Cycling conditions were as follows: 94 °C for 12 min; 12-13 cycles of 94 °C for 30 s, 60 °C for 30 s, 72 °C for 40 s (plus 2 s/cycle); and 72 °C for 10 min. PCR products were purified using AMPure magnetic beads (Agencourt).

Commercially synthesised biotinylated 80 mer RNA baits (MYcroarray, MI, USA), were used to enrich the target library for mitochondrial DNA. Baits were designed using published whole mitochondrial genome sequences (excluding D-loop) and included the rifleman (*Acanthisitta chloris*) among a number of other Passeriformes (i.e. rook, *Corvus frugilegus*; common magpie, *Pica pica*) and more distant avian outgroups (see Table S5). DNA-RNA hybridisation enrichment was performed according to manufacturer’s recommendations (v1) in a final concentration of 5.2 × SSPE, 5.2 × Denhardt’s, 5 mM EDTA and 0.1% SDS. This solution was incubated at 55 °C for 36 hr with 200 ng of the target DNA library, after which the RNA baits were immobilised on magnetic MyOne Streptavidin Beads (Life Technologies). The baits were washed once with a solution of 1× SSC and 0.1% SDS (15 min at room temperature) and twice with 0.1× SSC and 0.1% SDS (10 min at 50 °C). Subsequent resuspension in 0.1 M NaOH pH 13.0 destroyed the RNA baits, releasing captured DNA into solution. Captured DNA was purified using a Qiagen Minelute spin-column. The quantity of DNA remaining after enrichment was extremely small, so an additional round of PCR was performed (12 cycles; conditions as above). Subsequently, a final round of PCR (7 cycles; conditions as above) was performed with fusion primers to add terminal IonTorrent recognition sequences to
the enriched library. The forward fusion primer contained an additional index sequence (Table S3) to further identify sequencing reads belonging to the target library.

We compared the performance of the standard hybridisation enrichment protocol (MYcroarray MYbaits v1) to several modified protocols:

1) An additional incubation of the streptavidin beads with 100 μg yeast tRNA prior to addition of the hybridisation reaction, potentially reducing non-specific binding to the streptavidin beads.

2) As for 1) but with the wash steps performed at 45 °C instead of 50 °C, decreasing the stringency of the wash steps and potentially allowing more endogenous molecules to be retained (since the target organisms were phylogenetically distant from those used to design the bait molecules).

3) As for 1) but with the first round of post-hybridisation amplification omitted, potentially decreasing PCR-bias and increasing library complexity.

4) As for 1) and 3) but with the hybridisation buffer replaced with formamide buffer, a hybridisation temperature of 42 °C instead of 55 °C, and four wash steps instead of three (one with 2 × SSC and 0.05% Tween20 [Sigma-Aldrich] at room temperature for 10 min, two with 0.75 × SSX and 0.05% Tween20 [Sigma-Aldrich] at 50 °C for 10 min, and one with 0.2 × SSC + 0.05% Tween20 [Sigma-Aldrich] at 50 °C for 10 min). Formamide lowers the melting
temperature of DNA allowing hybridisation to be performed at a lower
temperature (54) Further, formamide buffers favour formation of DNA/RNA
over DNA/DNA duplexes (55), potentially increasing the efficiency of capture.

5) Omission of all hybridisation enrichment steps (shotgun sequencing).

Enrichment proportions obtained using each protocol are outlined in Table S6.
Briefly, enrichment increased the proportion of endogenous reads obtained by two
orders of magnitude (a 186 × increase), but differences among the enrichment
protocols are inconclusive and require more extensive study and replication. All data
generated for each specimen were pooled for downstream analysis, including read
mapping.

Sequencing and data processing

Final sequencing libraries were diluted then linked to proprietary micron-scale beads
(Ion Sphere Particles; Life Technologies) and clonally amplified via emulsion PCR
using the Ion OneTouch system (Life Technologies). DNA sequencing was performed
at the Australian Centre for Ancient DNA (ACAD) on an IonTorrent PGM (Life
Technologies) using 200bp sequencing chemistry and four 316 chips.

Following sequencing, base calling was performed using Torrent Suite v3.2.1
(Life Technologies). Sequencing reads were immediately demultiplexed according to
5’ Index II (Table S3) using the fastx_barcode_splitter tool (FASTX-toolkit v0.0.13;
http://hannonlab.cshl.edu/fastx_toolkit) allowing no mismatches in the index
sequences (--mismatches 0). Demultiplexed reads (14,192,512) were trimmed with cutadapt v1.1 (56), using the short custom adapter sequences (Table S3).Trimming parameters included a maximum error rate of 0.333 (-e 0.333), a minimum read length of 30 nucleotides (-m 30), a maximum read length of 200 nucleotides (-M 200), a minimum read quality Phred score of 20 (-q 20), a minimum of three-nucleotides overlap between the read and the adapter (-O 3), and five iterations of trimming (-n 5). Read quality was visualized using fastQC v0.10.1 (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc) before and after trimming to make sure the trimming of adapters was efficient. Trimmed reads were then sorted according to 5’ Index I (Table S3) using the fastx_barcode_splitter tool (FASTX-toolkit v0.0.13; http://hannonlab.cshl.edu/fastx_toolkit) allowing no mismatches in the index sequences (--mismatches 0). The removal of the five bp 5’ Index I resulted in a pool of reads between 25 -195 bp in length, which were subsequently used for mapping and consensus assembly.

As we were sequencing extinct taxa de novo, we had no established references to map against. In the present study, we follow an iterative mapping protocol adapted from several previous publications (9, 57). For each specimen separately, all deconvoluted and trimmed reads were mapped to the rifleman mitochondrial genome (AY325307) using TMAP v3.2.2 (https://github.com/nh13/TMAP) with the default parameters for the ‘mapall’ command. Reads with a mapping quality Phred score >30 were selected using the SAMtools v1.4 (58) view command (-q 30), and duplicate reads were discarded using the MarkDuplicates.jar tool from Picard tools v1.79 (http://picard.sourceforge.net). A 50% consensus was generated from the mapped reads, and used as the reference for an additional round of mapping. This
process was iterated six times until no additional reads could be mapped and the quality of the consensus ceased to improve. A final, more stringent, iteration of mapping was then performed using the ‘aln’ command within BWA v.0.7.8 (59) with seed disabled (-l 1024), a maximum of two gaps (-o 2) and a relaxed maximum edit distance (-n 0.01). A final 75% consensus sequence was generated for each specimen and checked by eye in Geneious v6.1.2 (Biomatters; http://www.geneious.com). Sites that received no coverage or insufficient coverage to unambiguously call a nucleotide were coded as IUPAC ambiguities. See Table S7 for further details on consensus sequences.

We used MapDamage v0.3.3 (60) to assess patterns of damage across all mapped reads (Figures S1, S2 and S3). In all cases, patterns observed were consistent with degraded ancient DNA (elevated 5’ C-to-T and 3’ A-to-G substitutions, and depurination at the position preceding the beginning of the reads) though these patterns were stronger for some samples than for others, possibly reflecting different preservation histories. We also detect an increase in other substitution types towards the ends of reads for some specimens, particularly Xenicus longipes. These mismatches may be a result of indel errors accumulated during sequencing (frequent in IonTorrent data; 61) resulting in poor alignment accuracy towards the ends of reads. This artefact occurs at sufficiently low frequency that it does not affect the final consensus sequence. Alternatively, it could result from the relatively low number of reads aligning to the consensus for X. longipes compared to P. yaldwyni and T. lyalli (see Table S7)
Phylogenetics and molecular dating

Our new acanthisittid sequences were aligned with previously published mitochondrial genomes from a number of other species from within Coraciopasseres (sensu 34) (Table S7): the “core landbirds”, comprising all descendants of the common ancestor of Passeriformes and Coraciiformes. Sequences were aligned using the ClustalW algorithm as implemented in Geneious v6.1.2 (Biomatters; http://www.geneious.com), and checked by eye. The molecular data were augmented with a previously published matrix of osteological characters (31). Equivalent Bayesian, maximum likelihood and maximum parsimony analyses were run on the molecular and morphological data both individually and combined (total evidence). Taxa that were missing molecular data (see Table S7) were omitted from analyses of the molecular dataset alone, and *vice versa*.

Since we were primarily interested in inferring the relationships among acanthisittids, we placed several *a priori* constraints on outgroup nodes in accordance with previous studies (e.g. 34, 62). In analyses of the molecular data, we constrained the reciprocal monophyly of Passeriformes and Psittaciformes, reciprocal monophyly of Passeriformes+Psittaciformes (Psittacopasserimorphae) and Falconiformes, and the reciprocal monophyly of Psittacopasserimorphae+Falconiformes (Psittacopasseria) and Coraciimorphae. Additionally, analyses of the combined dataset and the morphological data alone were further constrained (in accordance with the results of the molecular data): the reciprocal monophyly of Passeri and Tyranni was enforced, as was the reciprocal monophyly of Passeri+Tyranni and Acanthisittidae. The position of the acanthisittid taxa for which no molecular data
was sampled (i.e. *Dendroscansor decurvirostris* and *Kuiornis indicator*) was unconstrained in all analyses, to allow for the possibility that Acanthisittidae is paraphyletic. In addition, all analyses including the morphological data were run both with and without the inclusion of *Dendroscansor* in order to assess the effect of its inclusion on ingroup branch support.

Optimal partitioning and substitution models for the molecular data were determined for each analysis using Partitionfinder v1.1.1. (63). PartitionFinder favoured schemes ranging from 8-10 partitions reduced from an input of 45 putative partitions (Table S8): first, second and third codon positions of each mitochondrial protein-coding gene; and stem and loop sites of 12S rRNA, 16S rRNA and concatenated tRNAs. Third codon positions were concatenated *a priori* before assessing the optimal partitioning and models for BEAST analyses, as Partitionfinder was unable to calculate model likelihoods for some individual genes due to a lack of informative sites. Stem and loop positions of RNA-coding genes were identified using RNAalifold (64). Third codon positions of protein coding genes were RY-coded to reduce the influence of transition saturation. Morphological data were analysed as an additional partition.

Bayesian analyses were performed using MrBayes v3.2.2 (65). Where included, morphological data were analysed using the MK model (66), with equal rates across sites (Bayes factor analysis did not support the inclusion of a gamma parameter for rate heterogeneity). Each MrBayes analysis employed four separate runs of four Markov chains each (one cold and three incrementally heated) using default priors. Each chain ran for 4×10^7 generations, sampling every 4,000.
Convergence in topology was assessed using the average standard deviation of clade (split) frequencies (<0.02), while convergence in individual parameter values was assessed through potential scale reduction factors approaching 1, and through broadly overlapping distributions and effective sample sizes >200 in Tracer v1.6 (http://tree.bio.ed.ac.uk/software/tracer/). Sampled trees were summarized as a majority-rule consensus tree after discarding the first 10% of trees as burnin.

Maximum likelihood analyses were run using RAxML v.7.2.8 (67). RAxML analyses comprised a maximum likelihood search for the best-scoring tree from 1,000 bootstrap replicates. Where included, morphological data were modelled using the MK (66) multigamma option, and all characters were treated as unordered. All polymorphic sites among the morphological data were treated as unknown.

Maximum parsimony analyses were run using PAUP* (68) with heuristic searches involving 1000 random addition replicates. 200 bootstrap replicates were performed for each analysis. All morphological characters were treated as unordered.

Molecular dating analyses were performed using BEAST v1.8 (33) on a dataset comprising only those taxa sampled for molecular data (Table S7). We constrained the minimum age of eight nodes in accordance with the first appearance of unequivocal descendants of those nodes in the fossil record (Table 4). Due to incompleteness of the fossil record of birds during the Cretaceous, maximum bounds for the divergence of modern birds are difficult to determine objectively (35, 36), and it has been demonstrated that this can have a large effect on the inferred timescale of bird evolution (see Appendix). Consequently, we ran independent analyses testing
the effect of three different, derived from the upper bound of the 95% HPD for
Coraciopasseres (the root of the phylogeny: node A) as estimated using a genome-
scale nucleotide dataset for all birds (see Appendix): 64 mya as for analyses when the
maximum age of birds was constrained to 99.6 mya, 84.11 mya as for analyses when the
maximum age of birds was constrained to 117.5 mya, and 125.3 mya as for
analyses when no constraint was placed on the origin of birds. The same maximum
bound was used for all calibrated nodes (Table 4), and all constraints were
implemented as uniform distributions with hard minima and maxima. In addition to
testing the affect of different maxima on our inferred dates, we also ran all analyses
with and without the constraint on node F in order to test the contribution of
temporal information based on Kuiornis to posterior age estimates.

Table 4: Values and justification for minimum age constraints employed in molecular dating.
Nodes are labelled as for Figure 2 and Table 3.

<table>
<thead>
<tr>
<th>Node</th>
<th>Description</th>
<th>Minimum (mya)</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Sittidae+Troglodytidae</td>
<td>18.0</td>
<td>Following Ericson et al. (69). Based on earliest certhioid (Certhiops), from the Miocene (70).</td>
</tr>
<tr>
<td>P</td>
<td>Oriolidae+Vireonidae</td>
<td>16.3</td>
<td>Following Ericson et al. (69). Based on earliest oriolid (Longimornis), from the Miocene (71).</td>
</tr>
<tr>
<td>M</td>
<td>Maluridae+Meliphagidae</td>
<td>10.4</td>
<td>Following Ericson et al. (69). Based on earliest meliphagid (unnamed), from the Miocene (72).</td>
</tr>
<tr>
<td>F</td>
<td>Acanthisitta+/ Xenus/Pachyplchias</td>
<td>16.0</td>
<td>Based on Kuiornis indicator (31). See main text.</td>
</tr>
<tr>
<td>C</td>
<td>Passeriformes+ Psittaciformes</td>
<td>54.6</td>
<td>Based on a stem passerine from the Eocene (73).</td>
</tr>
<tr>
<td>Q</td>
<td>Nestoridae+Psittacidae</td>
<td>16.0</td>
<td>Based on earliest known nestotid (Nelepsittacus), from the Miocene (74).</td>
</tr>
<tr>
<td>S</td>
<td>Coraciiformes+Piciformes</td>
<td>51.0</td>
<td>Based on earliest coraciiform (Primobucco) from the Eocene (75).</td>
</tr>
<tr>
<td>A</td>
<td>Coraciopasser; the root of the tree</td>
<td>56.8</td>
<td>Following Jarvis et al. (34). Based on a strigiform (Berruornis), from the Palaeocene (76).</td>
</tr>
</tbody>
</table>
For each of the six calibration schemes (three different maxima, with and without a minimum constraint on node F) we ran two independent MCMC chains in BEAST. Each chain was run for 10^8 generations sampling every 10^5 with the first 10% of samples discarded as burnin. The hypothesis of a global clock was tested and rejected, so we used independent relaxed uncorrelated lognormal clock model, with a rate multiplier allowing relative rates to vary according to data partition (see Table S8). In addition, a birth-death prior was placed on the distribution of nodes in the phylogeny. To facilitate faster convergence, we constrained the tree topology in accordance with the best-supported tree from the previous MrBayes, RAxML and PAUP* analyses (see Figure 2). Parameter values were monitored in Tracer v1.6 to ensure convergence and ESSs >200. Sampled trees and parameter values from the two chains run for each calibration scheme were combined before summarising the results.

Comparison with existing acanthisittid sequence data

Short sequences (201 bp) of mitochondrial 12S rRNA have previously been published for individuals of *A. chloris*, *X. longipes* and two putative subspecies of *X. gilviventris*: *X. g. gilviventris* and *X. g. rineyi* (30). In order to assess and compare intra-species diversity, we aligned these sequences with the comparable region (position 674-874 of the *Acanthisitta chloris* mitogenome, AY325307) of the acanthisittid mitogenomes sequences from our main dataset (see Table S7) using the ClustalW algorithm as implemented in Geneious v6.1.2, and calculated genetic distances between each pair of individuals (also using Geneious v6.1.2).
Acknowledgements

Funding for this project was awarded by the NZ Marsden Fund. Grid computing facilities were provided by the CIPRES (Cyberinfrastructure for Phylogenetic Research) Science Gateway.
References

43. Buller SWL (1895) On a new species of *Xenicus* from an island off the coast of New Zealand. *Ibis* 37(2):236-237.

Figure S1: MapDamage report for the final round of mapping for *Traversia lyalli*. The top panels show the high frequency of purines immediately before the reads characteristic of ancient DNA (although this signal is weak for adenine). The two lower panels show the accumulation of 5’ C-to-T (red) and 3’ G-to-A (blue) misincorporations characteristic of ancient DNA. T-to-C and A-to-G transitions are shown in orange and black, respectively. Other substitutions are shown in grey. Insertions and deletions are shown in purple and green, respectively.
Figure S2: MapDamage report for the final round of mapping for *Pachyplichas yaldwyni*. The top panels show the high frequency of purines immediately before the reads characteristic of ancient DNA (although this signal is weak for adenine). The two lower panels show the accumulation of 5’ C-to-T (red) and 3’ G-to-A (blue) misincorporations characteristic of ancient DNA. T-to-C and A-to-G transitions are shown in orange and black, respectively. Other substitutions are shown in grey. Insertions and deletions are shown in purple and green, respectively.
Figure S3: MapDamage report for the final round of mapping for *Xenicus longipes*. The top panels show the high frequency of purines immediately before the reads characteristic of ancient DNA. The two lower panels show the accumulation of 5’ C-to-T (red) and 3’ G-to-A (blue) misincorporations characteristic of ancient DNA. T-to-C and A-to-G transitions are shown in orange and black, respectively. Other substitutions are shown in grey. Insertions and deletions are shown in purple and green, respectively. Note that there is an accumulation of substitutions in the first five bp of mapped reads. These mismatches may be a result of indel errors accumulated during sequencing (frequent in Ion Torrent data; 61) resulting in poor alignment accuracy towards the ends of reads. This artefact occurs at sufficiently low frequency that it does not affect the final consensus sequence.
Table S1: Taxa used in total evidence phylogenetic analyses. Taxa for which morphology was scored by Worthy et al. (31) are marked with an “x”; only these taxa were included in analyses of the morphological data alone. NCBI/GenBank accession numbers are given for previously published mitogenome sequences; only these taxa (and those for which new sequence was generated in this study) were included in analyses of the molecular data alone (including BEAST molecular dating analyses).

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Common name</th>
<th>Family</th>
<th>Morphology</th>
<th>Accession</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kuiornis indicator</td>
<td>-</td>
<td>Acanthisittidae</td>
<td>x</td>
<td>Morphology only</td>
</tr>
<tr>
<td>Dendroscansor decurvedrastris</td>
<td>Long-billed wren</td>
<td>Acanthisittidae</td>
<td>x</td>
<td>Morphology only</td>
</tr>
<tr>
<td>Acanthisitta chloris</td>
<td>Rifleman</td>
<td>Acanthisittidae</td>
<td>x</td>
<td>AY325307</td>
</tr>
<tr>
<td>Xenicus longipes</td>
<td>Bush wren</td>
<td>Acanthisittidae</td>
<td>x</td>
<td>This study</td>
</tr>
<tr>
<td>Xenicus gilviventris</td>
<td>Rock wren</td>
<td>Acanthisittidae</td>
<td>x</td>
<td>This study</td>
</tr>
<tr>
<td>Pachyplicas yaldwyni</td>
<td>Stout-legged wren</td>
<td>Acanthusittidae</td>
<td>x</td>
<td>This study</td>
</tr>
<tr>
<td>Traversia lyalli</td>
<td>Lyall’s wren</td>
<td>Acanthusittidae</td>
<td>x</td>
<td>This study</td>
</tr>
<tr>
<td>Tyrannidae</td>
<td>N/A</td>
<td>Tyrannidae</td>
<td>x (Tyrannus tyrannus)</td>
<td>AYS96278 (Cnemotriccus fusatus)</td>
</tr>
<tr>
<td>Procnias nudicollis</td>
<td>Bare-throated bellbird</td>
<td>Cotingidae</td>
<td>x</td>
<td>Morphology only</td>
</tr>
<tr>
<td>Pseudocolaptes boissonneautii</td>
<td>Streaked tuftedcheek</td>
<td>Furnariidae</td>
<td>x</td>
<td>Morphology only</td>
</tr>
<tr>
<td>Old World suboscines</td>
<td>N/A</td>
<td>N/A</td>
<td>x (Pitta versicolor)</td>
<td>NC_000879 (Smithornis sharpei)</td>
</tr>
<tr>
<td>atrichornis clamosus</td>
<td>Noisy scrubbird</td>
<td>Atrichornithidae</td>
<td>x</td>
<td>Morphology only</td>
</tr>
<tr>
<td>Menura novaehollandiae</td>
<td>Superb lyrebird</td>
<td>Menuridae</td>
<td>x</td>
<td>AYS42313</td>
</tr>
<tr>
<td>Menura alberti</td>
<td>Albert’s lyrebird</td>
<td>Menuridae</td>
<td>x</td>
<td>Morphology only</td>
</tr>
<tr>
<td>Ptilonorhynchidae*</td>
<td>N/A</td>
<td>Ptilonorhynchidae</td>
<td>x</td>
<td>Morphology only</td>
</tr>
<tr>
<td>Climacteridae*</td>
<td>N/A</td>
<td>Climacteridae</td>
<td>x</td>
<td>Morphology only</td>
</tr>
<tr>
<td>Maluridae*</td>
<td>N/A</td>
<td>Maluridae</td>
<td>x</td>
<td>KJ909199 (Malurus melanocephalus)</td>
</tr>
<tr>
<td>Pardalotus striatus</td>
<td>Striated pardalote</td>
<td>Pardalotidae</td>
<td>x</td>
<td>Morphology only</td>
</tr>
<tr>
<td>Dasyornis broadbenti</td>
<td>Rufous bristlebird</td>
<td>Dasyornithidae</td>
<td>x</td>
<td>Morphology only</td>
</tr>
<tr>
<td>Acanthizidae*</td>
<td>N/A</td>
<td>Acanthizidae</td>
<td>x</td>
<td>Morphology only</td>
</tr>
<tr>
<td>Meliphagidae*</td>
<td>N/A</td>
<td>Meliphagidae</td>
<td>x</td>
<td>JX901072 (Epthianura albifrons)</td>
</tr>
<tr>
<td>Sitta carolinensis</td>
<td>White-breasted nuthatch</td>
<td>Sittidae</td>
<td></td>
<td>KJ909195</td>
</tr>
<tr>
<td>Campylophrunchus zonatus</td>
<td>Band-backed wren</td>
<td>Trogloidyidae</td>
<td></td>
<td>KF09924</td>
</tr>
<tr>
<td>Oriolus chinensis</td>
<td>Black-naped oriole</td>
<td>Oriolidae</td>
<td></td>
<td>JQ083495</td>
</tr>
<tr>
<td>Vireo olivaceus</td>
<td>Red-eyd vireo</td>
<td>Vireonidae</td>
<td></td>
<td>KJ909193</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name</td>
<td>Family</td>
<td>Accession Number</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>Rhynchopsitta terrisi</td>
<td>Maroon-fronted parrot</td>
<td>Psittacidae</td>
<td>KF010318</td>
<td></td>
</tr>
<tr>
<td>Strigops habroptilus</td>
<td>Kakapo</td>
<td>Nestoridae</td>
<td>AY309456</td>
<td></td>
</tr>
<tr>
<td>Falco peregrinus</td>
<td>Peregrine falcon</td>
<td>Falconidae</td>
<td>AF090338</td>
<td></td>
</tr>
<tr>
<td>Micrastur gilvicollis</td>
<td>Lined forest falcon</td>
<td>Falconidae</td>
<td>DQ780881</td>
<td></td>
</tr>
<tr>
<td>Dryocopus pileatus</td>
<td>Pileated woodpecker</td>
<td>Picidae</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Eurystomus orientalis</td>
<td>Dollarbird</td>
<td>Coraciidae</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Merops ornatus</td>
<td>Rainbow bee-eater</td>
<td>Meropidae</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

