Utilising Quantitative Immunoproteomics To Reveal Differential Autoantibody Biomarker Panels In Serous Ovarian Cancer Patients

A thesis submitted for the degree of

Doctor of Philosophy

as a combination of conventional narrative and portfolio of publications by

Karina Martin

Discipline of Biochemistry
School of Molecular and Biomedical Science
Adelaide Proteomics Centre
The University of Adelaide
Adelaide, South Australia

June 2014
Table of Contents

List of Figures ... VI

List of Tables ... XIII

Abstract .. XVII

Declaration .. XIX

Acknowledgement of Help .. XX

Acknowledgements ... XXI

Publications .. XXII

Presentations ... XXIII

Abbreviations ... XXIV

Chapter 1 Manuscript Context .. XXVIII

Chapter 1 Manuscript 1 ... XXIX

Statement of authorship for manuscript 1 ... XXX

Chapter 1 Manuscript 2 ... XXXII

Statement of authorship for manuscript 2 ... XXXIII

Chapter 1: Introduction ... 1

1.1 Ovarian Cancer ... 1

1.1.1 Detection of Ovarian Cancer ... 4

1.1.2 Potential Biomarkers of Ovarian Cancer ... 7

1.2 Immunity and Cancer .. 11

1.2.1 Immune Response to Cancer .. 11

1.2.2 Humoral Immune Response to Cancer Antigens .. 12

1.2.3 Autoantibodies as Novel Biomarkers for Ovarian and Other Cancers 16

1.3 Proteomics and Immunoproteomics .. 18

1.4 Immunoproteomics ... 19

1.4.1 Serological Analysis of Recombinant cDNA Expression Libraries (SEREX) 19
1.4.2 Page Display

- Page Display

1.4.3 Protein Microarray

- Protein Microarray

1.4.4 Serological Proteome Analysis (SEPRA)

- Serological Proteome Analysis (SEPRA)

1.4.5 Immunoaffinity Purification Methods

- Immunoaffinity Purification Methods

1.4.6 Investigated Autoantibodies Based Upon Identified Antigens

- Investigated Autoantibodies Based Upon Identified Antigens

1.5 Mass Spectrometry

- Mass Spectrometry
 - Ionisation Methods
 - Mass Analyser
 - Ion Detector
 - High Performance Liquid Chromatography

1.6 Quantitative Proteomics

- Quantitative Proteomics
 - Gel Based
 - Stable Isotope-Based Quantitative Proteomics
 - Label-Free Approaches

1.7 Thesis synopsis

- Thesis synopsis

Chapter 2: General Materials and Methods

- General Materials and Methods
 - Materials
 - General Materials
 - Chemical Reagents
 - Buffers and Solutions
 - Commercial Kits
 - Recombinant Proteins
 - Antibodies
 - Instruments
 - Computer Software
 - Web Resources
 - General Methods
 - Protein Techniques
 - Gel-Based Techniques
 - Protein Visualisation
 - Clinical Material
2.2.5 Sample Preparation ... 94
2.2.6 Low Salt In-Gel Tryptic Digest with Reduction and Alkylation 95
2.2.7 Nano-LC-MS/MS .. 96

Chapter 3: Development of an approach for the identification of ovarian cancer autoantibody biomarkers ... 98

3.1 Background .. 98
3.2 Specific Methods .. 100
 3.2.1 Small-Scale Immunoaffinity Chromatography Using Protein G-Sepharose Support or Hydrazide Gel .. 100
 3.2.2 Large-Scale Immunoaffinity Chromatography Using Affi-Gel® Hz or Affi-Gel® 10 Gel .. 102
 3.2.3 Differential Gel Electrophoresis (DIGE) .. 103

3.3 Results and Discussion .. 105
 3.3.1 1D SEPRA ... 105
 3.3.2 Two-dimensional SEPRA ... 122
 3.3.3 Immunoaffinity Chromatography .. 135
 3.3.4 Immunoaffinity chromatography: Discovery Phase 162

3.4 Conclusion ... 169

Chapter 4: Identification of differential autoantibody signatures in serous ovarian cancer patients ... 170