* Scored as a composite taxon in Worthy et al. (31)
Table S2: Primer sequences used in amplification and sequencing of *Xenicus gilviventris* mitochondrial genome.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence (5' - 3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV1753F12S*</td>
<td>AAACCTGGGATTAGATACCCCACTAT</td>
</tr>
<tr>
<td>Av5201tMetR*</td>
<td>CCACTCATTTCCGGGGGTATGG</td>
</tr>
<tr>
<td>AV4921ND1F*</td>
<td>CCCACAGATTTCGGMTAYGACCA</td>
</tr>
<tr>
<td>Av10116CO3R-LR*</td>
<td>GGGGTGTGTCGCCCTGGAAGGTGC</td>
</tr>
<tr>
<td>Av9942FCO3*</td>
<td>ATGGCHCACCAAGCACACTC</td>
</tr>
<tr>
<td>Av15307CythR*</td>
<td>CGTGGGCTCTCTAAGATGATAT</td>
</tr>
<tr>
<td>Av11168PtArg*</td>
<td>AGACAGTTGRTTFCGTCACCA</td>
</tr>
<tr>
<td>AV16137tProR*</td>
<td>ARAATRCCAGCTTTGGGAGTTGG</td>
</tr>
<tr>
<td>Av2577R16S</td>
<td>GCTTAAATTCATTCTTGGT</td>
</tr>
<tr>
<td>AV5201tMetR</td>
<td>CCATCATTTTCGGGGGTATGG</td>
</tr>
<tr>
<td>Av3282R16S-LR</td>
<td>TGATTATGCTACCTTTCGACGGTGATGACC</td>
</tr>
<tr>
<td>Av3797R16S</td>
<td>CGACCTGAGTTTCGGGCTGCTG</td>
</tr>
<tr>
<td>AV3725F16S-LR</td>
<td>AATAGGGTTTAGACCTCGATGTTGGATGAC</td>
</tr>
<tr>
<td>Av4747ND1F</td>
<td>CCATTCGCCCTATCTCTCTAGC</td>
</tr>
<tr>
<td>Av6314RtTyrB</td>
<td>CTCTTATTAAAGGCTTTGAGG</td>
</tr>
<tr>
<td>ND25473Fb</td>
<td>CTTCTTGTTGCTACCTTGGCTGCTG</td>
</tr>
<tr>
<td>BatL4673</td>
<td>CTHDMGGNTYYNTACMAAATG</td>
</tr>
<tr>
<td>Av7635CO1R</td>
<td>GGCGGTCTCATTGATTG</td>
</tr>
<tr>
<td>tTyr6598Fb</td>
<td>GAAGAGGATATGACCGGTTGTTT</td>
</tr>
<tr>
<td>CO17816R</td>
<td>GGGAACATGCTGTAATCTCTG</td>
</tr>
<tr>
<td>Av6838FCO1</td>
<td>CTTACCCGCTATGCGCTGTTG</td>
</tr>
<tr>
<td>Bat6871tSerR</td>
<td>GTTCTGTTCTTCTTTG</td>
</tr>
<tr>
<td>HS6200R</td>
<td>TTTTGGGTAAATAGGCGGGTTG</td>
</tr>
<tr>
<td>AV8381CO2F</td>
<td>GACCGCTCATCTCTCTATATA</td>
</tr>
<tr>
<td>AV1008BC03R</td>
<td>GTTACAGTGTCGTCGATGTTG</td>
</tr>
<tr>
<td>AV10884ND3R</td>
<td>GGCTTAAAGCGCCCCATCTCTG</td>
</tr>
<tr>
<td>AV10647CO3F</td>
<td>TTTTGACGACGACCTGATAYTG</td>
</tr>
<tr>
<td>Av12955SntSer</td>
<td>GGCTCAGATGCAAGAATGACCATCT</td>
</tr>
<tr>
<td>Av12788FND4</td>
<td>CTTACATACAGGAAGAC</td>
</tr>
<tr>
<td>ND51356Fb</td>
<td>GTATAGCAGGAGGAGGAGGAGG</td>
</tr>
<tr>
<td>AV13840FND5</td>
<td>AGCACTAGTGHTGACCGGGAA</td>
</tr>
<tr>
<td>Av15266CythR</td>
<td>TATCTACAGAAGGACGGTTAG</td>
</tr>
<tr>
<td>Av14455FND5</td>
<td>CGTCCTGCMCTWGGMAGCAT</td>
</tr>
<tr>
<td>Av15307CythR</td>
<td>CGTGGGCTCTCTACAGATGAT</td>
</tr>
<tr>
<td>Av15266CythR</td>
<td>TATCTACAGAAGGACGGTTAG</td>
</tr>
<tr>
<td>Av15107CythF</td>
<td>CATCCGTGGCCACACATGAC</td>
</tr>
</tbody>
</table>

* Primers used for long range PCR
Table S3: Structure of DNA sequencing libraries. Components and nucleotide sequences listed in order 5’ to 3’.

<table>
<thead>
<tr>
<th>Component</th>
<th>Sequence (5’ - 3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5’ IonTorrent Primer Bind Site</td>
<td>CCATCTCATCCCTCGGTGTCTCCGACTCAG</td>
</tr>
<tr>
<td>5’ Index II</td>
<td>TACTATG/ACAGCTG/AGCCTG (T. lyalli)</td>
</tr>
<tr>
<td></td>
<td>ACTGTCC/TCAGGTG (P. yaldwyni)</td>
</tr>
<tr>
<td></td>
<td>TGACGTG (X. longipes)</td>
</tr>
<tr>
<td>5’ Adapter</td>
<td>ACACCTTTCCCTACACGCTCTCCGATCT</td>
</tr>
<tr>
<td>5’ Index I</td>
<td>ACTAA (T. lyalli) - ACCGG (P. yaldwyni) - ACTCT (X. longipes)</td>
</tr>
<tr>
<td>DNA fragment</td>
<td>Variable</td>
</tr>
<tr>
<td>3’ Adapter</td>
<td>AGATCGGAAGAGCGACACGTCTGGAACCCAGTCAG</td>
</tr>
<tr>
<td>3’ IonTorrent Adapter</td>
<td>ATCACCCGACTGCCCATGAGG</td>
</tr>
</tbody>
</table>

Table S4: Primer sequences used in library amplification and sequencing preparation for ancient samples.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5’ – 3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Library amp. Fwd</td>
<td>ACACCTTTCCCTACACGAC</td>
</tr>
<tr>
<td>Library amp. Rev</td>
<td>GTGACTGGAGGTCACGTCGTS</td>
</tr>
<tr>
<td>Ion Torrent fusion Fwd</td>
<td>CCATCTCATCCCTCGGTGTCTCCGACTCAG(TACTATG/ACAGCTG/AGCCTG)ACACCTTTCCCTACACGCTCTCCGATCT (Traversia lyalli)</td>
</tr>
<tr>
<td></td>
<td>CCATCTCATCCCTCGGTGTCTCCGACTCAGACTGTCC/TCAGGTG/AGCCTG(Traversia lyalli)</td>
</tr>
<tr>
<td></td>
<td>TCACGACGCTCTCCGATCT (Pachyplichas yaldwyni)</td>
</tr>
<tr>
<td></td>
<td>CCATCTCATCCCTCGGTGTCTCCGACTCAG(TGACGTG)ACACTCTCTCCCTACACGTCGCTCTCCGATCT (Xenicus longipes)</td>
</tr>
<tr>
<td>Ion Torrent fusion Rev</td>
<td>CCTCTCTATGGGGCAGTCCGTGTAGTTACGACTGAGTCATCCGATGTCGCTCTCCGATCT</td>
</tr>
</tbody>
</table>
Table S5: Taxonomy and NCBI/GenBank accession numbers for data used to design in-solution RNA probe array.

<table>
<thead>
<tr>
<th>Species</th>
<th>Common name</th>
<th>Family</th>
<th>Accession</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthisitta chloris</td>
<td>Rifleman</td>
<td>Acanthisittidae</td>
<td>AY325307</td>
</tr>
<tr>
<td>Aegotheles cristatus</td>
<td>Owlet nightjar</td>
<td>Aegothelidae</td>
<td>EU344979</td>
</tr>
<tr>
<td>Anas formosa</td>
<td>Baikal teal</td>
<td>Anatidae</td>
<td>JF730435</td>
</tr>
<tr>
<td>Anas platyrhynchos</td>
<td>Mallard</td>
<td>Anatidae</td>
<td>NC_009684</td>
</tr>
<tr>
<td>Anomalopteryx didiformis</td>
<td>Little bush moa</td>
<td>Emeidae</td>
<td>NC_002779</td>
</tr>
<tr>
<td>Anser anser</td>
<td>Domestic goose</td>
<td>Anatidae</td>
<td>NC_01196</td>
</tr>
<tr>
<td>Apteryx haastii</td>
<td>Great spotted kiwi</td>
<td>Apterygidae</td>
<td>NC_002782</td>
</tr>
<tr>
<td>Apteryx owenii</td>
<td>Little spotted kiwi</td>
<td>Apterygidae</td>
<td>NC_013806</td>
</tr>
<tr>
<td>Branta canadensis</td>
<td>Canada goose</td>
<td>Anatidae</td>
<td>NC_017011</td>
</tr>
<tr>
<td>Cacatua moluccensis</td>
<td>Salmon-crested cockatoo</td>
<td>Cacatuidae</td>
<td>NC_020592</td>
</tr>
<tr>
<td>Corvus frugilegus</td>
<td>Rook</td>
<td>Corvidae</td>
<td>NC_002069</td>
</tr>
<tr>
<td>Dendrocya novaeanica</td>
<td>Lesser whistling duck</td>
<td>Anatidae</td>
<td>NC_012844</td>
</tr>
<tr>
<td>Dinornis robustus</td>
<td>Giant moa</td>
<td>Dinornithidae</td>
<td>NC_002672</td>
</tr>
<tr>
<td>Emeus crassus</td>
<td>Eastern moa</td>
<td>Emeidae</td>
<td>NC_002673</td>
</tr>
<tr>
<td>Eudyptes chrysocome</td>
<td>Rockhopper penguin</td>
<td>Spheniscidae</td>
<td>NC_008138</td>
</tr>
<tr>
<td>Eudyptula minor</td>
<td>Little blue penguin</td>
<td>Spheniscidae</td>
<td>NC_004538</td>
</tr>
<tr>
<td>Gallinula chloropus</td>
<td>Common moorhen</td>
<td>Rallidae</td>
<td>NC_015236</td>
</tr>
<tr>
<td>Gallirallus okinawae</td>
<td>Okinawa rail</td>
<td>Rallidae</td>
<td>NC_012140</td>
</tr>
<tr>
<td>Pica pica</td>
<td>Common magpie</td>
<td>Corvidae</td>
<td>NC_015200</td>
</tr>
<tr>
<td>Porphyrio hochstetterii</td>
<td>South Island takehe</td>
<td>Rallidae</td>
<td>NC_010092</td>
</tr>
<tr>
<td>Procellaria cinerea</td>
<td>Grey petrel</td>
<td>Procellariidae</td>
<td>AP009191</td>
</tr>
<tr>
<td>Pterodroma brevirostris</td>
<td>Kerguelen petrel</td>
<td>Procellariidae</td>
<td>NC_007174</td>
</tr>
<tr>
<td>Rallina eurizonoides</td>
<td>Slake</td>
<td>Rallidae</td>
<td>NC_012142</td>
</tr>
<tr>
<td>Rhea americana</td>
<td>Greater rhea</td>
<td>Rheidae</td>
<td>NC_000846</td>
</tr>
<tr>
<td>Strigops habroptilus</td>
<td>Kakapo</td>
<td>Strigopidae</td>
<td>NC_005931</td>
</tr>
<tr>
<td>Struthio camelus</td>
<td>Ostrich</td>
<td>Struthionidae</td>
<td>NC_002785</td>
</tr>
<tr>
<td>Tinamus major</td>
<td>Great tinamou</td>
<td>Tinamidae</td>
<td>NC_002781</td>
</tr>
</tbody>
</table>
Table S6: Enrichment proportions obtained using different hybridisation protocols. Enrichment calculated as percentage of reads mapping (prior to de-duplication) to the relevant final consensus (target) sequence after a single round of BWA mapping using the parameters listed in the methods. See main text for description of protocols. Cells are shaded for specimens not subjected to that protocol.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Traversia lyalli</th>
<th>Pachyplichas yaldwyni</th>
<th>Xenicus longipes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>Total reads</td>
<td>Total reads</td>
<td>Total reads</td>
</tr>
<tr>
<td></td>
<td>165,021</td>
<td>93,129</td>
<td>302,330</td>
</tr>
<tr>
<td></td>
<td>% target</td>
<td>5.032</td>
<td>0.009*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.036*</td>
<td></td>
</tr>
<tr>
<td>Alternative 1</td>
<td>Total reads</td>
<td>179,440</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% target</td>
<td>4.272</td>
<td></td>
</tr>
<tr>
<td>Alternative 2</td>
<td>Total reads</td>
<td>209,695</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% target</td>
<td>3.368</td>
<td></td>
</tr>
<tr>
<td>Alternative 3</td>
<td>Total reads</td>
<td>343,566</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% target</td>
<td>0.892</td>
<td></td>
</tr>
<tr>
<td>Alternative 4</td>
<td>Total reads</td>
<td>1,339,280</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% target</td>
<td>6.354</td>
<td></td>
</tr>
<tr>
<td>Alternative 5</td>
<td>Total reads</td>
<td>563,329</td>
<td></td>
</tr>
<tr>
<td>(Shotgun)</td>
<td>% target</td>
<td>0.034</td>
<td></td>
</tr>
</tbody>
</table>

* Substantial evaporation from these tubes during incubation may have compromised enrichment

Table S7: Consensus sequence statistics for ancient samples following final iteration of mapping.

<table>
<thead>
<tr>
<th></th>
<th>Traversia lyalli</th>
<th>Pachyplichas yaldwyni</th>
<th>Xenicus longipes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of filtered reads</td>
<td>2,456,765</td>
<td>1,443,134</td>
<td>1,674,990</td>
</tr>
<tr>
<td>Total number of mapped de-duplicated reads</td>
<td>8,222</td>
<td>5,809</td>
<td>1,662</td>
</tr>
<tr>
<td>Consensus length</td>
<td>15,6557</td>
<td>16,060</td>
<td>16,017</td>
</tr>
<tr>
<td>Consensus coverage</td>
<td>99.7</td>
<td>98.8</td>
<td>91.2</td>
</tr>
<tr>
<td>Mean read length (standard deviation) bp</td>
<td>76.0 (27.5)</td>
<td>81.4 (23.5)</td>
<td>77.3 (28.3)</td>
</tr>
<tr>
<td>Mean depth of coverage (standard deviation) X</td>
<td>40.1 (18.0)</td>
<td>31.0 (22.9)</td>
<td>8.4 (8.8)</td>
</tr>
</tbody>
</table>
Table S8: Partitioning schemes and substitution models for analyses of the nucleotide sequence data (see Table S7), determined using PartitionFinder v1.1.1 (63).

<table>
<thead>
<tr>
<th>Program</th>
<th>Partition number</th>
<th>Composition</th>
<th>Substitution model</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAxML 1</td>
<td>ATP6_1, CO2_1, CO3_1, CYTB_1, ND1_1, ND3_1</td>
<td>GTR+G</td>
<td></td>
</tr>
<tr>
<td>RAxML 2</td>
<td>ATP8_1, ND2_1, ND4L_1, ND4_1, ND5_1, ND6_1</td>
<td>GTR+G</td>
<td></td>
</tr>
<tr>
<td>RAxML 3</td>
<td>12S_stems, 16S_stems, CO1_1, tRNA_stems</td>
<td>GTR+G</td>
<td></td>
</tr>
<tr>
<td>RAxML 4</td>
<td>CO1_2, CO2_2, CO3_2, CYTB_2, ND1_2</td>
<td>GTR+G</td>
<td></td>
</tr>
<tr>
<td>RAxML 5</td>
<td>ATP6_2, ATP8_2, ND2_2, ND3_2, ND4L_2, ND4_2, ND5_2</td>
<td>GTR+G</td>
<td></td>
</tr>
<tr>
<td>RAxML 6</td>
<td>ATP6_3, ATP8_3, CO1_3, CO2_3, CO3_3, CYTB_3, ND1_3, ND2_3, ND3_3, ND4L_3, ND4_3, ND5_3, ND6_3</td>
<td>GTR+G</td>
<td></td>
</tr>
<tr>
<td>RAxML 7</td>
<td>12S_loops, 16S_loops, ND6_1</td>
<td>GTR+G</td>
<td></td>
</tr>
<tr>
<td>RAxML 8</td>
<td>tRNA_loops</td>
<td>GTR+G</td>
<td></td>
</tr>
<tr>
<td>MrBayes 1</td>
<td>CO2_1, CO3_1, CYTB_1, ND1_1</td>
<td>GTR+I+G</td>
<td></td>
</tr>
<tr>
<td>MrBayes 2</td>
<td>ATP6_1, ATP8_1, ND2_1, ND3_1, ND4L_1, ND4_1, ND5_1, ND6_1</td>
<td>GTR+I+G</td>
<td></td>
</tr>
<tr>
<td>MrBayes 3</td>
<td>12S_stems, 16S_stems, CO1_1</td>
<td>GTR+I+G</td>
<td></td>
</tr>
<tr>
<td>MrBayes 4</td>
<td>CO1_2, CO2_2, CO3_2, CYTB_2, ND1_2</td>
<td>GTR+I+G</td>
<td></td>
</tr>
<tr>
<td>MrBayes 5</td>
<td>ATP6_2, ATP8_2, ND2_2, ND3_2, ND4L_2, ND4_2, ND5_2</td>
<td>GTR+I+G</td>
<td></td>
</tr>
<tr>
<td>MrBayes 6</td>
<td>ATP6_3, ATP8_3, CO1_3, CO2_3, CO3_3, CYTB_3, ND1_3, ND2_3, ND3_3, ND4L_3, ND4_3, ND5_3, ND6_3</td>
<td>F81</td>
<td></td>
</tr>
<tr>
<td>MrBayes 7</td>
<td>12S_loops, 16S_loops, ND6_1</td>
<td>GTR+I+G</td>
<td></td>
</tr>
<tr>
<td>MrBayes 8</td>
<td>tRNA_loops</td>
<td>HKY+G</td>
<td></td>
</tr>
<tr>
<td>MrBayes 9</td>
<td>tRNA_stems</td>
<td>K80+I+G</td>
<td></td>
</tr>
<tr>
<td>BEAST 1</td>
<td>CO2_1, CO3_1, CYTB_1, ND1_1</td>
<td>TVM+I+G</td>
<td></td>
</tr>
<tr>
<td>BEAST 2</td>
<td>ATP6_1, ATP8_1, ND2_1, ND3_1, ND4L_1, ND4_1, ND5_1</td>
<td>GTR+I+G</td>
<td></td>
</tr>
<tr>
<td>BEAST 3</td>
<td>CO1_1</td>
<td>K81+I+G</td>
<td></td>
</tr>
<tr>
<td>BEAST 4</td>
<td>CO1_2, CO2_2, CO3_2, CYTB_2, ND1_2</td>
<td>TVM+I+G</td>
<td></td>
</tr>
<tr>
<td>BEAST 5</td>
<td>ATP6_2, ATP8_2, ND2_2, ND3_2, ND4L_2, ND4_2, ND5_2</td>
<td>GTR+I+G</td>
<td></td>
</tr>
<tr>
<td>BEAST 6</td>
<td>ATP6_3, ATP8_3, CO1_3, CO2_3, CO3_3, CYTB_3, ND1_3, ND2_3, ND3_3, ND4L_3, ND4_3, ND5_3, ND6_3</td>
<td>F81</td>
<td></td>
</tr>
<tr>
<td>BEAST 7</td>
<td>ND6_1, ND6_2</td>
<td>K81uf+G</td>
<td></td>
</tr>
<tr>
<td>BEAST 8</td>
<td>12S_loops, 16S_loops</td>
<td>TrN+I+G</td>
<td></td>
</tr>
<tr>
<td>BEAST 9</td>
<td>tRNA_loops</td>
<td>HKY+G</td>
<td></td>
</tr>
<tr>
<td>BEAST 10</td>
<td>12S_stems, 16S_stems, tRNA_stems</td>
<td>TVM+G</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 5:

Ancient mitochondrial genome reveals unsuspected taxonomic affinity of the extinct Chatham duck (*Pachyanas chathamica*) and resolves divergence times for New Zealand and sub-Antarctic brown teals

doi:10.1016/j.ympev.2013.08.017
Statement of Authorship

Title of Paper
Ancient mitochondrial genome reveals unsuspected taxonomic affinity of the extinct Chatham duck (Pachyanas chathamica) and resolves divergence times for New Zealand and sub-Antarctic brown teals.

Publication Status
Published

Publication Details

Author Contributions

By signing the Statement of Authorship, each author certifies that their stated contribution to the publication is accurate and that permission is granted for the publication to be included in the candidate’s thesis.

Name of Candidate
Kieren J Mitchell

Contribution to the Paper
Performed DNA library amplification, hybridization enrichment, IonTorrent DNA sequencing, and bioinformatic processing of sequencing data. Performed phylogenetic analyses and molecular dating, and interpreted results. Wrote the paper and helped create figures.

Signature
Date 6/2/15

Name of Co-Author
Jamie R Wood

Contribution to the Paper
Prepared specimen and performed DNA extraction. Edited manuscript and helped create figures.

Signature
Date 1/3/15

Name of Co-Author
R. Paul Scofield

Contribution to the Paper
Performed morphological analyses. Helped with study design. Edited manuscript and helped create figures.

Signature
Date 1/2/15

Name of Co-Author
Basile Llamas

Contribution to the Paper
Performed library construction. Edited manuscript.

Signature
Date 2/26/15
<table>
<thead>
<tr>
<th>Name of Co-Author</th>
<th>Alan Cooper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to the Paper</td>
<td>Helped with study design and edited the manuscript.</td>
</tr>
<tr>
<td>Signature</td>
<td>Date</td>
</tr>
</tbody>
</table>
Molecular Phylogenetics and Evolution, v. 70, pp. 420-428

NOTE:
This publication is included on pages 187 - 206 in the print copy of the thesis held in the University of Adelaide Library.

It is also available online to authorised users at:

http://dx.doi.org/10.1016/j.ympev.2013.08.017
CHAPTER 6:

An extinct nestorid parrot (Aves, Psittaciformes, Nestoridae) from the Chatham Islands, New Zealand

doi: 10.1111/zoj.12164
Statement of Authorship

Title of Paper
An extinct nestorid parrot (Aves, Paltilciformes, Nestoridae) from the Chatham Islands, New Zealand

Publication Status
● Published, ○ Accepted for Publication, ○ Submitted for Publication, ○ Publication style

Publication Details

Author Contributions

By signing the Statement of Authorship, each author certifies that their stated contribution to the publication is accurate and that permission is granted for the publication to be included in the candidate’s thesis.

Name of Candidate
Kieren J Mitchell

Contribution to the Paper
Performed DNA library amplification, hybridisation enrichment, IonTorrent DNA sequencing, and bioinformatic processing of DNA sequencing data for Chatham Islands parrot. Performed phylogenetic analyses and molecular dating, and interpreted results of these analyses. Helped create figures and edited the manuscript.

Signature

Date 6/2/15

Name of Co-Author
Jamie R Wood

Contribution to the Paper
Performed DNA extraction for Chatham Islands parrot. Performed morphological measurements/analyses and isotope analyses, interpreted results of these analyses, and formally described Chatham Islands parrot. Created figures. Wrote the manuscript.

Signature

Date 13.1.15

Name of Co-Author
R Paul Scofield

Contribution to the Paper
Provided samples, and helped with study design and species description. Edited the manuscript.

Signature

Date 12/1/15

Name of Co-Author
Aidan O Tennyson

Contribution to the Paper
Provided samples, and helped with study design and species description. Edited the manuscript.

Signature

Date 4 Dec 2014
<table>
<thead>
<tr>
<th>Name of Co-Author</th>
<th>Contribution to the Paper</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrew E. Fidler</td>
<td>Performed DNA extraction and sequencing for extant kia and kaka. Edited the manuscript.</td>
<td></td>
<td>6/12/2014</td>
</tr>
<tr>
<td>Janet M. Willsherst</td>
<td>Helped with isotope analyses and interpretation of isotopic data. Edited the manuscript.</td>
<td></td>
<td>5/12/14</td>
</tr>
<tr>
<td>Basile Llamas</td>
<td>Performed DNA library construction for Chatham Islands parrot. Edited manuscript.</td>
<td></td>
<td>22/01/2015</td>
</tr>
<tr>
<td>Allan Cooper</td>
<td>Helped with study design and edited the manuscript.</td>
<td></td>
<td>13/12/14</td>
</tr>
</tbody>
</table>

NOTE:
This publication is included on pages 211 - 228 in the print copy of the thesis held in the University of Adelaide Library.

It is also available online to authorised users at:

http://dx.doi.org/10.1111/zoj.12164
CHAPTER 7:

Ancient DNA analyses of mammalian megafauna from La Chumbiada (Argentina; South America)

In preparation for submission to Molecular Phylogenetics and Evolution.
Statement of Authorship

<table>
<thead>
<tr>
<th>Title of Paper</th>
<th>Ancient DNA analyses of mammalian megafauna from La Chumbiaba (Argentina; South America)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication Status</td>
<td>O Published, O Accepted for Publication, O Submitted for Publication, ● Publication style</td>
</tr>
<tr>
<td>Publication Details</td>
<td>Prepared for submission.</td>
</tr>
</tbody>
</table>

Author Contributions

By signing the Statement of Authorship, each author certifies that their stated contribution to the publication is accurate and that permission is granted for the publication to be included in the candidate's thesis.

<table>
<thead>
<tr>
<th>Name of Candidate</th>
<th>Kieren J Mitchell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to the Paper</td>
<td>Performed DNA extraction, library construction, library amplification, hybridisation enrichment, Illumina sequencing, and bioinformatic processing of sequencing data. Performed phylogenetic analyses and molecular dating, and interpreted results. Wrote the manuscript and designed and created figures.</td>
</tr>
<tr>
<td>Signature</td>
<td>Date</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Co-Author</th>
<th>Agustín Scarcicola</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to the Paper</td>
<td>Provided samples, helped with study design and edited the manuscript.</td>
</tr>
<tr>
<td>Signature</td>
<td>Date</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Co-Author</th>
<th>Esteben Soibetzon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to the Paper</td>
<td>Provided samples, helped with study design and edited the manuscript.</td>
</tr>
<tr>
<td>Signature</td>
<td>Date</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Co-Author</th>
<th>Alan Cooper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to the Paper</td>
<td>Helped with study design and edited the manuscript.</td>
</tr>
<tr>
<td>Signature</td>
<td>Date</td>
</tr>
</tbody>
</table>
CHAPTER 7:

Ancient DNA analyses of mammalian megafauna from La Chumbiada (Argentina; South America)

Kieren J Mitchell¹, Agustín Scanferla², Esteban Soibelzon³, Alan Cooper¹

¹ Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Australia
² Instituto de Bio y Geociencias del NOA, Museo de Ciencias Naturales, Universidad Nacional de Salta, Argentina
³ División Paleontología de Vertebrados, Museo de La Plata, Argentina

Abstract

Most of South America’s megafauna became extinct during the late Pleistocene and early Holocene. While studies of ancient DNA from these taxa have made some progress towards reconstructing the composition and evolution of this past community, they have largely been hampered by poor DNA preservation and the limitations of traditional sequencing methods. Although new technologies have recently been developed that allow DNA sequences to be more readily obtained from highly degraded remains, the potential of these techniques for studying the extinct megafauna of South America has not been fully explored. In the present study we used hybridisation enrichment and high-throughput sequencing to obtain near-complete mitochondrial genomes from two extinct South American megafaunal genera: Hippidion (endemic horses) and Glyptodon (a giant relative of extant armadillos). This allowed us to confidently resolve the relationships of these taxa to the extant fauna, and clarify their temporal and geographic origin. We suggest that
future application of the methods presented herein will allow the diversity of extinct taxa from South America to be more comprehensively surveyed, and ultimately should provide a greater understanding of the evolution of South America's unique biota.

Introduction

A large proportion of the world's megafauna became extinct during the last 50 kyr (Barnosky, et al. 2004; Prescott, et al. 2012; Stegner and Holmes 2013). In South America, this period saw the disappearance of a diverse faunal community that included giant ground sloths, large armadillo-relatives (Glyptodontidae), flightless carnivorous “terror birds” (Phorusrhacidae) and sabre-toothed cats (Fariña et al., 2013). This extinct community is particularly interesting due to the influences of biogeography on its composition (Simpson, 1980; Stehli and Webb, 1985). South America was geographically isolated for tens of millions of years during the interval between its separation from the other fragments of the supercontinent Gondwana and its subsequent connection to North America via the Isthmus of Panama.

Consequently, for much of its history South America lacked characteristic elements of its modern fauna, including perissodactyls (e.g. tapirs), artiodactyls (e.g. pigs, deer), or carnivorans (e.g. bears, cats, foxes), which were widespread throughout North America and Eurasia. Instead, South American “old endemic” groups exploited the niches conventionally filled by these groups: xenarthrans (e.g. ground sloths, glyptodontids) and meridiungulates (a placental mammal group of uncertain affinity) were the primary grazers/browsers, while metatherians (e.g. sparassodonts) and
phorusrhacid birds were prominent terrestrial carnivores. Several of these old endemic groups converged on remarkably similar forms to their ecological counterparts elsewhere (e.g. Sparassodonta and Carnivora, Artiodactyla/Perissodactyla and Meridiungulata) (Rose, 2006). However, around three million years ago, formation of the Isthmus of Panama initiated a period of major faunal dispersal between North and South America (the Great American Biotic Interchange; GABI). The GABI led to an extensive restructuring of animal communities, and nearly half of the modern South American fauna descends from North American immigrants (Fariña et al., 2013). However, many elements of the old endemic South American fauna survived until the Late Pleistocene (e.g. glyptodontids, meridiungulates). By studying these late-surviving old endemic taxa, we can better understand the evolution of the South American fauna during its long period of isolation. Conversely, by studying the evolution of GABI immigrants (e.g. horses), we can gain a greater appreciation of the timing and impact of the GABI on the faunal community of South America.

Since much of the South American megafauna became extinct only in the latest Pleistocene, or even early Holocene, it should be possible to extract ancient DNA from the remains of many species. Traditional DNA sequencing methods have been somewhat successful in this regard, although in most cases only very short regions of the mitochondrial genome (mitogenome) have been recovered (e.g. Clack et al., 2012; Greenwood et al., 2001; Hoss et al., 1996; Orlando et al., 2008; Orlando et al., 2009; Weinstock et al., 2009; Weinstock et al., 2005), which limits the power of these datasets for hypothesis testing. The recent advent of high-throughput sequencing has revolutionised the collection of DNA sequence data, allowing largely complete
mitogenome sequences to be obtained from a diverse range of extinct species (e.g. Mitchell et al., 2014a; Mitchell et al., 2014b; Paijmans et al., 2013). However, these new methods have not been extensively applied to extinct taxa from South America. Consequently, it is now an appropriate time to revisit outstanding questions regarding the origin and evolution of the South American megafauna. In the present study, we focus on two extinct taxa: *Hippidion* (endemic South American horses) and *Glyptodon* (a representative of the giant armoured glyptodontids).

Two genera of horse (Equidae) existed in South America during the Pleistocene: *Equus* (the genus comprising all extant equids inc. asses, horses and zebras) and *Hippidion* (three recognised species, all endemic to South America; Alberdi and Prado, 1993). The extinct South American representatives of *Equus* appear to have been a subpopulation of *Equus ferus* (the ancestor of domestic horses) (Orlando et al., 2008; Orlando et al., 2009; Weinstock et al., 2005), one of two species of horse distributed throughout North America during the Pleistocene along with the New World stilt-legged horses (a morphologically plastic and taxonomically contentious group). *Equus ferus* (*sensu* Orlando et al., 2009) seems to have entered South America from North America only in the last million years (MacFadden, 2013). In contrast, *Hippidion* first appears in the South American fossil record during the late Pliocene (Alberdi and Prado, 1993), soon after the beginning of the GABI. However, while *Equus* is recorded from the Pliocene fossil record of North America (Winans, 1989), no “hippidiforms” are recognised outside of South America (Prado and Alberdi, 1996; Prothero and Schoch, 1989), leaving the evolutionary origins of *Hippidion* uncertain. Two main hypotheses have been proposed to explain the origins
of *Hippidion* (Figure 1): one based on palaeontological data and morphological evolution, and the other based on ancient DNA.

Figure 1: Conflicting hypotheses regarding the origin of South American horses (adapted from Weinstock et al., 2005). A) Prado and Alberdi (1996) suggest that the ancestors of *Hippidion* diverged from the lineage leading to modern *Equus* during the Miocene, with *Hippidion* and *Equus* potentially descending from the fossil genus *Pliohippus*. B) Previous ancient DNA studies have suggested that *Hippidion* actually falls within the diversity of *Equus*, and shared a common ancestor with New World stilt-legged (NWSL) horses around the beginning of the GABI (Orlando et al., 2008; Orlando et al., 2009; Weinstock et al., 2005). Timescale is in millions of years before the present.

The most prominent palaeontological hypothesis (Figure 1A) is that the ancestors of both *Hippidion* and *Equus* arose independently in North America from the fossil genus *Pliohippus* during the Late Miocene as part of a radiation of early horses (inc. *Protohippus, Calippus, Nannipus, Astrohippus, Pseudhippation, Hipparion*) (Prado and Alberdi, 1996). This viewpoint implies that a hippidiform “ghost lineage”
must have persisted in North America for several million years without being
detected in the fossil record, before becoming extinct following the dispersal of
Hippidion (sensu stricto) to South America. In contrast, a second hypothesis (Figure
1B) based on previously published Hippidion ancient DNA sequences (Orlando et al.,
2008; Orlando et al., 2009; Weinstock et al., 2005), suggests that Hippidion falls
within the diversity of Equus and diverged from the ancestor of the New World stilt-
legged horses coincident with the beginning of the GABI. While this explains the
absence of hippidiform fossil taxa from North America, it contradicts strong
morphological evidence for the phylogenetic distinctness of Hippidion and the
monophyly of Equus. Additional genetic data is required to conclusively resolve this
disagreement.

Questions of phylogenetic affinity also surround the extinct glyptodontids. However, unlike Hippidion, glyptodontids are old endemic members of the South
American fauna (Fariña et al., 2013). Glyptodontids were perhaps one of the more
bizarre looking mammal groups to have ever evolved, with short deep skulls, fused
vertebral columns, immobile bone exoskeletons, and (frequently) spiked club-like
tails (Gillette and Ray, 1981). They were also one of the most abundant and diverse
elements of the South American mammal fauna through much of the late Cenozoic
(Rose, 2006). Previous palaeontological studies suggested that glyptodontids (along
with their smaller more armadillo-like relatives, the pampatheriids) form a clade
(Glyptodonta) that is reciprocally monophyletic with respect to a clade comprising
the extant armadillos (Dasypodidae) (e.g. Figure 2A; Engelmann, 1985). However,
more recent studies of morphological data have tentatively suggested a close
relationship between Glyptodonta and the armadillo subfamily Euphractinae (Figure
2B) – comprising the six-banded armadillo, pichi and hairy armadillos – to the exclusion of the remaining three extant armadillo subfamilies (Billet et al., 2011; Gaudin and Wible, 2006). Thus far, no ancient DNA has been sequenced for either Glyptodontidae or Pampatheriidae, so this hypothesis has not been definitively tested (Figure 2C). Confirming the phylogenetic position of Glyptodonta relative to extant armadillos could prove valuable for calibrating the evolutionary timescale of Cingulata (the clade comprising Dasypodidae, Glyptodontidae and Pampatheriidae), since unequivocal glyptodontid remains are known from the Eocene (Simpson, 1948).

Figure 2: Suggested relationships between the four subfamilies (*sensu* Delsuc et al., 2012) of extant armadillo (Dasypodidae: shaded grey) and Glyptodontidae. A) Glyptodontids were originally thought to be phylogenetically distinct from dasypodid armadillos. B) More recent morphological studies (e.g. Billet et al., 2011) have suggested that glyptodontids are actually phylogenetically nested within extant armadillos, possibly close to the euphractines. C) DNA-based phylogenetic analyses have clarified the relationships between extant armadillos (Delsuc et al., 2012), but have thus far been unable to test the position of Glyptodontidae due to a lack of available sequence data.

In the present study we have extracted ancient DNA from the remains of *Glyptodon* and *Hippidion* individuals collected from the La Chumbiada Member of the Luján Formation: Late Pleistocene (~30 thousand year old) sediments from the Rio
Luján valley near Mercedes in Buenos Aires Province, Argentina (Cione et al., 2006; Cione and Tonni, 1995; Dillon and Rabassa, 1985). By using hybridisation enrichment and high-throughput sequencing we were able to generate near-complete mitochondrial genome sequences from both taxa, despite the relatively poor DNA preservation of the remains. These new high-quality sequence data allowed us to confidently resolve several uncertainties regarding the origin and evolution of South American horses and cingulates.

Methods

Sample preparation and extraction

All DNA extraction and library preparation steps were performed in a purpose-built, physically isolated, ancient DNA laboratory at the Australian Centre for Ancient DNA, University of Adelaide. Two samples were taken from the disarticulated jaw of a juvenile *Hippidion* individual and processed in parallel: the root of a molar (ACAD15255) and a portion of the left ascending ramus (ACAD15257). A single sample was taken from the osteoderm (scute) of a *Glyptodon* individual (ACAD15262). The material available was insufficient to identify either taxon to the species level using morphology alone.

Potential for contamination of the bone samples was reduced by removing surfaces (c. 1 mm) using a dremel tool, followed by UV irradiation for 15 min. Each sample (0.2 g) was powdered using a mikrodismembrator (Sartorius). The powdered
bone was lysed by rotational incubation at 37 °C overnight in 4 mL of 0.5M EDTA pH 8.0 followed by a further incubation at 55 °C for 2 hr with the addition of 60 μL of proteinase-K. The released DNA was bound, washed and eluted using the silica-based method of Rohland and Hofreiter (2007).

Library preparation and hybridisation enrichment

Extracted DNA was enzymatically repaired and blunt-ended, and custom adapters (Table 1) ligated following the protocol of Meyer and Kircher (2010). The 5′ adapter sequence featured a unique barcode in order to allow identification and exclusion of any downstream contamination (Table 1). Libraries were subjected to a short round of PCR in order to increase the total quantity of DNA using primers complementary to the adapter sequences (Table 2) (Meyer and Kircher, 2010). Cycle number was kept low and template from each library was split into eight separate PCRs in order to minimise PCR bias and maintain library complexity. Each individual PCR (25 μL) contained 1× PCR buffer, 2.5 mM MgCl₂, 1 mM dNTPs, 0.5 mM each primer (Table 2), 0.1 U AmpliTaq Gold and 2 μL DNA. Cycling conditions were as follows: 94 °C for 12 min; 12-13 cycles of 94 °C for 30 s, 60 °C for 30 s, 72 °C for 40 s (plus 2 s/cycle); and 72 °C for 10 min. PCR products were purified using AMPure magnetic beads (Agencourt).

Table 1: Sequencing library structure.

<table>
<thead>
<tr>
<th>Component</th>
<th>Sequence (5’ – 3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5’ truncated Illumina adapter</td>
<td>ACACCTTTTCCTACACGACGCTCTCCGATCT</td>
</tr>
<tr>
<td>5’ barcode</td>
<td>ATGTA (Glyptodon); CGCGT+GCTCC (Hippidion)</td>
</tr>
<tr>
<td>DNA fragment</td>
<td>Variable</td>
</tr>
<tr>
<td>3’ truncated Illumina adapter</td>
<td>AGATCGGAAGAGACACGTCTGAACGGTCAGTCAC</td>
</tr>
<tr>
<td>Primer</td>
<td>Sequence (5' – 3')</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Library amplification forward</td>
<td>ACACTCTTTCCCTACAGAC</td>
</tr>
<tr>
<td>Library amplification reverse</td>
<td>GTGACTGAGGTTTCAGACGTGT</td>
</tr>
<tr>
<td>Illumina adapter fusion forward</td>
<td>AATGATACGCGACCTACACGCTCTT</td>
</tr>
<tr>
<td>Illumina adapter fusion reverse</td>
<td>CAAGCAGAAGAGCGAGCTACGAGCTCTT</td>
</tr>
</tbody>
</table>

Commercially synthesised biotinylated 80-mer RNA baits (MYcroarray, MI, USA) were used to enrich the target library for mitochondrial DNA. Baits were designed using published mitochondrial sequences from a range of placental mammals (Table 3). DNA-RNA hybridisation enrichment was performed according to manufacturer’s recommendations (v1) in a final concentration of 5.2 × SSPE, 5.2 × Denhardt’s, 5 mM EDTA and 0.1% SDS. This solution was incubated for 44 hr (3 hr at 60°C, 12 hr at 55 °C, 12 hr at 50 °C, 17 hr at 55 °C) with a total of 200 ng of library DNA, after which the RNA baits were immobilised on magnetic MyOne Streptavidin beads (Life Technologies). The baits were washed once with a solution of 1× SSC and 0.1% SDS (15 min at room temperature) and twice with 0.1× SSC and 0.1% SDS (10 min at 50 °C). Subsequent resuspension in 0.1 M NaOH pH 13.0 destroyed the RNA baits, releasing captured DNA into solution. Captured DNA was purified using a Qiagen Minelute spin-column. The quantity of DNA remaining after enrichment was extremely small, so an additional round of PCR was performed (12 cycles; conditions as above). Subsequently, a final round of PCR (7 cycles; conditions as above) was performed with fusion primers (Table 2) to add full-length Illumina sequencing adapters to the enriched library.
Table 3: Mitochondrial sequence used to design RNA baits for hybridisation enrichment.

<table>
<thead>
<tr>
<th>Species name</th>
<th>Common name</th>
<th>Accession</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arctodus simus</td>
<td>Giant short-faced bear</td>
<td>NC_011116</td>
</tr>
<tr>
<td>Bison bison</td>
<td>American bison</td>
<td>NC_012346</td>
</tr>
<tr>
<td>Bos taurus</td>
<td>Cattle</td>
<td>GU947008</td>
</tr>
<tr>
<td>Bradypus tridactylus</td>
<td>Three-toed sloth</td>
<td>AY960979</td>
</tr>
<tr>
<td>Bubalus bubalis</td>
<td>Water buffalo</td>
<td>NC_006295</td>
</tr>
<tr>
<td>Capra pyrenaica</td>
<td>Spanish ibex</td>
<td>FJ207528</td>
</tr>
<tr>
<td>Capricornis crispus</td>
<td>Japanese serow</td>
<td>AP003429</td>
</tr>
<tr>
<td>Dasypus novemcinctus</td>
<td>Nine-banded armadillo</td>
<td>NC_001821</td>
</tr>
<tr>
<td>Echinops telfairi</td>
<td>Lesser hedgehog tenrec</td>
<td>AB099484</td>
</tr>
<tr>
<td>Gazella dorcas</td>
<td>Dorcas gazelle</td>
<td>JN632637</td>
</tr>
<tr>
<td>Hippotragus niger</td>
<td>Sable antelope</td>
<td>JN632648</td>
</tr>
<tr>
<td>Kobus leche</td>
<td>Lechwe</td>
<td>JN632652</td>
</tr>
<tr>
<td>Lemur catta</td>
<td>Ring-tailed lemur</td>
<td>AJ421451</td>
</tr>
<tr>
<td>Macaca mulatta</td>
<td>Rhesus macaque</td>
<td>NC_005943</td>
</tr>
<tr>
<td>Mammuthus primigenius</td>
<td>Wooly mammoth</td>
<td>EU153453</td>
</tr>
<tr>
<td>Myotragus balearicus</td>
<td>Balearic Islands cave goat</td>
<td>AY380560</td>
</tr>
<tr>
<td>Oryctolagus cuniculus</td>
<td>European rabbit</td>
<td>NC_001913</td>
</tr>
<tr>
<td>Ovis aries</td>
<td>Sheep</td>
<td>HM236182</td>
</tr>
<tr>
<td>Panthera leo</td>
<td>Lion</td>
<td>KCB34784</td>
</tr>
<tr>
<td>Pipistrellus abramus</td>
<td>Japanese pipistrelle</td>
<td>AB061528</td>
</tr>
<tr>
<td>Rhinolophus ferrumequinum</td>
<td>Greater horseshoe bat</td>
<td>NC_020326</td>
</tr>
<tr>
<td>Rupicapra rupicapra</td>
<td>Chamois</td>
<td>FJ207539</td>
</tr>
<tr>
<td>Sciurus vulgaris</td>
<td>Red squirrel</td>
<td>AJ238588</td>
</tr>
<tr>
<td>Ursus arctos</td>
<td>Brown bear</td>
<td>HQ685964</td>
</tr>
</tbody>
</table>

Sequencing and data processing

Libraries were diluted to 2 nM and run on an Illumina MiSeq using 2 x 150 bp (paired-end) sequencing chemistry. Following sequencing, reads were demultiplexed according to the 5’ barcode using ‘sabre’ (https://github.com/najoshi/sabre) (default parameters: no mismatches allowed). In addition, five base pairs were removed from the 3’ end of the reverse reads using fastx_trimmer (FASTX-toolkit v0.0.13; http://hannonlab.cshl.edu/fastx_toolkit) to ensure that forward and reverse reads were of equal length for read merging. Adapter sequences were removed and paired-
end reads were merged using Adapter Removal v1.5.4 (Lindgreen, 2012). Low quality bases were trimmed (<Phred20 --minquality 4) and merged reads shorter than 25 bp were discarded (--minlength 25). Read quality was visualized using fastQC v0.10.1 (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc) before and after trimming to make sure the trimming of adapters was efficient. Only read pairs that could be successfully merged were retained for mapping and assembly. Reads from the two *Hippidion* libraries were pooled for downstream analysis.

For both *Hippidion* and *Glyptodon*, reads were iteratively mapped against the mitogenome sequence of a close relative (*Equus ferus* AY584828 and *Dasypus novemcinctus* NC_001821, respectively) using TMAPv3.2.2 (https://github.com/nh13/TMAP) (default ‘mapall’ parameters). Reads with a mapping quality Phred score >30 were selected using the SAMtools v1.4 (Li et al., 2009) view command (-q 30), and duplicate reads were discarded using the MarkDuplicates.jar tool from Picard tools v1.79 (http://picard.sourceforge.net). After each iteration, a 50% consensus sequence was generated from all mapped reads and used as the reference for the next iteration. This process was repeated until no additional reads could be aligned (four iterations for *Hippidion*, seven iterations for *Glyptodon*). Using the TMAP consensus as a reference a final round of higher stringency mapping was performed using BWA v0.7.8 (Li and Durbin, 2009) (‘aln’ -l 1024, -n 0.01, -o 2). Reads with a mapping quality Phred score >30 were selected using the SAMtools v1.4 (Li et al., 2009) view command (-q 30), and duplicate reads were discarded using ‘FilterUniqueSAMCons.py’ (Kircher, 2012). A final 75% consensus sequence was generated for both *Hippidion* and *Glyptodon* and checked by eye in Geneious v6.1.2 (Biomatters; http://www.geneious.com). Sites that received
no coverage or insufficient coverage to unambiguously call a nucleotide were coded as IUPAC ambiguities.