4.1 Background .. 170
4.2 Specific Methods .. 173
 4.2.1 ICPL .. 173
 4.2.2 Protein Identification and Relative Quantification 173
 4.2.3 Verification Protein Microarray and Statistical Analysis 174

4.3 Results and Discussion .. 176
 4.3.1 Establishing Experimental Conditions .. 176
 4.3.2 Identification and Relative Quantification of Immunoprecipitated Autoantigens ... 182
 4.3.3 Biomarker Candidate Prioritisation .. 188
 4.3.4 Verification of Autoantibody Biomarker Candidates 203

4.4 Conclusion ... 240
Chapter 5: Validation of anti-ARP3, anti-SAHH and anti-ANXA1 as potential autoantibody biomarkers for early stage serous ovarian cancer............................... 242
 5.1 Background .. 242
 5.2 Specific Methods ... 243
 5.2.1 Indirect Enzyme Linked Immunosorbent Assays... 243
 5.2.2 Validation Protein Microarray .. 244
 5.3 Results and Discussion .. 245
 5.3.1 Orthogonal Verification ... 245
 5.3.2 Biomarker Validation Using Protein Microarray ... 263
 5.4 Conclusion .. 311
Chapter 6: Final Discussion and Future Directions .. 313
 6.1 Discussion ... 313
 6.2 Future Directions ... 318
 6.3 Broader Significance .. 322
Chapter 7: Appendix ... 323
Chapter 8: References ... 368
List of Figures

Figure 1: Graphical representation of immunoglobulin G structure......................... 14
Figure 2: Schematic outlining autoantibody identification by SEREX. 23
Figure 3: Schematic outlining autoantibody identification by phage display. 28
Figure 4: Schematic outlining autoantibody identification by reverse-phase protein microarray... 32
Figure 5: Schematic outlining autoantibody identification by SEPRA. 35
Figure 6: Purification of TAAs from cancer tissue lysates using two-dimensional affinity chromatography.. 37
Figure 7: Immunoprecipitation method employed by Philip and colleagues to identify ovarian cancer specific TAAs^{130} .. 39
Figure 8: Immunoprecipitation method employed by Gagnon and co-workers to identify autoantigens and their respective autoantibodies in ovarian cancer patients^{131} .. 42
Figure 9: Formation of gaseous molecular ions by ESI. ... 49
Figure 10: Formation of molecular ions by MALDI. .. 50
Figure 11: Schematic representation of the linear ion trap mass analyser. 52
Figure 12: Schematic representation of the Orbitrap mass analyser. 54
Figure 13: Schematic representation of the TOF reflectron mass analyser. 56
Figure 14: Molecular structures of ICPL Nic-NHS tags. .. 67
Figure 15: Label-free peak detection strategy. ... 73
Figure 16: Comparison of ovarian tissue protein lysates extracted under native or denaturing conditions... 107
Figure 17: Optimisation of 1D SEPRA wet Western transfer conditions for the detection of autoantigens in native and denatured ovarian tissue lysates. 109
Figure 18: Optimisation of serum and secondary antibody dilution for the detection of autoantigens in native ovarian tissue lysates by 1D-SEPRA 111
Figure 19: Optimisation of Western blotting conditions for the detection of autoantigens in native ovarian tissue lysates by 1D-SEPRA 113
Figure 20: Representative strip blots showing the optimisation of serum and secondary antibody dilution for optimal ECL Western blotting.......................... 117
Figure 21: Representative blot showing the optimisation of serum antibody dilution for optimal ECL Western blotting. ... 119
Figure 22: Analysis of the Immobilon Western Chemiluminescent HRP ECL substrate for Western blotting detection... 121
Figure 23: SEPRA using ECL for the detection of autoantibodies in ovarian cancer patient serum. .. 123
Figure 24: Optimisation of 2D-SEPRA Western blot transfer conditions for the detection of autoantigens by ovarian cancer serum autoantibodies. 125
Figure 25: Optimisation of 2D SEPRA Western blot transfer conditions for the detection of autoantigens by healthy and benign serum autoantibodies. 128
Figure 26: Identification of serum antibody-independent interactions of secondary antibody with antigens in ovarian tissue lysates......................... 131
Figure 27: 2D SEPRA for the detection of ovarian cancer specific autoantibodies. .. 132
Figure 28: Protein spots excised from replicate SDS-PAGE gel for identification of target autoantigens. ... 133
Figure 29: Ovarian tissue protein lysates extracted under native conditions. 137
Figure 30: Purified P288 IgG from serum (representative gels). 139
Figure 31: Purified IgG from pooled healthy and benign serum (representative gel). .. 140
Figure 32: Autoantibody profile of patient serum or purified IgG as determined by SEPRA. ... 142
Figure 33: Immunoaffinity support cross-linking reagents. 144
Figure 34: Immunocaptured autoantigens using protein-G sepharose immunoaffinity support (small scale). ... 145
Figure 35: Immunocaptured autoantigens using Affi-Gel® Hz hydrazide gel immunoaffinity support (small scale). .. 146
Figure 36: Immunocaptured autoantigens using Affi-Gel® Hz hydrazide gel immunoaffinity support (Large scale). .. 148
Figure 56: Representative protein microarrays demonstrating differential serum levels of two autoantibody candidates...205
Figure 57: Percentage of analytical spots containing saturated pixels in 62 protein microarrays..206
Figure 58: Deviation between the mean and median spot pixel intensity.207
Figure 59: Variance-mean dependence of raw and transformed protein microarray intensity data. ..209
Figure 60: Autoantibody binding signal intensity for all antigens in the healthy and benign cohort..211
Figure 61: Comparison of the autoantibody signal intensity for all antigens in the serum of early stage patients and controls..212
Figure 62: Box-and-whisker plots representing the normalised signal intensity of samples from each cohort for the top 9 autoantibody biomarker candidates.218
Figure 63: ROC curves generated from the normalised protein microarray data for the top 9 autoantibody candidates when differentiating early stage (n=18) patients from controls (n=60)..219
Figure 64: ROC curves generated from the normalised protein microarray data for the top 9 autoantibody candidates when differentiating all cancer (n=38) patients from controls (n=60)..221
Figure 65: ROC curves generated from the LDA of the normalised protein microarray data for the top 3 autoantibody candidates..224
Figure 66: ROC curves generated from the normalised protein microarray data for the top 3 autoantibody candidates and combined biomarker panel.227
Figure 67: ROC curves generated from the immunoassay for CA125 concentration in patient serum/plasma samples...229
Figure 68: ROC curves generated from the LDA of the top 3 autoantibody candidates with CA125 for discriminating all cancer cases from controls............231
Figure 69: ROC curves generated from the LDA of the top 3 autoantibody candidates with CA125 for discriminating early stage cancer cases from controls. ..235
Figure 70: Background absorbance for different concentrations of BSA in the blocking solution. ... 246
Figure 71: Optimisation of serum and secondary antibody dilution for the detection of autoantibodies in serum by ELISA. ... 249
Figure 72: Examination of the anti-ARP3 autoantibody levels in serum by ELISA. ... 251
Figure 73: Negative controls employed for the detection of target autoantibodies in serum by ELISA... 254
Figure 74: Background absorbance level for the exclusion of recombinant protein negative control. ... 255
Figure 75: Examination of the ELISA system using various amounts of anti-ARP3 monoclonal antibody. ... 256
Figure 76: Representative ELISA positive and negative controls. 258
Figure 77: Box-and-whisker plots representing the absorbance (delta) level of samples from each cohort for autoantibodies (A) anti-ANXA1, (B) anti-SAHH and (C) anti-ARP3. ... 259
Figure 78: Box-and-whisker plots representing the absorbance (delta) level of control and cancer samples for autoantibodies (A) anti-ANXA1, (B) anti-SAHH and (C) anti-ARP3. ... 260
Figure 79: Box-and-whisker plots representing the absorbance (delta) level of healthy individuals and early stage cancer cases for autoantibodies (A) anti-ANXA1, (B) anti-SAHH and (C) anti-ARP3 ... 261
Figure 80: Number of microarrays containing analytical spots with saturated pixels. ... 265
Figure 81: Frequency of the percentage of saturated pixels across the 169 spots. ... 266
Figure 82: Validation protein microarray deviation between the mean and median spot pixel intensity. ... 267
Figure 83: Validation microarray variance-mean dependence of raw and transformed protein microarray intensity data. ... 268
Figure 84: Parallel coordinates plots comparing autoantibody binding signal intensity for target antigens in various cohorts. .. 270