A total of 3,347,419 reads were assignable to our *Hippidion* sequencing libraries. After iterative mapping, 2,037 unique reads were aligned. The final *Hippidion* consensus sequence was 16,486 bp in length. Aligned reads spanned 90.5% of the final *Hippidion* consensus; sites that received no coverage or insufficient coverage to unambiguously call a nucleotide were coded as IUPAC ambiguities. Mean length of individual reads was 60.2 bp (standard deviation = 13.2) while mean read depth across the consensus was mean 7.4x (standard deviation = 6.4). For our *Glyptodon* library, a total of 1,758,698 reads contributed 1,277 unique aligned reads, resulting in a consensus sequence of length 16,124 bp. Aligned reads spanned 77% of the final *Glyptodon* consensus; sites that received no coverage or insufficient coverage to unambiguously call a nucleotide were coded as IUPAC ambiguities. Mean length of individual reads was 64 bp (standard deviation = 15.8) while mean read depth across the consensus was mean 5.1x (standard deviation = 5.2). We used MapDamage v0.3.3 (Ginolhac et al., 2011) to assess patterns of damage across all mapped reads for both *Hippidion* and *Glyptodon* (Figures 3 and 4, respectively). In both cases, patterns observed were consistent with degraded ancient DNA (elevated 5’ C-to-T and 3’ A-to-G substitutions, and depurination at the position preceding the beginning of the reads).
Figure 3: MapDamage report for the final round of mapping for Hippidion. The top panels show the characteristic high frequency of purines (A and G) immediately before the reads. The two lower panels show the accumulation of 5' C-to-T (red) and 3' G-to-A (blue) misincorporations characteristic of ancient DNA.
Figure 4: MapDamage report for the final round of mapping for Glyptodon. The top panels show the characteristic high frequency of purines (A and G) immediately before the reads. The two lower panels show the accumulation of 5’ C-to-T (red) and 3’ G-to-A (blue) misincorporations characteristic of ancient DNA.
Phylogenetic analysis of perissodactyls (including Hippidion)

We aligned our Hippidion consensus sequence with previously published mitogenome sequences from a range of perissodactyls (Table S1) using the ClustalW algorithm as implemented in Geneious v6.1.2 (Biomatters; http://www.geneious.com). Optimal partitioning and substitution models for downstream maximum likelihood and Bayesian phylogenetic analyses were determined using PartitionFinder v1.1.1. (Lanfear et al., 2012). PartitionFinder favoured schemes ranging from six to seven partitions (Table S2) reduced from an input of 45 putative partitions: first, second and third codon positions of each individual mitochondrial protein-coding gene; and stem and loop sites of 12S rRNA, 16S rRNA and concatenated tRNAs. Stem and loop positions of RNA genes were identified using RNAalifold (Bernhart et al., 2008). Third codon positions of protein coding genes were RY-coded to reduce the influence of transition saturation using DAMBE (Xia and Xie, 2001).

Topology estimation and molecular dating were performed under a Bayesian framework using BEAST v1.8 (Drummond and Rambaut, 2007), using the substitution models and partitioning scheme determined using PartitionFinder (Table S2). The hypothesis of a global clock was tested and rejected, so we used an uncorrelated relaxed lognormal clock model allowing relative rates to vary for each partition. We calibrated the molecular clock by constraining the age of three nodes: the root of the tree (Figure 5: node A), the divergence between Ceratomorpha and Tapiromorpha (Figure 5: node B), and the origin of the Hippidion lineage (Figure 5: node H). All node age constraints were implemented as uniform distributions. The
minimum age of node A was constrained to 55.6 million years ago (mya) (Woodburne et al., 2009) according to the appearance of the earliest unequivocal hippomorph (Hyracotherium; MacFadden, 1992). The minimum age of node B was constrained to 52.6 Ma (Woodburne et al., 2009) according to the appearance of the earliest unequivocal tapiromorph (Heptodon; Holbrook, 1999). Objective maximum bounds are difficult to set for nodes A and B: perissodactyls are completely absent from well-sampled Late Palaeocene strata from North America (Woodburne et al., 2009), but they may only have immigrated to North America in the Eocene after evolving elsewhere (Prothero and Schoch, 1989). In any case, it is generally agreed upon that the early diversification of perissodactyls occurred during the Palaeocene, and most likely during the Late Palaeocene. Consequently, we tested two possible maximum constraints for nodes A and B (see Table 4): 61.7 mya (the beginning of the middle Palaeocene) and 66 mya (the beginning of the Palaeocene). The minimum age for node H was constrained to 2.5 mya according to the earliest appearance of Hippidion in the fossil record of South America (Alberdi and Prado, 1993), while the maximum was constrained to the beginning of the Barstovian North American land mammal age (16.5 mya) in order to allow for the possibility that the Hippidion and Equus lineages diverged any time during the Miocene radiation of North American horses (Prado and Alberdi, 1996). To test the affect of calibrating node H on the topology and the inferred age of Hippidion, we ran additional analyses wherein this node was unconstrained (see Table 4). For each calibration scheme, we ran two BEAST chains, beginning from different starting trees. Each chain was run for 10^8 generations sampling every 10^5 with the first 10% of samples discarded as burnin. To facilitate better convergence we constrained the reciprocal monophyly of Hippomorpha and the clade comprising Tapiromorpha and Ceratomorpha, but the rest of the phylogeny
was co-estimated with the divergence dates. Parameter values were monitored and compared between the two independent chains in Tracer v1.6 (http://tree.bio.ed.ac.uk/software/tracer/) to ensure convergence and ESSs >200. Sampled trees and parameter values from each run were combined before summarising the results.

To test the sensitivity of our inferred tree topology to model choice and analytical framework, we repeated our phylogenetic analysis in RAxML (Stamatakis et al., 2008). The RAxML analysis comprised a maximum likelihood search for the best-scoring tree from 1,000 bootstrap replicates.

In addition to the BEAST and RAxML analyses above, we conducted a network analysis (Figure 6) of a 351 bp control region sequence corresponding to sites 15,704-16,054 of the *Equus ferus* mitogenome (AY584828). In addition to our Hippidion sequence, we included sixteen additional *Hippidion* individuals for which the relevant region had been previously published (Orlando et al., 2008; Orlando et al., 2009; Weinstock et al., 2005), and also the relevant region from the *Equus ferus* mitogenome (Table S3). All alignment columns containing gaps or ambiguous bases were removed, leaving a total of 38 variable positions. The analysis was performed in Network v4.6 (http://www.fluxus-engineering.com/) using the median-joining algorithm (Bandelt et al., 1999).
Phylogenetic analysis of xenarthrans (inc. *Glyptodon*)

We aligned our *Glyptodon* consensus sequence with previously published mitogenomes and individual mitochondrial gene sequences from a range of xenarthrans (Table S4) using the ClustalW algorithm as implemented in Geneious v6.1.2 (Biomatters; http://www.geneious.com). Data was partitioned and substitution models determined using PartitionFinder, RNAalifold and DAMBE as described above for the perissodactyls (Table S5).

BEAST and RAxML analyses were run for the xenarthran dataset as described above for perissodactyls, with the exception of the calibrations for molecular dating. We calibrated three nodes on the xenarthran phylogeny: the root of the tree (Figure 7: node A), the origin of *Glyptodon* (Figure 7: node M) and the origin of Tolypeutinae (Figure 7: node O). All node age constraints were implemented as uniform distributions. The minimum age of node A was constrained to 55.8 mya (end of the Palaeocene) according to the appearance of the earliest unequivocal cingulates (Bergqvist and Oliveira, 1998). The minimum age of node M was constrained to 36 mya according to the appearance of the earliest unequivocal glyptodontids (Lomaphorelus, Palaeopeltis; Simpson, 1948). The minimum age of node O was constrained to 26 mya according to the appearance of Kuntianaru, a stem tolypeutine (Billet et al., 2011). The maximum age of any node on the xenarthran phylogeny is difficult to determine objectively, as the fossil record is patchy and the geographical origin of early xenarthrans is uncertain (Billet et al., 2011; Rose, 2006). Consequently, we test three alternative maximum constraints for the diversification of Xenarthra (see Table 5), spanning a range of plausible times: 70.06 mya (secondarily derived
from the analyses of Meredith et al., 2011), 76.2 mya (secondarily derived from the analyses of Delsuc et al., 2012), and 83.5 mya (the beginning of the Santonian age of the Cretaceous).

Results

Hippidion

Posterior clade probabilities estimated using BEAST did not vary substantially depending on the calibrations used. Consequently, only the values from one set of analyses are reported: those from analyses where the maximum bound for node A was set to 66 mya and a constraint of 2.5-16.5 mya was placed on node H (Figure 5). Analyses in both BEAST and RAxML confirm that Hippidion falls outside the diversity of Equus (node I; Maximum Likelihood Bootstrap, MLB = 85%, Bayesian Posterior Probability, BPP = 0.96) (Figure 5). Otherwise, relationships among ingroup species are concordant with those suggested by previous molecular phylogenetic studies (e.g. Vilstrup et al., 2013). Equus ferus (the lineage comprising domestic horses and Przewalski’s horse) is most closely related to the extinct New World stilt-legged horses (i.e. Equus NWSL) (node J; MLB = 97%, BPP = 1.0). Amongst the remaining taxa the zebras and wild asses form well supported sister clades, to the exclusion of the extinct sussemione horses (E. ovodovi).

Node age estimates for perissodactylds are robust to changes in calibration scheme (Table 4). Mean values for the divergence of Hippidion were all older than 10
mya, while the lower bound of the 95% HPD was always older than 7 mya. This is clearly incompatible with Orlando et al. (2009)’s age estimates, which placed the origin of *Hippidion* at most 4.5 mya. However, our results are very close to Vilstrup et al. (2013)’s timescale for the evolution of *Equus*. Considering the high support we recover for the monophyly of *Equus*, this suggests that our results are a more accurate reflection of the true temporal origin of *Hippidion* than Orlando et al. (2009)’s values.

Network analysis of a 351 bp section of the control region reveals that the *Hippidion* sample in this study represents a distinct lineage from all other previously sampled *Hippidion* individuals. At least eight nucleotide changes separate our *Hippidion* sample from the ‘*H. devillei*’ group (inc. four haplotypes, four individuals), while at least six substitutions separate ‘*H. devillei*’ from ‘*H. saldiasi/principale*’ (inc. eight haplotypes, 12 individuals). The *H. principale* individual differs from the sampled *H. devillei* haplotypes by only a single substitution. In comparison, *Equus ferus* is separated from *Hippidion* by at least 23 substitutions.
Figure 5: Phylogeny of perissodactyls. Topology and branch lengths were estimated using BEAST, with a maximum bound of 66 mya on the root (node A) and a constraint of 2.5-16.5 mya on node H. Scale is in millions of years before the present. Node bars represent the 95% Highest Posterior Density (HDP) of age estimates. Support values (Bayesian Posterior Probability / Maximum Likelihood Bootstrap) are given for nodes that did not receive maximum support in both analyses (1.0 / 100). Node ages estimated under all calibration schemes are listed in Table 4. Extinct taxa highlighted in red. *Hippidion* in bold.
Table 4: Mean node ages (and 95% highest posterior densities) for all nodes in Figure 5, as estimated using BEAST according to four difference calibration schemes (see main text for details).

<table>
<thead>
<tr>
<th>Node</th>
<th>Palaeocene Perissodactyla (<66 mya)</th>
<th>Late Palaeocene Perissodactyla (<61.7 mya)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hippidion constrained (2.5-16.5 mya)</td>
<td>Hippidion unconstrained</td>
</tr>
<tr>
<td>A</td>
<td>61.9 (56.8-66.0)</td>
<td>61.9 (56.9-66.0)</td>
</tr>
<tr>
<td>B</td>
<td>56.2 (52.6-61.7)</td>
<td>56.2 (52.6-61.7)</td>
</tr>
<tr>
<td>C</td>
<td>23.1 (17.3-29.2)</td>
<td>23.1 (17.5-27.9)</td>
</tr>
<tr>
<td>D</td>
<td>11.7 (7.7-15.9)</td>
<td>11.6 (7.6-15.8)</td>
</tr>
<tr>
<td>E</td>
<td>22.0 (16.7-28.1)</td>
<td>22.0 (16.6-27.9)</td>
</tr>
<tr>
<td>F</td>
<td>9.8 (6.3-13.6)</td>
<td>9.8 (6.3-13.5)</td>
</tr>
<tr>
<td>G</td>
<td>8.8 (5.7-12.2)</td>
<td>8.8 (5.5-12.0)</td>
</tr>
<tr>
<td>H</td>
<td>10.6 (7.7-13.6)</td>
<td>10.6 (7.6-13.6)</td>
</tr>
<tr>
<td>I</td>
<td>8.1 (6.0-10.4)</td>
<td>8.1 (6.0-10.5)</td>
</tr>
<tr>
<td>J</td>
<td>6.3 (4.4-8.6)</td>
<td>6.3 (4.3-8.6)</td>
</tr>
<tr>
<td>K</td>
<td>5.1 (3.7-6.6)</td>
<td>5.1 (3.6-6.6)</td>
</tr>
<tr>
<td>L</td>
<td>4.8 (3.4-6.2)</td>
<td>4.8 (3.5-6.2)</td>
</tr>
<tr>
<td>M</td>
<td>4.1 (2.8-5.3)</td>
<td>4.1 (2.9-5.3)</td>
</tr>
<tr>
<td>N</td>
<td>2.8 (1.8-3.9)</td>
<td>2.8 (1.9-3.9)</td>
</tr>
<tr>
<td>O</td>
<td>1.3 (0.8-1.9)</td>
<td>1.3 (0.9-1.9)</td>
</tr>
<tr>
<td>P</td>
<td>1.1 (0.7-1.6)</td>
<td>1.1 (0.7-1.6)</td>
</tr>
</tbody>
</table>
Figure 6: Haplotype network generated using the median-joining algorithm in Network, based on a 351 bp fragment of control region corresponding to sites 15,704-16,054 of the Equus ferus mitogenome (AY584828). Coloured nodes represent sampled haplotypes (size relative to frequency), while black nodes represent unsampled intermediate haplotypes. Sequence IDs are listed in Table S3.
Glyptodon

Posterior support for clades obtained from Bayesian analyses under different calibration schemes were largely comparable (except in one case: see below), so only the clade support values obtained from the analysis constrained to 76.2 mya is reported (Figure 7). Both BEAST and RAxML analyses confirm that Glyptodon is closely related to euphractine, tolypeutine and chlamyphorine armadillos to the exclusion of Dasypodinae (node M; MLB = 99, BPP = 1.0), thus rendering extant armadillos (Dasypodidae) paraphyletic with respect to Glyptodontidae (Figure 7). However, while we recover good support for a clade comprising Tolypeutinae and Chlamyphorinae (node O; MLB = 87%, BPP = 1.0), the relationship of this combined clade relative to Glyptodon and Euphractinae is uncertain. A clade comprising Glyptodontidae and Euphractinae to the exclusion of Tolypeutinae and Chlamyphorinae is favoured by Bayesian analyses when the diversification of Xenarthra is constrained to 83.5 mya, although only weakly (BPP = 0.66). However, when the age constraint on Xenarthra is restricted (as well as in maximum likelihood analyses), a clade comprising Chlamyphorinae, Euphractinae and Tolypeutinae to the exclusion of Glyptodon is preferred, although again only weakly (node N; MLB = 52%, BPP 76.2 mya = 0.57, BPP 70.06 mya = 0.75). Otherwise, relationships among Xenarthrans are consistent with previous phylogenetic studies (e.g. Delsuc et al., 2012; Greenwood et al., 2001; Hoss et al., 1996).
Figure 7: Phylogeny of xenarthrans. Topology and branch lengths were estimated using BEAST, with a maximum bound of 76.2 mya on the root (node A). Scale is in millions of years before the present. Node bars represent the 95% Highest Posterior Density (HDP) of age estimates. Support values (Bayesian Posterior Probability / Maximum Likelihood Bootstrap) are given for nodes that did not receive maximum support in both analyses (1.0 / 100). Node ages estimated under all calibration schemes are listed in Table 5. Subfamily names are listed as for Delsuc et al. (2012). Extinct taxa highlighted in red. *Glyptodon* in bold.
Table 5: Mean node ages (and 95\% highest posterior densities) for all nodes in Figure 7, as estimated using BEAST according to four difference calibration schemes (see main text for details). Nodes are listed as they appear in Figure 5, with the following exception: when Xenarthra is constrained to <83.5 mya, node M is the divergence between Tolypeutinae+Chlamyphorinae and Glyptodon+Euphractinae, while node R is the divergence between Glyptodon and Euphractinae (see main text).

<table>
<thead>
<tr>
<th>Node</th>
<th>Node age (mya)</th>
<th>Xenarthra <70.6 mya</th>
<th>Xenarthra <76.2 mya</th>
<th>Xenarthra <83.5 mya</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>67.0 (62.6-70.1)</td>
<td>72.3 (65.3-76.2)</td>
<td>78.5 (69.6-83.5)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>60.2 (50.8-68.9)</td>
<td>65.6 (55.1-75.0)</td>
<td>71.9 (60.4-82.4)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>42.0 (32.3-52.5)</td>
<td>45.8 (34.5-56.3)</td>
<td>50.3 (37.8-61.3)</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>17.0 (10.3-23.6)</td>
<td>18.3 (11.3-24.1)</td>
<td>19.9 (12.7-27.1)</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>31.7 (24.8-39.0)</td>
<td>34.1 (26.3-41.5)</td>
<td>36.8 (28.4-45.0)</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>23.4 (16.1-31.5)</td>
<td>25.1 (17.1-33.4)</td>
<td>27.2 (18.2-35.6)</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>5.8 (2.9-9.1)</td>
<td>6.2 (3.1-9.5)</td>
<td>6.6 (3.3-10.0)</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>26.9 (19.5-33.9)</td>
<td>29.0 (21.5-36.6)</td>
<td>31.4 (22.8-39.1)</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>19.8 (13.5-26.1)</td>
<td>21.5 (14.9-27.9)</td>
<td>23.4 (16.2-30.2)</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>2.7 (1.3-4.2)</td>
<td>2.8 (1.4-4.4)</td>
<td>3.0 (1.6-4.7)</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>47.6 (41.6-53.8)</td>
<td>49.5 (43.0-56.3)</td>
<td>52.73 (44.3-59.2)</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>10.2 (5.6-15.3)</td>
<td>10.8 (6.2-15.8)</td>
<td>11.5 (6.9-16.7)</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>38.5 (36.0-42.5)</td>
<td>39.1 (36.0-44.0)</td>
<td>41.0 (36-45.8)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>34.1 (30.1-38.2)</td>
<td>34.7 (30.4-39.2)</td>
<td>34.1 (26.9-40.5)</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>30.5 (26.0-36.3)</td>
<td>32.0 (26.3-38.1)</td>
<td>27.3 (20.5-34.2)</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>24.3 (18.5-30.8)</td>
<td>25.6 (19.3-32.5)</td>
<td>21.7 (15.3-28.1)</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>19.2 (13.0-25.5)</td>
<td>20.3 (14.0-26.7)</td>
<td>22.4 (15.4-29.9)</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>19.7 (13.1-26.5)</td>
<td>20.9 (14.2-28.5)</td>
<td>37.7 (36.0-40.1)</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>7.5 (4.6-10.7)</td>
<td>7.8 (5.0-11.1)</td>
<td>8.5 (5.4-11.8)</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>5.2 (2.8-7.8)</td>
<td>5.5 (3.0-8.1)</td>
<td>5.9 (3.3-8.6)</td>
<td></td>
</tr>
</tbody>
</table>
Our results suggest that the ancestor of Glyptodontidae diverged from its nearest living ancestor around 40 mya (Figure 7; Table 5). In addition, the inclusion of *Glyptodon* in our analyses pushes back the age of Cingulata (node K) by over five million years compared to previous molecular dating studies (see Delsuc et al., 2012). In contrast, we show that the inclusion of *Glyptodon* as a calibration has relatively little effect on the estimation of more recent divergences within Cingulata, or on divergences within Folivora (sloths) or Vermilingua (anteaters), compared to previously published estimates. Finally, we demonstrate that the maximum constraint placed on the root of the xenarthran phylogeny has a large effect on the mean age of many nodes, particularly those close to the root.

Discussion

The ancient DNA data presented in this study strongly support previous palaeontological hypotheses regarding the evolution of both *Hippidion* and *Glyptodon*. We demonstrate that *Hippidion* is distinct from *Equus* and is not closely allied with *Equus ferus* or the New World stilt-legged horses. This result is consistent with observations from the fossil record but contrary to the conclusions of previous ancient DNA studies. The conflict between our results and those of previous ancient DNA studies appears to be caused mainly by a change in the root position of the phylogeny: re-rooting phylogenies from previous studies makes them largely compatible with the topology in Figure 3. Previous studies focused predominantly on relatively short, quickly evolving mitochondrial control region sequences. This likely made estimating the root position from outgroup sequences difficult, since horses
diverged from their nearest living relatives – tapirs and rhinos – over 50 mya (Figure 4). In the present study we have access to additional data from more slowly evolving mitochondrial regions making it straightforward to align distant outgroups and confidently determine the root position (i.e. between *Hippidion* and *Equus*). Further, the inclusion of outgroup taxa has the advantage of allowing the use of additional fossil calibrations (e.g. the earliest unequivocal hippomorph: *Hyracotherium*), which were not implemented in previous ancient DNA studies focusing on *Hippidion*. Using these calibrations, we found that the divergence between *Hippidion* and *Equus* occurred much too early to have resulted from allopatric speciation following the dispersal of *Hippidion* ancestors into South America during the Great American Interchange (~3 mya), as suggested by Orlando et al. (2009). This outcome is consistent regardless of when we set the upper limit on the early diversification of perissodactyls, or whether we place a constraint on the temporal origin of *Hippidion* (Table 4). Instead, our results are fully consistent with a North American origin of the *Hippidion* lineage during the Late Miocene as part of a radiation of pliohippine horses, as suggested by some interpretations of the fossil record (Prado and Alberdi, 1996). Consequently, *Hippidion* would already have existed as a distinct lineage at the time of the Great American Interchange, and must subsequently have become extinct in North America following dispersal into South America. This result should encourage investigation of the North American fossil record for relatives of *Hippidion*.