Figure 85: Parallel coordinates plots comparing autoantibody binding signal intensity for target antigens in early stage cancer samples from various centres. .. 271

Figure 86: Parallel coordinates plots comparing the split in autoantibody binding signal intensity for early stage cancer samples with healthy, benign and late stage cancer cohorts. .. 272

Figure 87: Box-and-whisker plots representing the normalised signal intensity of samples from each cohort for autoantibodies (A) anti-ANXA1, (B) anti-ARP3 and (C) anti-SAHH. .. 275

Figure 88: Box-and-whisker plots representing the normalised signal intensity of samples for autoantibodies (A) anti-ANXA1, (B) anti-ARP3 and (C) anti-SAHH in cancer stage-specific cohorts compared to healthy and benign controls. .. 275

Figure 89: Box-and-whisker plots representing the anti-ANXA1 normalised signal intensity of samples from different collection centre. .. 277

Figure 90: Box-and-whisker plots representing the anti-SAHH normalised signal intensity of samples from different collection centre. .. 278

Figure 91: Box-and-whisker plots representing the normalised signal intensity of samples from the IMU. .. 279

Figure 92: Box-and-whisker plots representing the normalised signal intensity of samples within the specified collection centre. .. 281

Figure 93: Box-and-whisker plots representing the anti-ANXA1 normalised signal intensity of samples from validation protein microarray. .. 283

Figure 94: Box-and-whisker plots representing the anti-SAHH normalised signal intensity of samples from validation protein microarray. .. 285

Figure 95: ROC curves generated from the normalised protein microarray data for autoantibody candidates anti-ANXA1 (A) and anti-SAHH (B) when differentiating early stage cancer samples from controls. .. 286
Figure 96: ROC curve generated from the LDA of dual-biomarker panel anti-ANXA1 and anti-SAHH for differentiating early stage cancer cases from controls...289

Figure 97: Analysis of CA125 serum concentration in patients included in the validation cohort. ...291

Figure 98: ROC curves generated from the LDA of the top 2 autoantibody candidates with CA125 for discriminating early stage I ovarian cancer patients from healthy and benign cases. ..294

Figure 99: Box-and-whisker plots representing the anti-ANXA1 raw signal intensity of samples from the verification and validation protein microarray.300

Figure 100: ROC curves generated from the anti-ANXA1 raw signal intensity when differentiating cancer samples from controls analysed in the verification and validation protein microarray. ..301

Figure 101: Box-and-whisker plots representing (A) the anti-ANXA1 raw signal intensity (CA125-matched cohort) and (B) CA125 concentration of samples from the verification and validation protein microarray.303

Figure 102: ROC curves generated from the raw intensity data and LDA of anti-ANXA1 with CA125 for discriminating early stage ovarian cancer patients from healthy and benign controls. ..305

Figure 103: ROC curve generated from the raw intensity data and LDA of anti-ANXA1 with CA125 for discriminating early stage I ovarian cancer patients from healthy individuals. ..307
List of Tables