While the *Hippidion* sequence data presented in this study largely resolve the relationship between *Hippidion* and *Equus*, our results raise additional questions with regard to the relationship among taxa within *Hippidion*. Three morphologically distinct species are recognised from the Pliocene/Pleistocene fossil record (Alberdi
and Prado, 1993): *Hippidion saldiasi*, *Hippdion principale*, and *Hippidion devillei*. In contrast, previous ancient DNA studies only identified two major mitochondrial clades sufficiently distinct to be assigned species status (Orlando et al., 2009): one comprising *H. devillei* samples from Peru, and another comprising both *H. saldiasi* individuals from Chile and an *H. principale* individual from Argentina (originally published in Weinstock et al., 2005). Orlando et al. (2009) suggested that this mitochondrial dichotomy (see Figure 3) might represent a specialised high-altitude species (*H. devillei*) and a more geographically widespread morphologically plastic species (*H. principale/saldiasi*). However, our *Hippidion* sample represents a third equally distinct mitochondrial lineage, which is inconsistent with Orlando et al. (2009)’s interpretation. The most parsimonious explanation for our result is that the *Hippidion* sequence in the present study represents the authentic mitochondrial lineage of *H. principale*, and the *H. principale* sequence published by Weinstock et al. (2005) represents either a misidentified *H. saldiasi* individual or an instance of mitochondrial introgression from *H. saldiasi* into *H. principale*. An alternative explanation is that our *Hippidion* sample represents a previously unrecognised species, although there is little palaeontological evidence for an additional *Hippidion* taxon (Alberdi and Prado, 1993). Unfortunately, the DNA that we have sequenced was isolated from samples taken from a disarticulated jaw of a juvenile individual, making it challenging to unequivocally diagnose to species level based on morphology. Consequently, additional sequencing data from positively identified samples will be required to resolve this issue. It is clear that much remains to be determined about the evolution and distribution of horses in South America.
Mitochondrial sequence data obtained from *Glyptodon* in the present study provide strong support for the paraphyly of extant armadillos with respect to glyptodontids. Several recent palaeontological studies have tentatively suggested a close relationship between glyptodontids and euphractine armadillos, based on several morphological characters (Billet et al., 2011; Gaudin and Wible, 2006). While BEAST analyses recover a topology consistent with this hypothesis when the timescale for xenarthran diversification is relaxed to the last 83.5 million years, further restricting this constraint on the root results in Glyptodon falling outside of a clade of non-dasypodine armadillos. However, in either case statistical support is weak: analyses in the present study ultimately lack the resolution to determine the precise affinity of Glyptodontidae within Cingulata. This may simply be due to a lack of comparative data. Only a few mitochondrial genes are available for tolypeutine, chlamyphorine and euphractine armadillos in comparison to the largely complete mitogenome we have assembled for *Glyptodon*. Thus, it is possible that sequencing additional genes from extant species will provide sufficient information to further refine the phylogenetic position of Glyptodontidae in future analyses.

Including *Glyptodon* in our phylogeny allowed us to use the presence of glyptodontids in the late Eocene (Simpson, 1948) as an additional fossil constraint for molecular dating. However, while constraining the temporal origin of *Glyptodon* resulted in slightly older estimates for several nodes compared to previous studies (e.g. Delsuc et al., 2012), the restriction placed on the maximum age of Xenarthra had a larger effect overall (Table 5). Consequently, caution should be exercised when calibrating the root of Xenarthra, especially as placing an objective maximum bound on this node is difficult due to uncertainty surrounding the geographical origin of
early xenarthrans (Rose, 2006). Glyptodon may serve as a more informative calibration in the future if putative glyptodontid remains from the Late Palaeocene (Cifelli, 1983) can be positively identified (see Bergqvist and Oliveira, 1995).

Ultimately, the present study has largely resolved the phylogenetic affinities of two elements of the extinct South American megafauna: *Hippidion* and *Glyptodon*. Further, it has helped to clarify the geographical and temporal origin of *Hippidion*, although details concerning the diversification of *Hippidion* within South America remain uncertain. Using hybridisation enrichment and high-throughput sequencing, quality DNA sequence data can now be obtained for large numbers of samples in a cost-effective manner, even for relatively old sites with poor potential for DNA preservation (e.g. the Luján Formation), making broad surveys of past diversity feasible. This approach will permit the evolution of *Hippidion* to be further clarified in the future. Further, hybridisation enrichment and high-throughput sequencing will allow ancient DNA analysis of taxa that have proven recalcitrant to traditional sequencing methods. For example, future studies may finally be able to unequivocally resolve the relationships of the enigmatic South American meridiungulates (e.g. *Macrauchenia, Toxodon*). This would have important implications for our understanding of the evolution and distribution of early placental mammals.
References

MacFadden, B.J., 2013. Dispersal of Pleistocene Equus (Family Equidae) into South America and calibration of GABI 3 based on evidence from Tarija, Bolivia. PLoS ONE 8, e59277.

duck (*Pachyanas chathamica*) and resolves divergence times for New Zealand and sub-Antarctic brown teals. Mol Phylogenet Evol 70, 420-428.

Supplementary Information

Table S1: Mitogenome sequences analysed alongside our new *Hippidion* mitogenome sequence.

<table>
<thead>
<tr>
<th>Species</th>
<th>Common name</th>
<th>Accession number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceratotherium simum</td>
<td>White rhinoceros</td>
<td>NC_001808</td>
</tr>
<tr>
<td>Coelodonta antiquitatis</td>
<td>Woolly rhinoceros</td>
<td>NC_012681</td>
</tr>
<tr>
<td>Dicerorhinus sumatrensis</td>
<td>Sumatran rhinoceros</td>
<td>NC_012684</td>
</tr>
<tr>
<td>Diceros bicornis</td>
<td>Black rhinoceros</td>
<td>NC_012682</td>
</tr>
<tr>
<td>Equus quagga</td>
<td>Plains zebra</td>
<td>JX312721</td>
</tr>
<tr>
<td>Equus ferus</td>
<td>Wild horse</td>
<td>AY584828</td>
</tr>
<tr>
<td>Equus grevyi</td>
<td>Grévy's zebra</td>
<td>JX312725</td>
</tr>
<tr>
<td>Equus hemionus kulan</td>
<td>Turkmenian kulan</td>
<td>JX312728</td>
</tr>
<tr>
<td>Equus hemionus onager</td>
<td>Persian onager</td>
<td>JX312730</td>
</tr>
<tr>
<td>Equus kiang</td>
<td>Kiang</td>
<td>JX312731</td>
</tr>
<tr>
<td>Equus ovodovi</td>
<td>"Sussemione" horse</td>
<td>JX312734</td>
</tr>
<tr>
<td>Equus NWSL</td>
<td>New World stilt-legged horse</td>
<td>JX312727</td>
</tr>
<tr>
<td>Rhinoceros sondaicus</td>
<td>Javan rhinoceros</td>
<td>NC_012683</td>
</tr>
<tr>
<td>Rhinoceros unicornis</td>
<td>Indian rhinoceros</td>
<td>NC_001779</td>
</tr>
<tr>
<td>Tapirus indicus</td>
<td>Malayan tapir</td>
<td>NC_023838</td>
</tr>
</tbody>
</table>

Table S2: Partitioning schemes and substitution models determined using PartitionFinder for perissodactyl dataset, see Table S2.

<table>
<thead>
<tr>
<th>Program</th>
<th>Partition number</th>
<th>Composition</th>
<th>Substitution model</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEAST</td>
<td>1</td>
<td>ATP6_1, CYTB_1, ND1_1, ND3_1, ND4L_1, ND4_1, ND_5_1, ND6_2</td>
<td>GTR+I+G</td>
</tr>
<tr>
<td>BEAST</td>
<td>2</td>
<td>12S_loops, 16S_loops, ATP8_1, ATP8_2, ND2_1, ND6_1, tRNA_loops</td>
<td>TrN+I+G</td>
</tr>
<tr>
<td>BEAST</td>
<td>3</td>
<td>COII_1, COI_1, COI_1</td>
<td></td>
</tr>
<tr>
<td>BEAST</td>
<td>4</td>
<td>ATP6_2, COII_2, CYTB_2, ND1_2, ND2_2, ND3_2, ND4L_2, ND4_2, ND5_2</td>
<td>TrNef+I</td>
</tr>
<tr>
<td>BEAST</td>
<td>5</td>
<td>COII_2, COII_2</td>
<td></td>
</tr>
<tr>
<td>BEAST</td>
<td>6</td>
<td>ATP6_3, ATP8_3, COII_3, COI_3, COI_3, CYTB_3, ND1_3, ND2_3, ND3_3, ND4L_3, ND4_3, ND5_3, ND6_3</td>
<td>F81+G</td>
</tr>
<tr>
<td>BEAST</td>
<td>7</td>
<td>12S_stems, 16S_stems, tRNA_stems</td>
<td>HKY+I+G</td>
</tr>
<tr>
<td>RAxML</td>
<td>1</td>
<td>ATP6_1, ATP8_2, CYTB_1, ND1_1, ND3_1, ND4L_1, ND4_1, ND5_1, ND6_1, ND6_2</td>
<td>GTR+G</td>
</tr>
<tr>
<td>RAxML</td>
<td>2</td>
<td>12S_loops, 16S_loops, ATP8_1, ND2_1, tRNA_loops</td>
<td>GTR+G</td>
</tr>
<tr>
<td>RAxML</td>
<td>3</td>
<td>12S_stems, 16S_stems, COII_1, COII_1, COI_1, tRNA_stems</td>
<td>GTR+G</td>
</tr>
<tr>
<td>RAxML</td>
<td>4</td>
<td>ATP6_2, COII_2, COII_2, COI_2, CYTB_2, ND1_2, ND3_2</td>
<td>GTR+G</td>
</tr>
<tr>
<td>Haplotypes</td>
<td>Species</td>
<td>Accession numbers</td>
<td>Original publication</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------</td>
<td>--</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>Equus ferus</td>
<td>AY584828</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Hippidion sp.</td>
<td>-</td>
<td>This study</td>
</tr>
<tr>
<td>3</td>
<td>Hippidion devillei</td>
<td>GQ324599</td>
<td>(Orlando et al., 2009)</td>
</tr>
<tr>
<td>4</td>
<td>Hippidion devillei</td>
<td>GQ324601</td>
<td>(Orlando et al., 2009)</td>
</tr>
<tr>
<td>5</td>
<td>Hippidion devillei</td>
<td>GQ324598</td>
<td>(Orlando et al., 2009)</td>
</tr>
<tr>
<td>6</td>
<td>Hippidion devillei</td>
<td>GQ324600</td>
<td>(Orlando et al., 2009)</td>
</tr>
<tr>
<td>7</td>
<td>Hippidion principale</td>
<td>DQ007562</td>
<td>(Weinstock et al., 2005)</td>
</tr>
<tr>
<td>8</td>
<td>Hippidion saldiasi</td>
<td>GQ324593, GQ324594, GQ324595</td>
<td>(Orlando et al., 2009)</td>
</tr>
<tr>
<td>9</td>
<td>Hippidion saldiasi</td>
<td>DQ007563, DQ007564, GQ324597</td>
<td>(Orlando et al., 2009; Weinstock et al., 2005)</td>
</tr>
<tr>
<td>10</td>
<td>Hippidion saldiasi</td>
<td>DQ007566</td>
<td>(Weinstock et al., 2005)</td>
</tr>
<tr>
<td>11</td>
<td>Hippidion saldiasi</td>
<td>DQ007560</td>
<td>(Weinstock et al., 2005)</td>
</tr>
<tr>
<td>12</td>
<td>Hippidion saldiasi</td>
<td>GQ324596</td>
<td>(Orlando et al., 2009)</td>
</tr>
<tr>
<td>13</td>
<td>Hippidion saldiasi</td>
<td>DQ007561</td>
<td>(Weinstock et al., 2005)</td>
</tr>
<tr>
<td>14</td>
<td>Hippidion saldiasi</td>
<td>EU030679</td>
<td>(Orlando et al., 2008)</td>
</tr>
</tbody>
</table>

Table S4: Mitochondrial sequences analysed alongside our new Glyptodon mitogenome sequence.

<table>
<thead>
<tr>
<th>Species</th>
<th>Common name</th>
<th>Locus</th>
<th>Accession number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bradypus torquatus</td>
<td>Maned sloth</td>
<td>12S, 16S, COI, CytB</td>
<td>EF405918, EU301715, HM352900, HM352908</td>
</tr>
<tr>
<td>Bradypus tridactylus</td>
<td>Pale-throated sloth</td>
<td>Mitogenome</td>
<td>AY960979</td>
</tr>
<tr>
<td>Bradypus variegatus</td>
<td>Brown-throated sloth</td>
<td>12S, 16S, ND1, CytB</td>
<td>EF405916, Z48938, AB011218, AF232013</td>
</tr>
<tr>
<td>Cabassous unicinctus</td>
<td>Southern naked-tailed armadillo</td>
<td>12S, 16S, ND1, COI, CytB</td>
<td>AJ278151, JQ627261, AB011217, JQ627360, AF232016</td>
</tr>
<tr>
<td>Calyptophractus retusus</td>
<td>Greater fairy armadillo</td>
<td>12S, ND1</td>
<td>FR821713, FR821711</td>
</tr>
<tr>
<td>Chaetophractus villosus</td>
<td>Big hairy armadillo</td>
<td>12S, 16S, ND1</td>
<td>AY012096, AF069534, AJ505835</td>
</tr>
<tr>
<td>Species</td>
<td>Common Name</td>
<td>Mitogenome Location</td>
<td>Substitution Model</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------------------------</td>
<td>----------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Chlamyphorus truncatus</td>
<td>Pink fairy armadillo</td>
<td>12S ND1</td>
<td>FR821712 FR821710</td>
</tr>
<tr>
<td>Choleopus hoffmani</td>
<td>Hoffman's two-toed sloth</td>
<td>12S COI</td>
<td>AY012093 HQ186765</td>
</tr>
<tr>
<td>Choloepus didactylus</td>
<td>Linnaeus's two-toed sloth</td>
<td>Mitogenome</td>
<td>AY960980</td>
</tr>
<tr>
<td>Cyclopes didactylus</td>
<td>Silky anteater</td>
<td>12S ND1</td>
<td>FR821712 FR821710</td>
</tr>
<tr>
<td>Dasypus kappleri</td>
<td>Great long-nosed armadillo</td>
<td>12S ND1</td>
<td>AY057981 AJ505832</td>
</tr>
<tr>
<td>Dasypus novemcinctus</td>
<td>Nine-banded armadillo</td>
<td>Mitogenome</td>
<td>NC_001821</td>
</tr>
<tr>
<td>Euphractes sexcinctus</td>
<td>Six-banded armadillo</td>
<td>12S 16S ND1 COI CytB</td>
<td>AY012095 AJ011129</td>
</tr>
<tr>
<td>Mylophorus didactylus</td>
<td>Silky anteater</td>
<td>12S 16S CytB</td>
<td>Z48943 Z48944 AF232014</td>
</tr>
<tr>
<td>Myrmecophaga tridactyla</td>
<td>Giant anteater</td>
<td>12S 16S ND1 CytB</td>
<td>AY012098 EF405898</td>
</tr>
<tr>
<td>Nothrotheriops shastensis</td>
<td>Southern tamandua</td>
<td>Mitogenome</td>
<td>AY353076 AF232015</td>
</tr>
<tr>
<td>Priodontes maximus</td>
<td>Giant armadillo</td>
<td>12S ND1</td>
<td>AY505831 AJ505838</td>
</tr>
<tr>
<td>Tamandua tetradactyla</td>
<td>Southern tamandua</td>
<td>Mitogenome</td>
<td>AY886758</td>
</tr>
<tr>
<td>Tolypeutes matacus</td>
<td>Southern three-banded armadillo</td>
<td>12S ND1</td>
<td>AY505831 AJ505837</td>
</tr>
<tr>
<td>Zaedyus pichiy</td>
<td>Pichi</td>
<td>12S ND1</td>
<td>FR821714 AJ505836</td>
</tr>
</tbody>
</table>

Table S5: Partitioning schemes and substitution models determined using PartitionFinder for xerarthran dataset, see Table S5.
<table>
<thead>
<tr>
<th>RAxML</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RAxML</td>
<td>2</td>
<td>12S_stems, 16S_stems, COII_1, COI_1, tRNA_stems</td>
<td>GTR+G</td>
<td></td>
</tr>
<tr>
<td>RAxML</td>
<td>3</td>
<td>12S_loops, 16S_loops, ATP8_1, ND6_2, tRNA_loops</td>
<td>GTR+G</td>
<td></td>
</tr>
<tr>
<td>RAxML</td>
<td>4</td>
<td>ATP6_2, COII_2, CYTB_2, ND1_2, ND2_2, ND3_2, ND4L_2, ND4_2, ND5_2</td>
<td>GTR+G</td>
<td></td>
</tr>
<tr>
<td>RAxML</td>
<td>5</td>
<td>COII_2, COI_2</td>
<td>GTR+G</td>
<td></td>
</tr>
<tr>
<td>RAxML</td>
<td>6</td>
<td>ATP6_3, ATP8_3, COII_3, COI_3, COI_3, CYTB_3, ND1_3, ND2_3, ND3_3, ND4L_3, ND4_3, ND5_3, ND6_3</td>
<td>GTR+G</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 8:

General discussion and concluding remarks
CHAPTER 8: General discussion and concluding remarks

Summary, synthesis and significance

Molecular phylogenies are an invaluable tool for biogeographical hypothesis testing (Avise 2000; Crisp, et al. 2011), allowing the relationships among taxa to be confidently inferred and the timescale of their evolution to be estimated. However, many biogeographic hypotheses have not been extensively evaluated in a phylogenetic context due to difficulties associated with obtaining sufficient nucleotide sequence data to construct an adequately resolved phylogeny. Previously, major obstacles included the sizeable amount of labour and expense involved in generating large quantities of sequence data, and (in cases where key species are extinct) challenges associated with isolating and sequencing DNA from sub-fossil remains. However, the recent advent of high-throughput sequencing has revolutionised the collection of nucleotide sequence data, greatly decreasing the costs associated with generating large datasets (van Dijk, et al. 2014). Further, combining high-throughput sequencing with targeted capture procedures such as hybridisation enrichment can allow sequence data to be obtained even from highly degraded remains of recently extinct species (Knapp and Hofreiter 2010). The primary aim of the work presented in this thesis was to explore the use of these new techniques for answering longstanding biogeographic questions concerning the evolution and origin of the southern hemisphere fauna, thereby also identifying patterns and processes that may further increase our understanding of both evolution and taxon distributions.
Chapter 2 comprised a comprehensive reconstruction of the evolution of modern marsupials. I used a combination of sequencing strategies, focusing mainly on long-range PCR followed by high-throughput sequencing, to obtain 69 novel mitochondrial genomes (mitogenomes): more than tripling the number of marsupial species for which mitogenomes were available. By combining these new data with previously published sequences, I was able to reconstruct a well-resolved phylogeny comprising 58% of extant species and 97% of extant genera. I used this phylogeny as a framework to analyse changes in habitat preference of marsupials throughout their evolution, and investigate the colonisation of New Guinea and Wallacea from Australia. My results revealed a number of concerted dispersal events occurring earlier than previously reported, suggesting land connection between Australia and a newly emergent New Guinea during the Middle Miocene.

In Chapter 3, I aimed to test the hypothesis that vicariance was the primary driver of the modern distribution of palaeognathous birds. This required me to sequence ancient DNA from the extinct Madagascan elephant birds, for which the long-range PCR strategy employed in Chapter 2 would be inadequate due to the poor preservation of available elephant bird specimens. Consequently, I adapted a hybridisation enrichment strategy to target bird mitogenome sequences. This allowed me to generate near-complete mitogenomes for two elephant bird species. Using these new data I was able to confidently resolve the phylogenetic position of the elephant birds for the first time, revealing that completely unexpectedly their closest living relative is the kiwi from New Zealand. This result led me to reject the traditional hypothesis of Gondwanan vicariance as the primary determinant of modern palaeognath distributions in favour of flighted dispersal. This finding
stimulated the development of a number of novel hypotheses about the timing, drivers and fossil record of palaeognath evolution. The hybridisation enrichment procedure presented in Chapter 3 was key in obtaining data for the remaining chapters of this thesis (4–7).

Chapter 4 involved reconstructing the evolutionary history of New Zealand’s endemic acanthisittid wrens, in order to test the hypothesis that the entirety of Zealandia was completely submerged during the Late Oligocene/earliest Miocene. I demonstrated that the wrens likely began diversifying prior to this period of submergence, strongly suggesting the persistence of land in Zealandia throughout the Cenozoic. However, the strength of this conclusion depends partly on assumptions made about the evolutionary timescale of evolution for birds as a whole, which remains contentious (see Appendix).

Chapter 5 and 6 each examined the origins of a member of the extinct endemic avifauna from the Chatham Islands archipelago: the Chatham Island duck (Anas chathamica, sensu Chapter 5) and the Chatham Islands parrot (Nestor chathamensis, sensu Chapter 6), respectively. I demonstrated that the closest living relative of each species resides in the New Zealand region and that the divergence of each lineage closely follows the emergence of the Chatham Islands. These results presumably reflect allopatric speciation after dispersal from mainland New Zealand to the Chatham Islands archipelago.

In Chapter 7, I retrieved the first ancient DNA from a glyptodontid – a giant extinct relative of extant armadillos – and confirmed previous palaeontological (morphological) hypotheses that glyptodontids are more closely related to extant
euphractine armadillos (e.g. the six-banded armadillos) than to dasypodines (e.g. the nine-banded and long-nosed armadillos). This allowed me to use glyptodontid fossils to recalibrate the evolutionary timescale for Xenarthra, revealing that diversity within Cingulata (the armadillos and their relatives) may be older than previous estimates had suggested. Also in Chapter 7, I greatly expanded upon available sequence data for *Hippidion*, an extinct endemic South American horse. Contrary to palaeontological hypotheses, previous ancient DNA studies had suggested that *Hippidion* was nested within *Equus* and closely related to an extinct taxon from North America (New World stilt-legged horses), possibly diverging only 4 mya (temporally close to the formation of the Isthmus of Panama). However, with new data I demonstrated that *Hippidion* is in fact a distinct lineage from *Equus* and is likely substantially older than 4 mya, reconciling genetic results with previous palaeontological studies.

Ultimately, the research presented in this thesis contributes substantially to our understanding of the evolution of several southern hemisphere bird and mammal taxa. Clarifying the phylogenetic affinities of these taxa allowed me to test several long-standing hypotheses: firstly, about the relative contributions of vicariance and dispersal to modern faunal composition (Chapters 2, 3 and 4), and secondly about periods of parallel faunal dispersal and allopatric speciation (Chapters 2, 3 5, 6 and 7). Overall, my results de-emphasise the role of vicariance in driving the divergence between modern bird and mammal groups. Among marsupials, my estimates for the divergence between the American and Australasian taxa (~69 mya; Chapter 2) substantially predated the final severance of land connection between these regions (34-41 mya; Lawver, et al. 2011). This result is further confirmed by fossil remains of
an “ameridelphian” marsupial from Australia (Beck 2012). Similarly, amongst birds I recovered little signal for Gondwanan vicariance in acanthisittids or nestorid parrots (Chapter 4), and in the case of ratites I found compelling evidence against a vicariant distribution (Chapter 3). This suggests a much more dynamic early evolutionary history of mammals and birds compared to traditional passive vicariant narratives, and implicates competitive exclusion and extinction as major drivers of modern faunal distributions rather than simply isolation. However, oceanic barriers clearly do play an important role in determining the distribution of mammals, as evidenced by biogeographic patterns resulting from the formation of the Isthmus of Panama ~3 mya (Chapter 7) and the ephemeral land connection occurring between Australia and New Guinea/Wallacea since the Miocene (Chapter 2). In contrast, long overwater “sweepstakes” dispersal events appear to be relatively frequent among birds: ducks and parrots arrived on the Chatham Islands (~850 km away from New Zealand, their nearest large landmass) soon after the archipelago’s emergence 2-3 mya (Chapters 5 and 6).

One of the main challenges I faced in performing the research presented in this thesis was sequencing and assembling mitogenomic data from sub-fossil remains of non-model organisms. The hybridisation enrichment and iterative mapping methodology developed throughout the latter chapters of this thesis (3 - 7) represents a rapid and cost-effective way of generating high-quality sequence under these conditions. Using a phylogenetically diverse mixture of bait molecules and flexible incubation conditions allowed me to capture target molecules from practically any bird or placental mammal species. Theoretically, arrays could just as easily be designed to target other groups (e.g. marsupials or squamates) for future
studies. Following sequencing, iterative read mapping allowed me to assemble near-complete mitochondrial genomes for organisms with no reference data (including from closely related species) by using information from previous rounds of mapping to gradually reduce the phylogenetic distance between the reference and the target. This combined hybridisation enrichment and mapping strategy will remain relevant and valuable for conducting future *de novo* sequencing projects on extinct species, helping to efficiently survey the extant and extinct diversity within a species or clade (e.g. potential cryptic diversity in acanthisittid wrens), and identifying the origin of morphologically non-diagnostic sub-fossil remains (e.g. small bones, bone fragments).

Most of the remainder of this final chapter highlights limitations I encountered over the course of the research undertaken for this thesis. Some of these limitations were inherent to the particular methodology that I used. However, others represent issues for the field of phylogenetics and biogeography more generally. Throughout, I suggest approaches that future studies might explore to overcome these limitations. Towards the end of this chapter I focus more on how the field of biogeography might expand to answer new and more fundamental questions, and identify some interesting biogeographical problems that have yet to receive due attention in the era of high-throughput sequencing.

Limitations of single loci

Due to the high information content of the mitogenome, phylogenies based on mitogenomic sequence data are generally well resolved (as illustrated throughout the
chapters of this thesis). This is crucial when testing a hypothesis that predicts certain relationships amongst a group of taxa. However, in order to test these hypotheses using mitochondrial DNA alone it must generally be assumed that the mitochondrial phylogeny is an accurate reflection of the true species phylogeny. In reality this is not necessarily the case: the inferred evolutionary history of a given locus may deviate from that of the species as a whole (Maddison 1997). Two phenomena that may cause this discordance are incomplete lineage sorting and introgressive hybridisation.

Incomplete lineage sorting may mislead phylogenetic analyses when ancestral polymorphism at a locus persists through multiple consecutive speciation events. However, genetic drift will eventually result in the monophyly of alleles at a locus within a population even if polymorphism was inherited from an ancestral species (Rosenberg 2002). Consequently, incomplete lineage sorting should largely only mislead inference of relationships among a group of taxa that diverged within a relatively short space of time. To illustrate, the common ancestor of all human mitochondrial lineages occurred approximately 99 to 148 kya (Poznik, et al. 2013). We can be quite confident that none of the mitochondrial polymorphism present in modern humans was present in the common ancestor of chimpanzees and humans, since independent evidence places that divergence at least 5 mya (Scally, et al. 2012). Therefore, no matter how the mitochondrial diversity present in humans today is sorted into hypothetical daughter species, phylogenies reconstructed from mitochondrial DNA should always recover monophyly of the human descendants with respect to the chimpanzee. In general, since mitochondrial diversity within a population is rarely observed to be older than several hundred thousand years (e.g. Hundertmark, et al. 2002; Edwards, et al. 2011; Poznik, et al. 2013; Arbeláez-Cortés,
et al. 2014; Barnett, et al. 2014), inference of relationships among taxa separated by intervals exceeding one million years should rarely be misled by incomplete sorting of mitochondrial lineages. Indeed, we frequently observe a high degree of congruence between reconstructions of the branching order among higher taxa based on mitochondrial and nuclear data (e.g. Reyes, et al. 2004).

Introgressive hybridisation is increasingly being detected among closely related species and is potentially implicated in discordance observed between mitochondrial and nuclear gene phylogenies in a range of taxa including hominins (Reich, et al. 2010), salamanders (Canestrelli, et al. 2014), bears (Kutschera, et al. 2014), hares (Melo-Ferreira, et al. 2014) and kangaroos (Phillips, et al. 2013). Among birds, ducks are exceptional in their propensity for hybridisation (e.g. Peters, et al. 2014). This is particularly true for the mallard (Anas platyrhynchos) and its close relatives (McCarthy 2006); mallards have been recorded hybridising with numerous congeneric species, members of species within closely related genera (e.g. the Muscovy duck; Cairina moschata), and even species from different anatid subfamilies (e.g. the Canada goose; Branta canadensis). In general, introgression should only occur when hybridisation produces fertile offspring that are not at a significant selective disadvantage relative to non-hybrid individuals. The likelihood of this occurring is expected to decrease with increasing phylogenetic distance as barriers to reproduction emerge. Concordantly, the hybrid offspring of the mallard and its more distant relatives are frequently sterile while progeny from phylogenetically closer crosses are more often fertile. For example, the mallard and the Muscovy duck (Cairina moschatus) appear to be separated by around 15 million years of independent evolution (see Chapter 5) and, though they can reproduce, their progeny
are sterile. Conversely, reproduction between the pintail (*Anas acuta*) and the mallard produces fertile young (Phillips 1915). The mallard and pintail apparently shared a common ancestor five million years ago (see Chapter 5), which while closer than the mallard and Muscovy duck is still comparable in terms of time to the divergence between humans and chimpanzees. Consequently, hybridisation can potentially affect reconstruction of relationships among more distantly related taxa than can incomplete lineage sorting.

When drawing conclusions about the evolution of species based exclusively on mitochondrial sequence data it is crucial that the potential influence of both incomplete lineage sorting and introgressive hybridisation is evaluated. In this thesis, the results of Chapters 6 and 7 are largely corroborated by additional evidence: the Chatham Islands parrot shares a number of derived traits with the kaka (*Nestor meridionalis*) that separate these taxa from the kea (*Nestor notabilis*) (see Chapter 6); previous morphological studies have grouped glyptodontids within the extant armadillo crown group (Billet, et al. 2011); and morphology supports the reciprocal monophyly of *Hippidion* and *Equus* (Prado and Alberdi 1996). However, results from the remaining chapters of this thesis (2 – 5) may have been misled by discordance between the mitochondrial phylogeny and the true species phylogeny, to varying degrees.

Among marsupials, at least one potential incidence of incomplete lineage sorting of nuclear alleles has previously been observed among kangaroos and wallabies (Phillips, et al. 2013). A potential instance of incomplete mitochondrial lineage sorting among marsupials can be identified from the analysis of combined
mitochondrial and nuclear data in Chapter 2 (see Chapter 2: Figure S1). The position of the western barred bandicoot (*Perameles bougainville*) is poorly supported, but it appears to be more closely related to the short-nosed bandicoots (*Isoodon*) than the remaining long-nosed bandicoots (*Perameles*). The bandicoot nuclear gene sequences used in Chapter 2 have been analysed in a previous study that found strong support for a monophyletic *Perameles* (Westerman, et al. 2012), suggesting that discordant phylogenetic signal in Chapter 2 arose from the mitochondrion. While Westerman et al. (2012) also included several mitochondrial genes in their analysis, the data were fewer than those included in Chapter 2 (2,300 bp versus ~10,000 bp), so any discordant mitochondrial signal might have been overwhelmed by the more numerous nuclear data. BLAST searches corroborate the phylogenetic results, suggesting that both the western barred bandicoot mitochondrial sequences from Chapter 2 and Westerman et al. (2012) are closer to sequences from short-nosed bandicoots (*Isoodon*) that to sequences from the eastern barred bandicoot (*Perameles gunnii*) or the long-nosed bandicoot (*Perameles nasuta*). The short internode (~670 ky) preceding the divergence of the western barred bandicoot lineage in Chapter 2 is consistent with incomplete sorting of mitochondrial lineages. However, it is also possible that ancestral introgression may have resulted in the discordance observed in the position of the western barred bandicoot. While, introgression and hybridisation can be difficult to distinguish (Meng and Kubatko 2009; Chung and Ané 2011), introgression has been observed in several marsupial species (Eldridge and Close 1992; Bee and Close 1993; Neaves, et al. 2010; Phillips, et al. 2013).

In Chapter 4, determining whether the acanthisittid wrens persisted in Zealandia throughout the Late Oligocene/earliest Miocene marine transgression
depended on estimating the age of mitochondrial diversity within the group. For this question, the relative order of divergence among acanthisittids was not of paramount importance. Further, unless the common ancestor of the wrens sampled in Chapter 4 possessed considerable mitochondrial diversity, the inferred divergence time between Lyall’s wren and the remaining sampled mitochondrial lineages is likely to be a reasonable approximation for the true age of the crown divergence. Given the rapid divergence between the bush wren, rifleman and stout-legged/rock wren ancestor, it is possible that incomplete lineage sorting has misled the relationships among these three lineages. While this would ultimately have a rather minor impact on our understanding of their initial radiation, it would have implications for the taxonomy of the group. If Xenicus (sensu Chapter 4) were not monophyletic the preferred taxonomic realignment would be to subsume the rock wren (Xenicus gilviventris) into Pachyplichas, leaving the bush wren as the monotypic member of Xenicus. However, there also remains the possibility that the close relationship inferred between the rock wren and stout-legged wren in Chapter 4 is the result of mitochondrial introgression into the ancestor of the stout-legged wren from an ancestor of the rock wren. This seems unlikely to have affected the branching order among acanthisittids, as it would require successful reproduction between two morphologically and ecologically distinct lineages that had been separated for over 10 million years.

The main results of Chapter 5 concern a group of species whose divergences are separated by short internodes: the most recent common ancestor of the New Zealand/sub-Antarctic teals occurs only ~280 kyr after the origin of the Chatham duck mitochondrial lineage, while the two sub-Antarctic teals diverge after only
another ~210 kyr. These rapid divergences may have led to incomplete lineage sorting, which could have misled reconstruction of the true relationships between these taxa. However, if only the relationships among the New Zealand/sub-Antarctic teals are affected then the biogeographic conclusion of Chapter 5 remains relatively unchanged: the Chatham duck arose from an ancestral New Zealand/sub-Antarctic teal species following the emergence of the Chatham Islands archipelago. A larger concern for Chapter 5 is the potential for mitochondrial introgression. It remains a possibility that the Chatham duck does not in fact truly form a clade with the New Zealand/sub-Antarctic teals, but instead represents a more phylogenetically distant lineage that captured the mitochondrial genome of the ancestral New Zealand/sub-Antarctic teal, or vice versa.

The results presented in Chapter 3 suggest that most of the divergences between major palaeognath lineages were separated by several million years. Most importantly for the main conclusion of Chapter 3, the common ancestor of the kiwi and elephant bird occurred at least five million years after the preceding node in the tree: the divergence between the ancestor of the kiwi and elephant bird and the ancestor of the emu and cassowary. Consequently, it is unlikely that the kiwi or elephant bird could have inherited polymorphism that was present in the most recent common ancestor of the kiwi/elephant bird lineage and emu/cassowary lineage. Multiple mitochondrial lineages would have had to persist in the kiwi/elephant bird stem lineage for at least five million years. Some of the internodes deeper in the palaeognath tree are shorter than the internode preceding the kiwi/elephant bird divergence, but signal in mitochondrial and nuclear datasets for the relevant nodes appears largely concordant (Phillips, et al. 2010; Haddrath and Baker 2012; Smith, et
al. 2013). The main exception to this concordance between data sources is conflict regarding the affinity of the rheas. However, neither data source provides high support for one position over another. Consequently, this potential discordance may be due, not to incomplete lineage sorting, but a lack of phylogenetic signal in the loci analysed.

Discordance arising from introgression, when it can be distinguished, may itself provide biogeographic information in some circumstances. This is because hybridisation can only occur where there is actual physical contact between organisms. Consequently, while unlikely due to the genetic distance involved, if the inferred relationship between the kiwi and elephant bird in Chapter 3 actually resulted from ancestral mitochondrial introgression, the biogeographic conclusion that flight was the primary mechanism of dispersal among palaeognaths would not be greatly affected. Introgression between the kiwi and elephant bird lineage would require contact between the two taxa. This could only occur if one or both of the lineages could fly, as New Zealand and Madagascar have not been connected by contiguous emergent land since the Cretaceous (Ali and Krause 2011).

Ultimately, when inferring relationships from a single locus there will always be a risk of discordance between the locus tree and the species tree. In some cases (e.g. Chapters 6 and 7) there may be independent support for a hypothesis that gives us greater confidence in the mitochondrial results. However, in other cases we must more carefully consider possible sources of error and our ability to adequately test a hypothesis with a given dataset. Despite these limitations, mitochondrial sequences remain valuable for both technical (e.g. high information content, minimal
recombination) and practical reasons (e.g. relative ease of sequencing from extinct species, conserved structure) (Rubinoff and Holland 2005; Zink and Barrowclough 2008). The conclusions presented in this thesis represent the most parsimonious interpretations of the results from each chapter, and at the very least will help to direct future studies.
Building better datasets

While mitochondrial sequences have been the workhorse of phylogenetics for decades, the limitations associated with phylogenetic inference from a single locus are driving the field towards datasets comprising many nuclear loci (e.g. Hackett, et al. 2008), or even whole genomes (e.g. Jarvis, et al. 2014). Large multi-locus datasets make it much easier to detect hybridisation and incomplete lineage sorting (e.g. Kutschera, et al. 2014). Consequently, they have much greater power for resolving certain phylogenetic questions, especially those concerning rapid radiations. This is obviously important for biogeographical hypothesis testing, and data from more loci is generally always desirable. However, one of the primary advantages of mitochondrial DNA is that it is a cost-effective source of data. This is especially true for ancient DNA from highly degraded remains where the initial concentration of endogenous DNA can be very low compared to exogenous bacterial or environmental background DNA. In this situation the higher copy-number of the mitogenome relative to the nuclear genome in a cell becomes invaluable.

Many of the chapters in this thesis focus on mitogenome sequences of extinct species that have been assembled from a total pool of only one to two million filtered high-throughput sequencing reads. The Illumina MiSeq platform – a relatively low-throughput next-generation machine – can generate tens of millions of reads per run (Loman, et al. 2012). This means that the sequencing cost for a single ancient mitogenome might be <US$100 following application of the hybridisation enrichment technique described in Chapters 3-7. In comparison, hundreds of millions of shotgun sequencing reads were required to retrieve a high-quality nuclear genome from an
ancient Denisovan hominin, despite relatively good preservation (Meyer, et al. 2012). From a more poorly preserved specimen, such as Orlando et al. (2013)’s Pleistocene horse, billions of reads may be necessary to get just a low-coverage whole genome sequence. Even using Illumina NextSeq and HiSeq 4000 platforms (higher-throughput, more cost-effective alternatives to the MiSeq and HiSeq 2500) this depth of sequencing represents a substantial investment of resources, with costs exceeding several thousand dollars ($US) per sample (Liu, et al. 2012). Whole-genome hybridisation enrichment techniques can reduce the depth of sequencing necessary for highly degraded samples (Carpenter, et al. 2013; Enk, et al. 2014). However, for the present, genome sequencing still remains an expensive proposition.

In addition to the cost of whole genome sequencing there are bioinformatic obstacles to obtaining usable data, especially when working with non-model organisms. Most of the research in this thesis focused on de novo sequencing, such that there was no available reference genome for the target species. De novo contig assembly of ancient DNA is a challenge due to low-endogenous content, nucleotide misincorporation and short fragment length (Rizzi, et al. 2012; Staats, et al. 2013). Consequently, many previous projects have instead identified target reads by attempting to align all reads to a reference sequence obtained from a closely related extant species (e.g. Green, et al. 2008; Enk, et al. 2014; Llamas, et al. 2014). However, in many cases there is no particularly close relative, meaning that aligned reads are largely restricted to the most conserved portions of the target region. Attempting to circumvent this limitation by relaxing the mapping stringency causes non-endogenous molecules to be incorporated into the consensus (Llamas, et al. 2014). Consequently, a proportion of endogenous reads must usually be discarded since they
cannot be confidently identified, with the size of this proportion being related to the divergence between the target and the reference. In order to address this problem, I developed an iterative mapping procedure whereby the genetic distance between the target and the reference is gradually decreased by incorporating information from previous rounds of mapping, eventually leading to a complete mitogenome sequence given sufficient sequencing depth. However, this process is likely to be much less effective and more computationally intensive for the nuclear genome, as the mitogenome is much more structurally conserved across distantly related taxa.

A limitation of genome-scale data for phylogenetics is the identification of orthologous loci (Fitch 2000; Gabaldon and Koonin 2013). Genes may be related to each other in two ways: orthology and paralogy (Fitch 1970). Orthologous genes are found in the genomes of different species and descended by speciation from a single gene in the genome of an ancestral species. Consequently, barring the effects of incomplete lineage sorting or introgression, a phylogeny reconstructed based on orthologous gene should reflect the phylogeny of the species. Conversely, paralogous genes result not from speciation, but from a duplication event in the genome of a single species. Paralogous gene sequences can therefore potentially mislead inference of the species phylogeny if the duplication event that created them occurred prior to the species divergences being inferred. While methods for detecting paralogous genes have been devised (e.g. Remm, et al. 2001; Wall, et al. 2003; Chen, et al. 2007), orthology of many remaining genes often cannot be confirmed and they must therefore be excluded from phylogenetic analyses. For example, in a recent phylogenomic study of birds, orthology could be confirmed for less than half of all protein-coding genes (Jarvis, et al. 2014). The necessity of discarding data in this
manner further reduces the cost-effectiveness of genome sequencing, both for extant and extinct taxa.

Currently, the most cost-effective approach to creating large nucleotide sequence datasets for phylogenetic inference would be to create a hybridisation enrichment array specifically targeting only known orthologous loci. Many orthologous nuclear exons have now been identified for birds and mammals (Douzery, et al. 2014; Jarvis, et al. 2014). An alternative to exons is non-coding ultraconserved elements (UCEs), for which orthologs have also been identified across a broad range of taxa (Dimitrieva and Bucher 2013). However, one problem with the UCE enrichment approach is that it relies on captured molecules overlapping a phylogenetically informative flanking region (Crawford, et al. 2012; McCormack, et al. 2012). This is unlikely to be efficient for ancient DNA where the average fragment length is often very short (< 100 bp). Exons may be preferable to UCEs in any case, as they may also carry some functional genotypic information that could be desirable in addition to the phylogenetic information. Whatever class of marker is chosen, a hybridisation enrichment array could be designed based on previously identified orthologs to target the number of loci and information content necessary to confidently resolve relationships among the taxa of interest (Capella-Gutierrez, et al. 2014). For example, more loci will be necessary when the possibility of incomplete lineage sorting or introgression is high, and either more loci or faster evolving loci will be necessary when the hypothesis concerns events in the relatively recent past.

As enrichment methods and bioinformatic tools become more advanced, genome-scale data from both extinct and extant taxa will become more viable for
phylogenetic inference. Currently however, sequencing whole genomes is a highly uneconomical approach to answering phylogenetic and biogeographic questions concerning extinct taxa. The most cost-effective strategy will be to use hybridisation enrichment to target an informative subset of the genome. The phylogenetically broad hybridisation array used in Chapters 3 – 7 could potentially be adapted to target a limited number of nuclear loci from species for which there is no reference data. By circumventing the limitations of single-locus phylogenetic inference we should be able to more accurately reconstruct the relationships among species, and therefore have greater confidence in biogeographic conclusions based on our results.
Inferring accurate evolutionary timescales

Thus far in this chapter I have identified potential pitfalls with using mitochondrial data to infer the relationships among species, and described how datasets may be improved in the future to mitigate this by including more characters and multiple loci. However, larger and more robust datasets may still result in incorrect reconstructions of evolutionary history if the models employed in their analysis are misspecified, which may occur when assumptions about the processes underlying the data are a poor reflection of reality. One area where model choice may have a major impact on the final results is molecular dating analyses. The research presented in this thesis highlights three interrelated factors that may substantially affect the estimation of divergence dates: model of molecular rate variation (Appendix), taxon sampling (Chapters 3, 7), and calibration choice (Chapters 3, 4, 5, 7; Appendix). Regardless of the size of the dataset, results and conclusions will be unreliable if these factors are incorrectly specified (e.g. Warnock, et al. 2012). This issue is non-trivial, as testing many biogeographical hypotheses requires an accurate estimate of the timescale of evolution in order to compare divergence times with the timing of geological or ecological events (e.g. Chapters 2, 4, 5, 6 and 7).

In the Appendix to this thesis, I demonstrated how a single modelling choice could substantially affect age estimates even when using a genome-scale dataset. A recent study of bird evolution included a molecular dating analysis of 1,156 “clock-like” orthologous nuclear loci (Jarvis, et al. 2014). This dataset was analysed using an autocorrelated rates relaxed clock model, which assumes that the rate along each branch is correlated with the rate of the preceding branch. Consequently, large
branch-wise rate changes are penalised. This can be justified when much of the variation in rate is determined by morphological or life-history traits, and these traits are largely conserved between parent and daughter lineages (Ho 2009). However, alternative models exist which do not make this assumption: under an uncorrelated model, the rate along a branch is drawn from a distribution that represents the rates across the phylogeny as a whole. When I reanalysed Jarvis et al. (2014)’s dataset using an uncorrelated model, mean node ages in many cases varied by over five million years (often exceeding 10% of total node depth) from ages estimated under a correlated model. Differences in dates of this magnitude can have a large effect on biogeographic conclusions (Chapter 4, Appendix). However, assumptions about the degree of rate correlation are not the only modelling choice that can affect age estimates.

A general assumption of molecular dating analyses is that date estimation is robust to taxon sampling. For example, the age of the common ancestor of humans and chimpanzees inferred from a large phylogeny of mammals should ideally be consistent whether or not sequence data from the mouse (Mus musculus) happens to also be included in the dataset. This assumption is vital as it is rarely possible to obtain sequence data from all taxa within a clade, especially for older groups that contain many extinct species beyond the typical limits of ancient DNA preservation (i.e. > 1 My). However, there is evidence that taxon sampling does in fact affect node age estimation (e.g. Linder, et al. 2005; Schulte 2013). In Chapter 3, I demonstrated that taxon sampling has a substantial impact on the inference of divergence dates among palaeognathous birds when using an uncorrelated relaxed clock model. When tinamous were included in the dataset, estimated divergence times amongst the
major palaeognath lineages became older (Chapter 3: Figure 2). Tinamous have previously been identified as having an exceptionally high molecular rate relative to other palaeognaths, suggesting that the different node age estimates in Chapter 3 resulted from inadequate modelling of rate heterogeneity. Indeed, Dornburg et al. (2012) demonstrated that using an uncorrelated relaxed clock can mislead rate estimation when there is a punctuated rate shift in one sub-clade, leading to underestimates of the molecular rate in more quickly evolving groups. This is consistent with the pattern observed in Chapter 3: an underestimated rate amongst tinamous would lead to overestimated branch lengths, in turn leading to overestimation of node ages immediately preceding the origin of tinamous.

A different class of clock model, the random local clock (Drummond and Suchard 2010), may provide a solution to some modelling problems caused by rate heterogeneity. The random local clock fits a number of strict (constant-rate) clock models to sub-clades on a phylogeny by placing discrete rate transitions at the stem of certain clades, with the number and timing of transitions co-estimated with the rates (rather than being fixed \textit{a priori}). For phylogenies where clade-specific rate changes are expected this model has been shown to outperform uncorrelated relaxed clock models (e.g. Dornburg, et al. 2012; Crisp, et al. 2014). However, Chapter 3 suggests that the assumptions of the random local clock model will be violated by the true distribution of rate variation among palaeognaths. In Chapter 3, I conclude that each of the six recent flightless palaeognath lineages evolved independently from a flighted ancestor, which may have been similar to modern tinamous (or the extinct Palaeocene/Eocene lithornithids) in many respects. Since evolutionary rate correlates with many life history traits (e.g. Gillooly, et al. 2005; Lanfear, et al. 2007),
the ancestors of flightless palaeognaths may have shared the same high molecular rate as tinamous. Consequently, it is likely that the difference in rates between the tinamous and the other palaeognaths is not due to punctuated molecular rate acceleration along the branch leading to tinamous but a convergent rate decrease along the branches leading to each modern ratite lineage. This distinction is important as it suggests that the internodes separating the major flightless groups should have a relatively high rate, and even the long stem branches leading to each modern crown group (along which the loss of flight presumably occurred) should have a somewhat higher rate than branches within the crown group. Current clock models cannot fully accommodate such extreme patterns of rate heterogeneity (Kitazoe, et al. 2007; Waddell 2008; Steiper and Seiffert 2012), although incorporating a priori information about the distribution of rate variation can in some cases compensate for this (Yoder and Yang 2000; Worobey, et al. 2014).