Table 1: Incidence of cancer arising from different ovarian histological types (table adapted from 3)..1
Table 2: Incidence of cancer arising from different histological subtypes of ovarian carcinoma (table adapted from 1)..2
Table 3: Stage of ovarian cancer at detection and the respective survival outcome (table adapted from 9). ..3
Table 4: Biological, structural and functional characteristics of the five immunoglobulin isotypes. Table adapted from 83 ..13
Table 5: Characteristics of the four IgG subtypes. Table adapted from 81,83 14
Table 6: Identified ovarian cancer autoantibodies and applied technique...........24
Table 7: Autoantibodies to known cancer antigens in ovarian cancer.46
Table 8: Formulas used for the determination of an ion’s m/z by a TOF mass analyser..55
Table 9: Different modes of separation by HPLC. ..59
Table 10: Spectral properties of the CyDyes implemented in DIGE.63
Table 11: Studies utilising ICPL to relatively quantify different proteomes..........69
Table 12: Protocol parameters employed for IEF of protein samples on an 11 cm immobiline DryStrip gel. ...91
Table 13: Protocol parameters employed for IEF of protein samples on a 24 cm immobiline DryStrip gel. ...104
Table 14: Approximate detection limit of tested ECL substrates.120
Table 15: Protein identifications for spots detected by 2D-SEPRA......................134
Table 16: Experimental parameters for generating immunoaffinity columns with Affi-Gel® Hz gel...152
Table 17: Experimental parameters for generating immunoaffinity columns with Affi-Gel® 10 gel ...152
Table 18: Discovery cohort demographics. ..163
Table 19: Immunoaffinity chromatography parameters employed for the analysis of the discovery cohort...164

XIII
Table 20: Number of identified and relatively quantified proteins in representative gel slice #14.. 178
Table 21: Variance of commonly quantified proteins between ICPL control experiments (representative gel slice #14).. 180
Table 22: Identified and relatively quantified proteins in OVCA immunoprecipitation samples. .. 185
Table 23: Enriched autoantigens quantified using more than one or two doublets. ... 186
Table 24: Proteins identified in the top 4 functional networks. Candidate autoantigens are bold (gene names). .. 191
Table 25: Number of autoantigens associated with the top 5 disease networks. 193
Table 26: Enriched autoantigens associated with the malignant ovarian neoplasm network. Bold: Proteins common to the cancer functional network;.. 193
Table 27: Number of autoantigens associated with the top 5 biological functions. ... 194
Table 28: Top 5 significant canonical pathways. ... 196
Table 29: Comparative analysis of GO annotations for all and selected candidate biomarkers derived from the PANTHER database. ... 202
Table 30: Verification cohort demographic information. ... 204
Table 31: Collated analysis of variance for top 11 autoantibodies (p<0.001). 214
Table 32: Significant difference (p-value) between cohorts from post-hoc (Tukey’s HSD) analysis for the top 11 autoantibody candidates.. 217
Table 33: ROC AUC for the top 9 autoantibody candidates. .. 217
Table 34: Sensitivity and specificity of the top 3 autoantibody candidates for early stage ovarian cancer as determined by ROC curve analysis. .. 220
Table 35: Sensitivity and specificity of various autoantibody biomarker panels for ovarian cancer as determined by ROC curve analysis of LDA generated data. . 225
Table 36: Sensitivity and specificity of various autoantibody biomarker panels for early ovarian cancer as determined by ROC curve analysis of LDA generated data. ... 226
Table 37: Sensitivity and specificity of CA125 for ovarian cancer as determined by ROC curve analysis. ... 228
Table 38: Sensitivity and specificity of various biomarker panels for ovarian cancer (n=37) compared to controls (n=55) as determined by ROC curve analysis of LDA generated data. ... 230
Table 39: Sensitivity and specificity of various biomarker panels for early stage ovarian cancer (n=17) compared to controls (n=55) as determined by ROC curve analysis of LDA generated data. ... 233
Table 40: Various descriptors of the top 3 autoantibody-target antigens. 238
Table 41: Autoantibody signal in samples analysed by protein microarray and ELISA. ... 247
Table 42: Anti-ARP3 autoantibody signal in samples analysed by protein microarray and ELISA. ... 251
Table 43: Validation cohort demographic information. .. 263
Table 44: Validation microarray ANOVA for autoantibodies anti-ARP3, anti-SAHH and anti-ANXA1. ... 273
Table 45: Significant difference (p-value) between cohorts from post-hoc (Tukey’s HSD) analysis for anti-ANXA1 autoantibody. ... 273
Table 46: Sensitivity and specificity of anti-ANXA1 and anti-SAHH for early stage ovarian cancer as determined by ROC curve analysis. .. 287
Table 47: Sensitivity and specificity of CA125 for early ovarian cancer as determined by ROC curve analysis... 292
Table 48: Sensitivity and specificity of various autoantibody biomarker panels for early stage I ovarian cancer (n=11) from healthy and benign controls (n=57) as determined by ROC curve analysis of LDA generated data. 295
Table 49: Comparison of the verification (PM1) and validation (PM2) protein microarray as determined by ROC curve analysis of LDA generated data for discriminating early stage I ovarian cancer (n=10) from healthy and benign controls (n=55) ... 297
Table 50: Comparison of biomarker effectiveness from PM1 and PM2 at a similar percentage of sensitivity or specificity for early stage I ovarian cancer 299
Table 51: Sensitivity and specificity of anti-ANXA1 for ovarian cancer as determined by ROC curve analysis of both the verification and validation cohort. ..302