It is clear that misspecification of the clock model can have a large effect on inferred evolutionary timescales, and therefore affect conclusions about evolution and biogeography (Chapters 3 and 4; Appendix). Consequently, methods have been devised that attempt to select the most appropriate clock model by comparing the fit of different models to the inferred pattern of rate variation in the data (e.g. Lartillot and Philippe 2006; Baele, et al. 2012). However, these methods have several limitations. Firstly, model comparison methods can only determine the relative fit of models, meaning that even the best fitting candidate model may still be suboptimal (Duchêne, et al. 2014). Secondly, the inferred pattern of rate variation may vary depending on how the phylogeny is calibrated, which means different models may be preferred under different calibration schemes (Duchêne, et al. 2014). In practice
there are usually many plausible calibration schemes for a given dataset, potentially making it difficult to objectively determine the most appropriate clock model.

A common practice in phylogenetic studies is to employ node age constraints as calibrations (Benton and Donoghue 2007; Donoghue and Benton 2007; Ho 2007), which is also the approach I have used in this thesis. In a Bayesian framework node constraints are implemented as prior probability distributions, and it is subjectivity in the parameterisation of these distributions that largely contributes to uncertainty regarding the optimal calibration scheme for a given dataset. The minimum bound for the age of a node is generally set according to the oldest fossil occurrence of the clade defined by that node. Conversely, maximum bounds are exceedingly challenging to determine objectively as absence of a taxon is difficult to infer from the fossil record. Common approximations involve setting the maximum bound at the age of a preceding fossil-bearing layer from which the clade of interest is absent (stratigraphic bounding; Benton and Donoghue 2007), or in which the sister-taxon to the clade of interest is first observed (phylogenetic bracketing; Reisz and Müller 2004; Müller and Reisz 2005). However, there is considerable room for uncertainty and disagreement in these approaches to ascertaining maxima: misidentification, taphonomic bias or insufficient sampling may result in a false inference of absence. As a consequence, basing conclusions on results that are heavily dependent on choice of maximum age constraint is hazardous (see Appendix).

A further consideration for node constraints is the distribution of probability between the minimum and maximum bounds. Two commonly used distributions are uniform and lognormal. A uniform distribution assumes that the true node age is
equally likely to occur at any time between the minimum and the maximum bound. This is biologically unrealistic given what we know about the fossil record (Ho 2007). The fossil taxon used to set the minimum bound is unlikely to be the common ancestor of the clade and will as such have a 'ghost lineage' of unknown length connecting it to the true common ancestor. For example, the earliest known ostrich is *Struthio coppensi* from the early Miocene (Mourer-Chauviré, et al. 1996). However, other evidence suggests that the origin of the ostrich lineage likely occurred no later than the Eocene (see Chapter 3), meaning that there is at least 20-30 My separating the origin of ostriches and their first fossil appearance. As a consequence of ghost lineages, in most cases we expect a relatively low probability of the true node age immediately preceding the minimum bound. Similarly, we should also expect a relatively low probability of the node occurring during the period immediately following the maximum bound, assuming that the maximum bound has been set conservatively. As opposed to the uniform distribution, the lognormal distribution allows a low probability to be specified preceding the minimum bound and following the maximum bound of the prior distribution, and is perhaps more realistic as a result (Ho 2007). However, this comes at the cost of increased subjectivity, as appropriate values for the mean and variance of the lognormal distribution cannot be objectively determined. Selection of these values is non-trivial, as it can have large effects on the final age estimates (e.g. Warnock, et al. 2012).

As highlighted by the research in this thesis, and as discussed above, molecular dating is fraught with assumptions and choices that may have a large effect on inferred rates and dates. Consequently, in many cases the most rigorous approach to testing hypotheses concerning evolutionary timescales will be to explore the range of
biologically plausible scenarios rather than selecting a single set of assumptions. This may involve including/excluding potentially problematic taxa (e.g. Chapter 3), trying a number of different clock models (e.g. Appendix), or investigating the effect of node age constraint choice both in terms of number and distribution (e.g. Chapter 4, Appendix). Results that rely on a specific set of assumptions should be regarded sceptically if the justification for preferring that set of assumptions over an alternative is unconvincing. Unfortunately, this may mean that certain problems (e.g. dating of basal palaeognath divergences relative to the KPg boundary) are currently intractable using established methods. To make further progress towards answering these evolutionary and biogeographical questions we will require more realistic and biologically relevant models of rate variation, and more precise and objective methods of calibrating these models. This is currently an active area of research, and new approaches are being explored that will hopefully allow more accurate estimation of absolute branch lengths and node ages (Ho 2014).

One approach to creating more realistic models of rate variation may be to directly incorporate information from biological correlates (Ho 2014). By measuring the covariation between molecular rates and phenotypic or life history traits (see Lanfear, et al. 2010; Lartillot and Poujol 2011) we may be able to predict molecular rates for ancestral taxa, and consequently better infer rate changes through time. For example, Steiper and Seiffert (2012) identified three continuous morphological variables that were correlated with molecular rates in extant primates: body size, absolute endocranial volume, and relative endocranial volume. They measured each variable in a number of extinct primates and used these data to help reconstruct the ancestral values for the three variables at each node in the primate phylogeny. Since
the correlation between the value of these variables and the molecular rate had been characterised, branch-wise rate estimates could be “corrected” according to the morphology. Steiper and Seiffert (2012)’s corrected node age estimates were younger than estimates from previous molecular dating analyses and more consistent with some interpretations of the primate fossil record. While the use of biological correlates to adjust rates of molecular evolution requires further testing on both empirical and simulated datasets, it is an attractive avenue of investigation for a number of problems. However, models of this type as currently implemented must still derive absolute temporal information from the fossil record, and therefore largely remain subject to many of the disadvantages of node age constraints.

An alternative to using node constraints for molecular dating is to use temporally spaced DNA sequences to calibrate phylogenies (Rambaut 2000; Drummond, et al. 2002; Drummond, et al. 2003). For example, DNA sequences extracted from both ancient remains and modern tissue samples have been used to reconstruct the evolutionary timescale of a range of vertebrates (e.g. Austin, et al. 2013; Sheng, et al. 2014). Similarly, serial samples from a rapidly evolving viral population can be used to reconstruct the timing and speed of virus outbreaks (e.g. Rambaut, et al. 2008; Firth, et al. 2009). Molecular rates can be inferred by comparing the relative genetic change that has occurred since a common ancestor in lineages sampled at different times. One of the advantages of this “tip-dating” calibration method is that the age of the tips can be determined empirically (e.g. radiocarbon dating) and with high precision, eliminating much of the uncertainty associated with node constraints.
While tip-dating is useful for inferring intraspecific phylogenies and demography over timescales of tens to hundreds of thousands of years it is not viable for dating interspecific divergences, which often occur much longer timeframes. This is because: i) evolutionary rates can only be accurately estimated with temporally spaced data when the amount of change occurring during the period between samples represents a substantial fraction of the total change occurring since the common ancestor of the two sampled lineages (Drummond, et al. 2003), and ii) except under exceptional conditions, ancient DNA can only reliably be obtained from specimens up to around one hundred thousand years in age. Thus, a hypothetical modern human DNA sequence and 10 kyr old human DNA sequence might be used to estimate the age of their common ancestor that occurred 30 kya. However, a modern human sequence and a 100 kyr old brown bear (*Ursus arctos*) sequence cannot be used to estimate the age of the common ancestor of humans and bears, which likely occurred over 50 mya (Meredith, et al. 2011). This is because the amount of change occurring in the 100 kyr sampling interval will be insufficient relative to the total amount of change occurring during the millions of years since the common ancestor of the two lineages, and will likely be overwhelmed by lineage-specific rate variation.

The short temporal preservation window of aDNA does not apply to morphological characters sampled from palaeontological specimens, and researchers are beginning to experiment with using temporally spaced fossils to calibrate a “morphological clock” (e.g. Ronquist, et al. 2012; Beck and Lee 2014; Lee, et al. 2014; Arcila, et al. 2015). The rate of evolution of morphological characters may be modelled using a generalised relaxed clock, such that fossils can be used to calibrate a phylogeny in a manner analogous to temporally spaced DNA sequences. Depending
on the fossils available for a given group this approach may allow calibration of timescales spanning hundreds of millions of years, making morphological clocks practical for studies of interspecies phylogenetics and biogeography. “Total evidence” dating involves combining this morphological clock with nucleotide sequence data in a single phylogenetic analysis (Ronquist, et al. 2012): sequence data allows accurate estimation of branching order and relative branch lengths, while morphological data contribute both additional phylogenetic signal and absolute temporal information. Incorporating fossils directly into the analysis in this way has several advantages over using them simply to define node age constraints. Firstly, the length of ghost lineages is estimated from the data rather than being subjectively parameterised. Secondly, all fossil taxa assignable to a clade can be used to contribute temporal information, not only the oldest putative member. Thirdly, temporal information can be derived from fossils that cannot be confidently assigned to a specific clade, as Bayesian approaches accommodate phylogenetic uncertainty by integrating over all sampled tree topologies. A final advantage of including fossil taxa in a time-calibrated phylogenetic framework is that it allows the distribution of these extinct species to be explicitly incorporated in biogeographical reconstructions.

A total evidence dating approach could be useful for future research into some of the questions I have considered in this thesis. For example, it could help to estimate the evolutionary timescale of palaeognaths. One of the major problems with dating the diversification of palaeognaths is that known palaeognath fossils are poorly suited to serving as node age constraints: they are either too recent to serve as informative minimum bounds (e.g. *Struthio coppensi, Proapteryx micromeros* and *Emuarius gidju*) or are older but of uncertain affinity (e.g. *Diogenornis, Palaeotis*) (see
Chapter 3). Total evidence dating theoretically circumvents these limitations, although additional morphological characters would first need to be scored for these extinct taxa (most notably autapomorphies, see below). Total evidence dating could also be extended to date the evolution of all birds, as their temporal origin remains contentious (Appendix). A previous study has employed a morphological clock for birds, but focused mainly on the evolution of non-neornithine birds during the Mesozoic and did not include nucleotide sequence data (Lee, et al. 2014). Greater sampling of morphological characters from more recent fossil taxa (e.g. Kuiornis indicator, Chapter 4, Worthy, et al. 2010; Nelepsittacus, Chapter 6, Worthy, et al. 2011b) combined with expanded molecular datasets (e.g. Jarvis, et al. 2014) may help to resolve the timescale of diversification for modern birds. Similarly, total evidence dating has been applied to the evolution of mammals, but mainly to investigate diversification over a relatively deep timescale (Beck and Lee 2014). Total evidence dating could be extended to focus on dating more recent diversification of specific mammal groups for which reasonably complete fossil records are available (e.g. perissodactyls).

While total evidence dating provides several advantages over traditional node age constraint based molecular dating, there are several limitations to the morphological clock that will need to be addressed moving forwards (see Beck and Lee 2014; Lee, et al. 2014). Firstly, morphological data is likely to be susceptible to the same problems with model misspecification as nucleotide sequence data: that is, accurately modelling the distribution of rate heterogeneity across the phylogeny. In addition, it is uncertain to what extent it is appropriate to apply a single clock model to morphological characters, which likely have highly heterogeneous evolutionary
dynamics. Other complications include difficulties with sampling a sufficient number of characters from fossils that are only fragmentary (although total-evidence dating appears to be relatively robust to missing data) (Ronquist, et al. 2012) and accurately estimating terminal branch lengths in the absence of autapomorphies (changes unique to a single taxon, often overlooked by morphological systematists as these character changes are parsimony-uninformative). A final problem is the possibility that morphology does not evolve according to a stochastic clock over timescales relevant to the questions we wish it to answer: for example, adaptive radiations may result in a discrete period of accelerated morphological evolution across a clade, which could cause overestimated divergence dates to be inferred (Lee, et al. 2013; Beck and Lee 2014; Lee, et al. 2014). However, this latter problem may also affect estimates of molecular rates, and models have been developed to further explore this possibility (Bielejec, et al. 2014).

Given the uncertainties involved in estimating evolutionary timescales, it is currently difficult to precisely date divergences among members of many bird and mammal groups. This can be a problem for biogeographic hypotheses that partially depend on correlating the timing of divergences with other geological or evolutionary events. New methods such as total evidence dating may in the future offer more precise estimates. However, for now these methods still require refinement. In the meantime, best practice for dating analyses is to explore the full range of plausible biological scenarios, and report assumptions that have a large effect on the final results. If conclusions rely heavily on a given set of assumptions, preference for these assumptions must be justified.
Future directions

While there are still problems to be overcome in terms of building informative phylogenetic datasets and devising realistic evolutionary models, recent advances in both sequencing technology and analytical methods have greatly expanded the range of hypotheses that may be tested. In Chapter 2, I exploit these advances to reconstruct the biogeographic and evolutionary history of living marsupials. One of the most powerful aspects of the dataset in Chapter 2 is its broad taxon sampling, which encompasses multiple clades that have dispersed from Australia to New Guinea and Wallacea. Consequently, I was tentatively able to identify patterns in timing and changes in habitat preference that appeared to correlate with this biogeographic pattern. Investigating these types of pattern is a step towards better characterising the evolutionary processes underlying species distributions. Application of more sophisticated models for this type of analysis in future studies will allow us to gain a more mechanistic understanding of biogeographical patterns.

Analytical packages are available for investigating the relationship between biogeography and many other aspects of evolution (e.g. Pagel, et al. 2004; Alfaro, et al. 2009; Goldberg, et al. 2011; Rabosky, et al. 2014). This includes identifying relationships between biogeography and adaptive radiations, both in terms of rate of morphological evolution (e.g. Millien 2006) and diversification rates (e.g. Wiens, et al. 2009; Almeida, et al. 2012). Analytical methods have also been developed that can infer the probability and direction of changes in a discrete character (e.g. biogeographical distribution) across user-defined epochs (Bielejec, et al. 2014). This approach could be used to investigate differences in dispersal between climatic or
geological periods of interest. We could also identify potential phenotypic or life history traits that act as dispersal filters (e.g. Phillips, et al. 2006; Forsman, et al. 2010). For example, body size has a large impact on dispersal ability, with larger organisms in general dispersing over longer distances (Jenkins, et al. 2007). In addition to phenotypic and life-history variables, in the near future we may also be able to identify genotypic variables that correlate with biogeography. In this thesis I have discussed genome scale data mainly as it pertains to reconstructing the relationships among a group of species. However, the genome contains a wealth of functional data, which may be important for understanding the processes underlying biogeography (e.g. Hansson, et al. 2003; Liedvogel, et al. 2011).

One question that may be investigated using genomic data is the genotypic basis for loss of flight. This is potentially important for biogeography, as the dispersal ability of most birds is reliant on flight. In Chapter 3, I concluded that the major palaeognath lineages each evolved flightlessness independently. If this were the case we would predict that the genotypic basis for this loss of flight should be different in each lineage. While some phylogenetically broad studies of functional genomics have identified convergent sequence evolution (e.g. Parker, et al. 2013), this may be less of an issue for flightlessness if the phenotype results more from a relaxation of selection pressure rather than from positive selection (e.g. Meredith, et al. 2009). If flightliness does result from a relaxation of selection pressure at certain loci, then it is possible that the time of flight loss might be inferred from the accumulation of substitutions at those loci. This would be valuable for determining timing of dispersal and colonisation, as birds often quickly become flightless upon reaching isolated islands where there are few predators and selective pressure for flight is therefore
relaxed. However, there may be problems with distinguishing time-related affects from the background rate of evolution or from normal variation within the genome. This may potentially be addressed by contrasting patterns of variation in the genomes of a range of flighted and flightless species: flightlessness has evolved many times independently in palaeognaths, parrots, ducks, penguins, rails and pigeons. A broad sample of taxa would also help in the identification of loci that may be specifically associated with flightlessness. Further studies will be necessary to assess the viability of this type of analysis.

To use the analytical methods discussed above to their full potential we need to comprehensively sample clades of interest. Comprehensive sampling allows us to more confidently estimate the total number of evolutionary or biogeographic events, the precise timing of these events, and the full range of phenotypic and genotypic variation within the target group. However, much of the world’s fauna has become extinct since the Late Pleistocene, making it difficult to obtain sequence data from these taxa. Using high-throughput sequencing techniques, ancient DNA can now more readily be obtained from remains of extinct organisms from geographical areas that were previously challenging, including Madagascar (e.g. Chapter 3; Kistler, et al. 2014), South America (e.g. Chapter 7; Clack, et al. 2012; Enk, et al. 2014) and Australia (e.g. Murray, et al. 2013; Llamas, et al. 2014). Additionally, under exceptional conditions DNA sequence data can be obtained from specimens hundred of thousands of years old (Dabney, et al. 2013; Orlando, et al. 2013; Meyer, et al. 2014). Consequently, future ancient DNA studies should facilitate more powerful and meaningful biogeographical analyses by continuing to expand the taxonomic breadth of phylogenetic datasets.
Considerable work remains to be done in order to reconstruct the biogeographical history of extinct elements of the Australasian fauna. For example, the origin of the enigmatic adzebills (*Aptornis*) from New Zealand remains uncertain. Like much of the New Zealand avifauna, these large flightless birds became extinct after the arrival of humans (Tennyson and Martinson 2006). However, while they are presumed to be gruiforms (e.g. Lanfear and Bromham 2011) and have existed in New Zealand since at least the early Miocene (Worthy, et al. 2011a), their precise phylogenetic affinity and geographical origin are unknown. Concomitantly, it is also uncertain whether they are an element of the putative Gondwanan vicariant fauna, or represent a more recent colonisation (see Chapter 4). Another biogeographically interesting Australasian group is the terrestrial meolaniid ‘horned turtles’, which also became extinct during the Holocene (White, et al. 2010). These large turtles were distributed across Australia (Anderson 1925), New Caledonia (Gaffney, et al. 1984), Vanuatu (White, et al. 2010) and Fiji (Worthy, et al. 1999). While dispersal by ocean drifting probably explains at least part of their distribution (e.g. Palkovacs, et al. 2002), at least their presence in New Caledonian could also potentially be explained by vicariance (Morat 1993). Similar questions surround the origin of mekosuchine crocodiles (Mead, et al. 2002; Molnar, et al. 2002): an extinct subfamily of largely terrestrial (or even semiarboreal) crocodilians endemic to Australia and the southwest Pacific. Since these organisms only became extinct during the Holocene, future ancient DNA studies should be able to resolve their biogeographic history more precisely if suitably preserved specimens could be located.
Much as for Australasia, the origins of many elements of the extinct South American fauna remain uncertain. Two important biogeographic events occurred during the geological history of South America, which had major impacts on its modern faunal communities: the separation of South America from the other Gondwanan landmasses (beginning in the Cretaceous and culminating as recently as 21 mya; Lawver, et al. 2011) (see Chapters 2, 3 and 7) and the subsequent connection between South America and North America ~3 mya (see Chapter 7). Marsupials (see Chapter 2), xenarthrans (see Chapter 7) and meridiungulates (endemic hoofed mammals that converged on many ungulate and rodent-like body forms) dominated South America's terrestrial mammal fauna during the period following the continent’s isolation. Of these three lineages, the origin of the meridiungulates is most poorly understood, and it has been suggested that they may not represent a monophyletic group (summarised in Hunter and Janis 2006; Rose 2006). Thus, resolving the relationships of the meridiungulates would greatly expand our understanding of the evolution, distribution and movement of early eutherian mammals. At least two meridiungulates survived into the Late Pleistocene - Macrauchenia and Toxodon (Cione, et al. 2003) – and would have been contemporary with Glyptodon and Hippidion (Chapter 7). Consequently, if Macrauchenia or Toxodon remains can be recovered from the same (or similar) layer as those in Chapter 7, ancient DNA analysis should be able to resolve their evolutionary origin. Additional remains from these deposits may also help better understand the evolution of more recent elements of the South American fauna, which presumably arrived following the formation of the Isthmus of Panama. For example, the South American short-faced bears (Arctotherium) and gomphotheriids (e.g. Cuvieronius, Stegomastodon; distant relatives of elephants and mammoths), which became extinct during the Holocene
(Soibelzon 2004; Soibelzon, et al. 2005; Labarca and López 2006; Rodríguez-Flórez, et al. 2009). The exchange of fauna between North and South America concurrent with the formation of the Isthmus of Panama will be an excellent biogeographical laboratory for future study.

Ultimately, high-throughput sequencing will allow us to reconstruct phylogenies with greater fidelity than previously possible, including both extinct and extant species. These phylogenies will provide a framework for powerful new analyses. Advanced and flexible Bayesian computational environments are under development – BEAST2 (Bouckaert, et al. 2014) and RevBayes (https://github.com/revbayes/revbayes) - which will allow the evolution and covariance of multiple variables to be analysed simultaneously in a phylogenetic framework. The results of future studies will continue to expand our understanding of evolutionary processes and principles underlying biogeographic patterns.
Conclusion

Biogeography is the study of how and why organisms are distributed the way they are, and is consequently intimately tied to evolution. By investigating biogeographic patterns we can learn more about fundamental evolutionary processes and the history of life on Earth, and many of the most striking biogeographic patterns are found in the southern hemisphere. In this thesis I investigated how patterns of bird and mammal distribution were influenced by important geological events that shaped the southern hemisphere over the past 100 My: the breakup of Gondwana during the Cretaceous, Palaeocene and Eocene; the submergence of Zealandia in the Oligocene; the emergence of New Guinea and Wallacea beginning in the Miocene; and formation of the Isthmus of Panama and emergence of the Chatham Islands archipelago in the Pliocene. As a result, I was able to resolve a number of long-standing biogeographical questions, most prominently the origin of the ratite birds: the archetypal vicariant taxon that never was. Ancient DNA from highly degraded remains was critical for much of the research undertaken as part of this thesis, and high-throughput sequencing technology was key in obtaining quality data from these specimens. The system I developed for hybridisation enrichment and iterative read assembly for non-model organisms will be a valuable tool for future de novo sequencing project, diversity surveys, and identification of fragmentary sub-fossil remains.

The advent of high-throughput sequencing is revolutionising the fields of phylogenetics and biogeography, and I make two main methodological recommendations for future biogeographic studies. Future studies should: i) use hybridisation enrichment to target a carefully selected suite of orthologous nuclear
loci in addition to the mitochondrial genome, and ii) adopt a cautious approach to interpreting the results of molecular dating analyses, given current uncertainties with choosing the appropriate clock model and the impact that these choices may have on biogeographic conclusions. In addition, where possible, future studies should explore alternative dating strategies that make greater use of biological correlates of the molecular rate, and/or the fossil record (i.e. total evidence dating). By implementing these recommendations, researchers will be able to take full advantage of advances in high-throughput sequencing for biogeographical hypothesis testing. Using the resulting datasets and advances in analytical procedures, we will continue to move towards a more mechanistic understanding of biogeography, and therefore evolution in general.

Drummond A, Suchard M. 2010. Bayesian random local clocks, or one rate to rule them all. BMC Biol 8:114.

Ultraconserved elements are novel phylogenomic markers that resolve placental mammal phylogeny when combined with species-tree analysis. Genome Res 22:746-754.