Table 52: Sensitivity and specificity of CA125 and/or anti-ANXA1 for early stage ovarian cancer as determined by ROC curve analysis of both the verification and validation cohort. ..304

Table 53: Sensitivity, specificity, PPV and NPV of CA125 and/or anti-ANXA1 for stage I ovarian cancer as determined by ROC curve analysis of both the verification and validation cohort. ..308
Abstract

Epithelial ovarian cancer accounts for 5% of all cancer deaths and greater than 50% of all gynaecological cancer deaths. It presents at a late clinical stage in more than 60% of patients, and is associated with a 5-year survival of only 30% in this group. In contrast, the 5-year survival for patients with organ-confined stage I ovarian cancer exceeds 90%, and most patients are cured of their disease. Thus, the detection of early stage ovarian cancer is the best way to improve survival. No clinically applicable method exists for the early detection of ovarian cancer. Hence, there is an unmet medical need for an accurate screening test.

Most scientific efforts towards early detection are focused on the discovery of tumour-associated antigens (TAA). Autologous antibodies against TAAs, however, may serve as more sensitive diagnostic markers. They circulate in the blood before TAAs and are usually more abundant than the TAAs themselves as a result of amplification through the humoral immune response. Accumulating evidence also suggests that a humoral response already exists during malignant transformation when aberrant gene expression is translated into premalignant cellular changes.

In this thesis, potential autoantibody biomarkers for ovarian cancer were discovered, verified and validated as an early detection test. A new immunoproteomic strategy was developed to identify novel autoantibodies that were elevated in serous ovarian cancer patients. Lysate extracted from the ovarian tissue of a patient was applied to an immunoaffinity column generated with autologous antibodies and a paired control immunoaffinity column. Relative quantification of captured autoantigens was performed using isotope coded protein label (ICPL) technology coupled with high resolution LC-MS. At a protein ratio cut-off of 1.45-fold, 148 autoantibodies were found to be enriched in ovarian cancer patients compared to the corresponding controls.
Upon bioinformatic prioritisation 50 autoantibody candidates were selected for verification. Protein microarray analysis of 98 samples revealed 9 autoantibody candidates to be significantly different in early stage cancer patients compared to healthy and benign controls. Biomarker candidates anti-ANXA1, anti-SAHH and anti-ARP3 showed the greatest potential where each marker achieved greater than 90% specificity at 83.3% sensitivity. As a 4-biomarker panel with the ‘gold standard’ for ovarian cancer detection, cancer antigen (CA)125, a sensitivity of 76.5% at 100% specificity was attained. These values of sensitivity and specificity for early stage ovarian cancer surpassed the minimum requirements for an implementable screening test and showed great promise as a diagnostic tool.