APPENDIX:

Molecular dating, genomic data, and the temporal origin of modern birds

Mitchell, K.J., Molecular dating, genomic data, and the temporal origin of modern birds.

In preparation for submission.
APPENDIX:

Molecular dating, genomic data, and the temporal origin of modern birds

Kieren J Mitchell¹

¹ Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Australia

Abstract

The timescale for the evolution of modern birds is contentious. The majority of previous molecular dating studies have recovered very old (Mesozoic) dates for the origin of many bird orders. Conversely, the fossil record suggests that most bird orders may have originated more recently, in the latest Cretaceous or early Cenozoic. A recent study focusing on a large genome scale nucleotide sequence dataset seemed to reconcile these disparate estimates (Jarvis, et al. 2014). Jarvis et al. (2014) presented molecular dating results that largely agreed with some interpretations of the fossil record. However, they make several key assumptions that may have led to these results. In the present study, I reanalyse Jarvis et al. (2014)'s dataset under a broader range of plausible prior assumptions and demonstrate that node age estimates are highly sensitive to model and calibration choice, with changes to either potentially resulting in older date estimates. Consequently, care should be taken when interpreting other hypotheses in light of the molecular dating results of Jarvis et al. (2014), or when employing their age estimates as secondary calibrations. Ultimately, the temporal origin of birds remains unresolved.
Introduction

The antiquity of modern birds is the subject of sustained debate (Ksepka, et al. 2014). Most molecular dating studies place the origin of the modern avian crown-group (Neornithes) deep within the Mesozoic, implying that many bird lineages independently survived the mass extinction at the KPg boundary ~66 mya (e.g. Cooper and Penny 1997; Haddrath and Baker 2012; Jetz, et al. 2012). However, very few neornithine fossils are known from the Mesozoic (reviewed in Mayr 2014), which suggests that they may have diversified more recently. Jarvis et al. (2014) have recently published a time-calibrated phylogeny of birds constructed from a large genome-scale dataset and claim that their results support a recent origin of modern birds, with most orders originating rapidly following the KPg boundary. As this conclusion runs contrary to that of many previous phylogenetic studies, and has important implications for our understanding of bird evolution and biogeography (see Chapter 4), it should be subject to intense scrutiny before being accepted.

Several aspects of the analyses in Jarvis et al. (2014) warrant further exploration, beginning with the strategy used to calibrate their phylogeny for molecular dating. Jarvis et al. (2014) implemented a strong prior against the diversification of Neornithes occurring more than 99.6 mya, based on the absence of neornithine fossils from some Late Cretaceous deposits. However, this judgement is largely subjective as misidentification or differences in taphonomy, distribution and completeness of the fossil record may result in a taxon being unobserved when it is actually present (Brocklehurst, et al. 2012). Consequently, more conservative interpretations of the fossil record place this constraint at 117.5 My (Jetz, et al. 2012)
or even older. In contrast to their restrictive bounding of the age of Neornithes, Jarvis et al. (2014) take a cautious and conservative approach to assigning fossil taxa to living groups. Consequently, many of the minimum bounds they implement are younger than might be suggested based on alternative interpretations of the fossil record (e.g. Mayr 2009; Mayr 2014). This combination of restrictive maximum bounds and permissive minima may bias the analyses of Jarvis et al. (2014) towards the relatively young dates they obtained (compared to previous estimates), but this limitation of their approach is not addressed in their study.

Another factor needing further exploration is the model of evolutionary rate variation. The molecular dating analyses presented in Jarvis et al. (2014) employ a relaxed clock that assumes rate autocorrelation. Under a correlated relaxed clock model the rate at a given branch depends in part on the rate of the branch preceding it: a change from a slow to a fast rate is generally less likely than a change from a slow to a moderate rate over a given time period (Drummond, et al. 2006). This is justified in certain circumstances as some characteristics that are inherited by descendent species (e.g. body mass, generation time) are linked with the rate of molecular evolution (e.g. Gillooly, et al. 2005; Lanfear, et al. 2007; Ho 2009). However, over very short time periods correlation may be so strong that most variation in rate may in fact be determined by non-phylogenetic stochastic factors. Conversely, over long timescales there may be so much variation in the determining characteristics that rate autocorrelation between branches begins to break down. In these situations it may be preferable to use an uncorrelated relaxed clock model, such as implemented in the popular molecular dating software BEAST (Drummond and Rambaut 2007). In contrast to correlated clock models, the magnitude of rate changes permitted under
an uncorrelated model is relatively unconstrained: rates for a specific branch may vary freely according to the distribution of rates for the phylogeny as a whole.

In this short study I aim to explore how choice of calibrations (both minima and maxima) and model of rate variation may have contributed to differences between the results presented in Jarvis et al. (2014) and those of previous molecular dating studies.

Methods

I downloaded the sequence alignment used for molecular dating analyses in Jarvis et al. (2014). This alignment comprises 1st and 2nd codon positions of 1156 orthologous protein-coding genes that were judged to have undergone roughly clock-like evolution (722,202 nucleotides) for 51 taxa (48 birds and three outgroups: Figure 1). I used this alignment to explore the effects of calibration and model choice on posterior node age estimates.
Figure 1: Total evidence nucleotide tree (TENT) topology from Jarvis et al. (2014) showing nodes calibrated in calibration schemes 1 and 4 (1 = blue, 4 = red, both = purple) and their variants: calibration schemes 2, 3 and 5. Node numbers correspond to Table S1, which contains further node constraint details.
In the present study, divergence times were estimated in MCMCTREE in PAML 4.8 (Yang 2007), using the approximate-likelihood method with branch lengths estimated using BASEML. As for Jarvis et al. (2014), I used the HKY85+GAMMA substitution model with four rate categories for the gamma distribution of rates across sites, time units were set to 100 My, the prior on the mean rate of evolution (rgene_gamma) was set to 0.001 substitutions/My, and all data were analysed as a single partition. The tree topology was fixed to Jarvis et al. (2014)’s total evidence nucleotide tree (TENT), as this is the topology they favoured. Posterior distributions were estimated by MCMC sampling every 2×10^3 for 10^8 steps after a burn-in of 2×10^7 steps. To check for stationarity and convergence, each analysis was run in duplicate and monitored in Tracer v1.6 (http://tree.bio.ed.ac.uk/software/tracer/) to ensure ESSs > 200.

I evaluated five different calibration schemes: 1) the same as presented in Jarvis et al. (2014)’s Figure S28 (see Figure 1; Table S1), including the maximum bound of 99.6 mya on the diversification of Neornithes; 2) the same as 1 but with the constraint on Neornithes relaxed to 66-117.5 mya; 3) the same as 1 but with Neornithes unconstrained; 4) an alternative set of calibrations derived from the fossils and affinities presented in Mayr (2014), with Neornithes constrained to 66-117.5 mya, and with outgroup calibrations as in Jarvis et al. (2014)’s Fig S28 (see Figure 1; Table S1); and 5) the same as 4 but with Neornithes unconstrained. All calibrations were implemented with soft (2.5%) minima and maxima. Each calibration scheme was analysed under both the uncorrelated and correlated relaxed clock models. I tested the fit of the correlated and uncorrelated models for each calibration scheme by comparing estimates of the marginal likelihood obtained using
the harmonic mean estimator (corrected using 100 bootstrap replicates) (Suchard, et al. 2001) implemented in Tracer.

Results

The constraint placed on the age of Neornithes (node 4 in Figure 1) has a large impact on its posterior node age distribution. When I replicated the Jarvis et al. (2014) constraint (calibration scheme 1: 66-99.6 mya) mean node age estimates were very close to the maximum bound of this constraint, regardless of the clock model used (Figure 2, Table S2). When this constraint was relaxed (calibration scheme 2 and 4: 66-117.5 mya), mean node age estimates still tended towards the upper limit of the constraint. Removing the constraint entirely (calibration schemes 3 and 5) resulted in much older age estimates than under either constraint, but also a much wider distribution.

The age of nodes within the avian crown group (all descendants of node 4) were strongly influenced by both the constraint on Neornithes and the clock model (Table S2). For Passeriformes (node 38), the largest bird order, age estimates were older under the uncorrelated clock model compared to the correlated model, and became older when the constraint on Neornithes was relaxed (Figure 3, Table S2). This pattern is representative of the trend across most ingroup nodes (Table S2). Mean crown age estimates for Passeriformes (Figure 3) varied by up to 22 My depending on whether the correlated or uncorrelated rate model was used, and by a comparable margin depending on the constraint placed on Neornithes (e.g. 22 My difference in mean age between calibration schemes 1 and 3 under the uncorrelated
clock model). Conversely, the alternative set of minimum constraints derived from Mayr (2014) - calibration schemes 4 and 5 – produced very similar results to the more conservative minima implemented in Jarvis et al. (2014) (compared to calibrations schemes 2 and 3, respectively).
Figure 2: Posterior node age distributions for Neornithes (node 4) for each calibration scheme (1-5) and clock model: (A) correlated versus (B) uncorrelated. In calibration schemes 1, 2 and 4 (grey, purple, and yellow, respectively) this node is constrained (see Figure 1, Table S1) whereas in calibration schemes 3 and 5 (red and green, respectively) this node is unconstrained. Time is given in million years before the present.
Figure 3: Posterior node age distributions for Passeriformes (node 38) under each calibration scheme (1-5) and clock model: (A) correlated versus (B) uncorrelated. Time is given in million years before the present.
When the analysis was performed according to Jarvis et al. (2014) (calibration scheme 1, correlated rates), I found that only three nodes (6.4% of all bird divergences sampled) were older than the KPg boundary (Table 1, Table S2).

Switching from the correlated to the uncorrelated clock model caused the number of nodes with mean ages older than the KPg to triple (up to 21.3%). When the constraint on the maximum age of Neornithes was relaxed to 117.5 mya, this percentage further increased to 29.8-63.8%. When I removed the maximum age constraint on Neornithes, over three quarters of bird nodes in all analyses had mean age estimates older than the KPg (Table 1).

Table 1: Number of crown-bird divergence events (i.e. nodes 4-50) that have estimated mean node ages greater than 66 mya (KPg boundary), 75 mya and 85 mya for each calibration scheme (1-5) and clock model (correlated versus uncorrelated). Percentage of total crown-bird nodes (47 in total) is given in parentheses.

<table>
<thead>
<tr>
<th>Analysis</th>
<th>> 66 mya (KPg)</th>
<th>>75 mya</th>
<th>>85 mya</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Correlated</td>
<td>3 (6.4%)</td>
<td>3 (6.4%)</td>
<td>1 (2.1%)</td>
</tr>
<tr>
<td>1 Uncorrelated</td>
<td>10 (21.3%)</td>
<td>2 (4.3%)</td>
<td>2 (4.3%)</td>
</tr>
<tr>
<td>2 Correlated</td>
<td>14 (29.8%)</td>
<td>3 (6.4%)</td>
<td>3 (6.4%)</td>
</tr>
<tr>
<td>2 Uncorrelated</td>
<td>26 (55.3%)</td>
<td>6 (12.8%)</td>
<td>2 (4.3%)</td>
</tr>
<tr>
<td>3 Correlated</td>
<td>37 (78.7%)</td>
<td>36 (76.6%)</td>
<td>24 (51.1%)</td>
</tr>
<tr>
<td>3 Uncorrelated</td>
<td>38 (80.9%)</td>
<td>35 (74.5%)</td>
<td>33 (70.2%)</td>
</tr>
<tr>
<td>4 Correlated</td>
<td>18 (38.3%)</td>
<td>3 (6.4%)</td>
<td>3 (6.4%)</td>
</tr>
<tr>
<td>4 Uncorrelated</td>
<td>30 (63.8%)</td>
<td>11 (23.4%)</td>
<td>2 (4.3%)</td>
</tr>
<tr>
<td>5 Correlated</td>
<td>37 (78.7%)</td>
<td>36 (76.6%)</td>
<td>24 (51.1%)</td>
</tr>
<tr>
<td>5 Uncorrelated</td>
<td>39 (83%)</td>
<td>35 (74.5%)</td>
<td>32 (68.1%)</td>
</tr>
</tbody>
</table>

For most analyses I found little reason to prefer a correlated clock over an uncorrelated clock, or *vice versa*. While the correlated clock model receives a little support over the uncorrelated model for calibration scheme 1 (Δ Bayes factor = 4.912), for all other comparisons the results were equivocal (Δ Bayes factor < 3).
Discussion

Molecular dating analyses based on the genomic dataset from Jarvis et al. (2014) were strongly influenced by choice of clock model and maximum age constraints, while the assignment of minimum age constraints based on a different interpretation of the fossil record had relatively little effect (Figure 2, 3 and Table S2). Jarvis et al. (2014) concluded that the main radiation of modern bird orders occurred following the KPg boundary and global mass extinction ~66 mya. However, this conclusion was not supported when either a different clock model or a maximum bound for Neornithes was implemented (Table 1). Consequently, obtaining an accurate timescale of bird evolution relies on correctly specifying these parameters. Unfortunately, this process is not straightforward.

Determining minimum bounds from the fossil record is relatively simple: if a fossil can be confidently assigned to a given clade, then the origin of that clade must predate the age of the fossil. However, maximum bounds are a more difficult proposition. To rigorously define a maximum bound, the fossil record must be sufficiently well sampled such that we may have high confidence that a taxon would have been detected were it present, even allowing for taphonomic biases and misidentification. Further, this thorough sampling must be consistent through time and across geographical areas. The Cretaceous fossil record of birds does not currently meet these criteria meaning that we cannot confidently infer a maximum bound for the diversification of Neornithes, particularly if modern birds originated in the southern hemisphere (Brocklehurst, et al. 2012). Consequently, it is difficult to defend any given choice of maximum bound and results that rely heavily on this
choice should be viewed with healthy scepticism. It is similarly difficult to determine which clock model is most appropriate: correlated or uncorrelated. This is an ongoing problem for the field as a whole (Ho, et al. 2014) and the biological relevance of each class of model has not been fully resolved (Ho 2009). In the present study, Bayes factor comparison does not strongly favour one model over the other. Future comparative studies may be able to determine the degree of rate correlation among bird orders, but for now it is not clear which model should be preferred.

Past studies have often used age estimates from other larger molecular dating studies as “secondary calibrations” to constrain the age of key nodes (Jonsson, et al. 2012), as in many cases there are few good fossils available for directly constraining the age of relatively recent divergences on the bird phylogeny. While this is the only viable solution for some problems, it carries the risk of unwittingly propagating errors or assumptions made in the initial study that was the source of the secondary calibrations (Graur and Martin 2004). Jarvis et al. (2014) is likely to be used as a source of secondary calibrations due to its high profile, broad taxon sampling and powerful genomic dataset. However, researchers drawing calibrations from the molecular dates in Jarvis et al. (2014) should be aware that their molecular dating results represent only one end of a spectrum of assumptions and interpretations. The present study offers a broader perspective on the range of plausible timescales for the diversification of birds, and provides more conservative bounds for secondary calibrations (if they cannot be avoided altogether).

Ultimately, the temporal origin of birds remains unresolved. In order to better understand the timescale of bird evolution we will need to more accurately and
objectively estimate the molecular rate for branches deep in the bird phylogeny. While genome scale data is a valuable resource for resolving phylogenies and estimating relative branch lengths in terms of nucleotide changes, it is not a panacea for molecular dating. The way in which temporal information is included and modelled during analysis still has a large impact on the final results. A more robust timescale for the evolution of birds will likely only come through new fossil discoveries, or further integration of existing fossil data into the dating process (e.g. Lee, et al. 2014).

Acknowledgements

Thanks to Matthew Phillips and Trevor Worthy for advice on analyses and calibrations.
References

Supplementary Information

Table S1: Node age constraints and justifications. Node numbers refer to Figure 1. Maxima for all nodes other than 1, 3 and 4 are set to the maximum tree depth: 299.8 mya (see node 1). All calibrations were implemented with soft (2.5%) minima and maxima.

<table>
<thead>
<tr>
<th>Node</th>
<th>Calibration schemes</th>
<th>Node constraint (mya)</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1, 2, 3, 4, 5</td>
<td>255.9 - 299.8</td>
<td>Following Jarvis et al. (2014).</td>
</tr>
<tr>
<td>3</td>
<td>1, 2, 3, 4, 5</td>
<td>239 - 250.4</td>
<td>Following Jarvis et al. (2014).</td>
</tr>
<tr>
<td>4</td>
<td>1, 2, 4</td>
<td>1: 66 - 99.6</td>
<td>1: Following Jarvis et al (2014).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2: 66 - 117.5</td>
<td>2: Minimum following Jarvis et al. (2014). Maximum bound corresponds to absence of modern birds from the Xigou formation (see Jetz, et al. 2012).</td>
</tr>
<tr>
<td>5</td>
<td>1, 2, 3, 4, 5</td>
<td>1, 2, 3: 20 - 299.8</td>
<td>1, 2, 3: Following Jarvis et al. (2014).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4, 5: 56 - 299.8</td>
<td>Diogenornis is a putative crown palaeognath from the Palaeocene (Alvarenga 1983).</td>
</tr>
<tr>
<td>7</td>
<td>1, 2, 3, 4, 5</td>
<td>1, 2, 3: 51 - 299.8</td>
<td>1, 2, 3: Following Jarvis et al. (2014).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4, 5: 58 - 299.8</td>
<td>4, 5: Following Mayr (2014). Cimolopteryx is a stem anseriform from the Palaeocene (Elzanowski and Stükhm 2011).</td>
</tr>
<tr>
<td>10</td>
<td>1, 2, 3, 4, 5</td>
<td>1, 2, 3: 32 - 299.8</td>
<td>1, 2, 3: Following Jarvis et al. (2014).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4, 5: 36 - 299.8</td>
<td>4, 5: Following Mayr (2014). Juncitarsus is a stem representative of the clade Phoenicopteriformes + Podicipediformes from the Eocene (see Mayr 2009).</td>
</tr>
<tr>
<td>11</td>
<td>1, 2, 3, 4, 5</td>
<td>1, 2, 3: 20.43 - 299.8</td>
<td>1, 2, 3: Following Jarvis et al. (2014).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4, 5: 34 - 299.8</td>
<td>4, 5: Following Mayr (2014). Agnotopterus is a stem phoenicopteriform from the Eocene (see Mayr 2009).</td>
</tr>
<tr>
<td>12</td>
<td>4, 5</td>
<td>23 - 299.8</td>
<td>Following Mayr (2014). Leptoganga is a colombiform from the Oligocene (Mourer-Chauviré 1993).</td>
</tr>
<tr>
<td>13</td>
<td>1, 2, 3</td>
<td>24.7 - 299.8</td>
<td>Following Jarvis et al. (2014).</td>
</tr>
<tr>
<td>16</td>
<td>4, 5</td>
<td>50 - 299.8</td>
<td>Following Mayr (2014). Chambiculus is a cuculid from the Eocene (Mourer-Chauviré et al. 2013).</td>
</tr>
<tr>
<td>17</td>
<td>1, 2, 3</td>
<td>32 - 299.8</td>
<td>Following Jarvis et al. (2014).</td>
</tr>
<tr>
<td>18</td>
<td>1, 2, 3, 4, 5</td>
<td>1, 2, 3: 55.5 - 299.8</td>
<td>1, 2, 3: Following Jarvis et al. (2014).</td>
</tr>
<tr>
<td>19</td>
<td>1, 2, 3</td>
<td>32-299.8</td>
<td>Following Jarvis et al. (2014).</td>
</tr>
<tr>
<td>22</td>
<td>1, 2, 3, 4, 5</td>
<td>1, 2, 3: 32 - 299.8</td>
<td>1, 2, 3: Following Jarvis et al. (2014).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4, 5: 50 - 299.8</td>
<td>4, 5: Following Mayr (2014). Unnamed stem charadriiform from the Eocene (see Mayr 2009).</td>
</tr>
<tr>
<td>25</td>
<td>4, 5</td>
<td>56 - 299.8</td>
<td>Following Mayr (2014). Lithoptila is a phaethontiform from the Palaeocene (Bourdon, et al. 2005; Bourdon, et al. 2008).</td>
</tr>
<tr>
<td>28</td>
<td>1, 2, 3, 4, 5</td>
<td>1, 2, 3: 60.5 - 299.8</td>
<td>1, 2, 3: Following Jarvis et al. (2014).</td>
</tr>
</tbody>
</table>
Calibration, Node, constraint schemes, Justification

30 1, 2, 3, 4, 5 1, 2, 3: 47 - 299.8 4, 5: Following Jarvis et al. (2014). *Rhynchaeites* is a ciconiform from the Eocene (Peters 1983).

31 1, 2, 3 253 - 299.8 Following Jarvis et al. (2014).

32 4, 5 26 – 299.8 Following Mayr (2014). *Pelecanus* is a pelecaniform from the Oligocene (Louchart et al. 2011).

34 4, 5 56 – 299.8 Following Mayr (2014). *Paleopsilopterus* is a stem cariniform from the Palaeocene (Alvarenga 1985).

35 1, 2, 3 54.6 – 299.8 Following Jarvis et al. (2014).

36 4, 5 54.6 – 299.8 Following Mayr (2014). Unnamed stem passeriform from the Tingamarra LF (see Mayr 2009).

39 1, 2, 3 13.6 – 299.8 Following Jarvis et al. (2014).

41 1, 2, 3 7.2 – 299.8 Following Jarvis et al. (2014).

43 4, 5 38 – 299.8 Following Mayr (2014). *Milvoides* is a stem accipitriform from the Eocene.

45 1, 2, 3 1, 2, 3: 56.8 – 299.8 Following Jarvis et al. (2014).

48 1, 2, 3, 4, 5 1, 2, 3: 55.5 – 299.8 4, 5: 56 – 299.8 1, 2, 3: Following Jarvis et al. (2014). 4, 5: Following Mayr (2014). *Septentrogon* is a trogoniform from the Palaeocene (Kristoffersen 2002).

49 1, 2, 3 47 – 299.8 Following Jarvis et al. (2014).

50 4, 5 51 – 299.8 Following Mayr (2014). *Primobucco* is a coraciform from the Eocene (Ksepka and Clarke 2010).

Table S2: Mean ages and 95%HPD bounds (mya) for analyses under each calibration scheme (1-5) and clock model (correlated versus uncorrelated). Mean ages older than 66 mya are shown in bold font.
<table>
<thead>
<tr>
<th>Node</th>
<th>Uncorrelated</th>
<th>Correlated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.7</td>
<td>61.17</td>
</tr>
<tr>
<td>2</td>
<td>62.86</td>
<td>65.17</td>
</tr>
<tr>
<td>3</td>
<td>54.66-64.78</td>
<td>68.88</td>
</tr>
<tr>
<td>4</td>
<td>90.22</td>
<td>94.01</td>
</tr>
<tr>
<td>5</td>
<td>66.85</td>
<td>69.08</td>
</tr>
<tr>
<td>6</td>
<td>95.28</td>
<td>97.09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calibration scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>26</td>
</tr>
<tr>
<td>27</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>29</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>31</td>
</tr>
<tr>
<td>32</td>
</tr>
<tr>
<td>Node</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>33</td>
</tr>
<tr>
<td>34</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>36</td>
</tr>
<tr>
<td>37</td>
</tr>
<tr>
<td>38</td>
</tr>
<tr>
<td>39</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>41</td>
</tr>
<tr>
<td>42</td>
</tr>
<tr>
<td>44</td>
</tr>
<tr>
<td>45</td>
</tr>
<tr>
<td>46</td>
</tr>
<tr>
<td>47</td>
</tr>
<tr>
<td>Node</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>48</td>
</tr>
<tr>
<td>49</td>
</tr>
<tr>
<td>50</td>
</tr>
</tbody>
</table>