Validation of the top three autoantibody candidates using protein microarray revealed anti-ANXA1 to be the most robust and effective biomarker for stage I cancer detection. As a single biomarker anti-ANXA1 had 81.8% sensitivity and 71.9% specificity for stage I cancer compared to healthy and benign controls. Excitingly, in combination with CA125, a sensitivity of 71.4% at 100% specificity was achieved when differentiating stage I cancer patients from healthy individuals. For this level of effectiveness a positive and negative predictive value of 100% and 99.99% was achieved, respectively. Therefore, a biomarker panel containing anti-ANXA1 and CA125 may enable the development of a detection test that can be used to screen for stage I serous ovarian cancer in the general population. This promising discovery demands further investigation where continuing analysis in prospective samples is essential.

The discovery of a screening test is crucial to reduce the morbidity and mortality caused by ovarian cancer. This study investigates the presence of differential autoantibody signatures in serous ovarian cancer patients as potential biomarkers. Additionally, those identified TAAs that are functionally involved in carcinogenesis could also serve as therapeutic targets. Finally, the immunoproteomic approach developed here could be used in studies aiming to discover novel autoantibody biomarkers for other asymptomatic malignancies.
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Karina Martin and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis (as listed in the publications list below) resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Karina Martin

..
Acknowledgement of Help

A successful post-doctoral candidature is measured by the contribution of the work to the body of knowledge for scientists, clinicians and the broader community. However, it could not be achieved without learning, personal growth and support.

To my primary supervisor, Peter Hoffmann, thank you for accepting me into your amazing lab. The confidence you showed in my abilities allowed me to extend my skills beyond that of a typical PhD student. Under your guidance I developed the confidence to take on different challenges, perform experiments that were new to the lab and drive the research that is written on these pages.

My work would not have reached the level of success without the help from my secondary supervisor, Martin Oehler. Your passion to help women and their families that are impacted by gynecological diseases is inspiring. Thank you for your encouragement, enthusiasm and sharing your knowledge. And finally, to my third supervisor Carmela Ricciardelli, thank you for all the support you have provided over the years. Your influence has shaped my thoughts and approach to research.

I would also like to acknowledge the help of others from external labs and institutes. To Inge Koch, the most intelligent and personable statistician I have had the privilege to work with, thank you. Your insight, knowledge and attitude towards data has always impressed me and in turn made me more interested and passionate about statistics. Your advice and help had a great influence on the quality of work presented in this thesis.

To Noor Lokman, Carmen Macsai and past lab members from the Ricciardelli group, thank you for your help with the collection, organisation and retrieval of ovarian cancer samples as well as your friendship. I wish you well for all future endeavors. Thank you Manuela Klingler-Hoffmann and Adriana Caon for all your advice regarding antibodies, immunoaffinity techniques and ELISAs. Your contribution was extremely valuable and much appreciated.

And finally, a special acknowledgement is made to the research groups, biobanks and institutes that have contributed precious early stage ovarian cancer samples to this study. They are the Royal Adelaide Hospital (SA, Australia), Prince Henry’s Institute of Medical Research (VIC, Australia), Innsbruck Medical University (Innsbruck, Austria), Ontario Institute for Cancer Research (ON, Canada), Fox Chase Cancer Centre (PA, USA), Tumorbank Ovarian Cancer Network (Berlin, Germany) and the National University of Singapore (Singapore). The significance of this work could not have been achieved without their contribution.
Acknowledgements

There are many people within and outside the lab that I would like to thank.

To my mentors, Megan Penno, Sandra Hack, Julia Humphries, James Eddes and Florian Weiland, I have learnt so much from each of you and have immensely enjoyed the time I worked alongside you. You are all inspiring individuals and I will miss you.

To Ove, my fellow PhD student (at the time), we have made many memories over 4 years. I don’t have all day to specify but suffice to say it was LEGEN…wait for it…DARY…legendary.

And although we hadn’t worked together long I enjoyed getting to know and working with Stephan Meding and Peter McCarthy. We will always have shared the nightmare that is the Orbitrap.

Many many thanks goes to Chris Cursaro for the countless number of times he helped me and the lab with anything and everything. It would not have been the same without you around the lab.

To my family and friends, thank you for your unwavering support and love during this challenging time in my life. You are my world and I love you.

Last but not least, to my husband Tim, at every step along the way I knew you were there and that made a world of difference. Now lets go have some fun.
Publications

Directly related to thesis:

Arising from thesis:

Presentations

Martin, K., Ricciardelli, C., Oehler, M.K., Hoffmann, P. Utilising quantitative immunoproteomics to reveal differential autoantibody signatures in serous ovarian cancer patients. Poster presentation delivered at the 11th Annual HUPO World Congress, Boston, Massachusetts, USA, September, 2012

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>µl</td>
<td>Microlitre</td>
</tr>
<tr>
<td>1-DE</td>
<td>One-dimensional poly-acrylamide gel electrophoresis</td>
</tr>
<tr>
<td>2-DE</td>
<td>Two-dimensional poly-acrylamide gel electrophoresis</td>
</tr>
<tr>
<td>AA</td>
<td>Amino acid</td>
</tr>
<tr>
<td>Ab</td>
<td>Antibody</td>
</tr>
<tr>
<td>ACN</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>AU</td>
<td>Absorbance units</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>CHAPS</td>
<td>3[(3-Cholamidopropyl)dimethylammonio]-propanesulfonate</td>
</tr>
<tr>
<td>CID</td>
<td>Collision induced dissociation</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>DIGE</td>
<td>Difference gel electrophoresis</td>
</tr>
<tr>
<td>DMP</td>
<td>Dimethyl pimelimidate dihydrochloride</td>
</tr>
<tr>
<td>DSS</td>
<td>Disuccinimidyl suberate</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>ECL</td>
<td>Enhanced chemiluminescence</td>
</tr>
<tr>
<td>ESI</td>
<td>Electrospray ionisation</td>
</tr>
<tr>
<td>ETD</td>
<td>Electron transfer dissociation</td>
</tr>
<tr>
<td>FA</td>
<td>Formic acid</td>
</tr>
<tr>
<td>Fab</td>
<td>Fragment antigen binding</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Fc</td>
<td>Crystallisable fragment</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Association</td>
</tr>
<tr>
<td>FIGO</td>
<td>International Federation of Gynecology and Obstetrics</td>
</tr>
<tr>
<td>fmol</td>
<td>Femtomole</td>
</tr>
<tr>
<td>G-250</td>
<td>Colloidal Coomassie</td>
</tr>
<tr>
<td>HCCA</td>
<td>α-cyano-4-hydroxy cinnamic acid</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>HEPES</td>
<td>2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonate</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>hr</td>
<td>Hour</td>
</tr>
<tr>
<td>HRAM</td>
<td>High resolution, accurate mass</td>
</tr>
<tr>
<td>I.D.</td>
<td>Inner diameter</td>
</tr>
<tr>
<td>IAA</td>
<td>Iodoacetamide</td>
</tr>
<tr>
<td>ICAT</td>
<td>Isotope coded affinity tags</td>
</tr>
<tr>
<td>ICPL</td>
<td>Isotope coded protein labels</td>
</tr>
<tr>
<td>IEF</td>
<td>Isoelectric focusing</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunoglobulin</td>
</tr>
<tr>
<td>IHC</td>
<td>Immunohistochemistry</td>
</tr>
<tr>
<td>IP</td>
<td>Immunoprecipitation</td>
</tr>
<tr>
<td>IPA</td>
<td>Ingenuity pathway analysis</td>
</tr>
<tr>
<td>IT</td>
<td>Ion trap</td>
</tr>
<tr>
<td>iTRAQ</td>
<td>Isotope tagging for relative and absolute quatitation</td>
</tr>
<tr>
<td>LC</td>
<td>Liquid chromatography</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>LIT</td>
<td>Linear ion trap</td>
</tr>
<tr>
<td>m</td>
<td>Mass</td>
</tr>
<tr>
<td>m/z</td>
<td>Mass-to-charge</td>
</tr>
<tr>
<td>MALDI</td>
<td>Matrix assisted laser desorption/ionization</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>Mr</td>
<td>Molecular Weight</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectrometry</td>
</tr>
<tr>
<td>MS/MS</td>
<td>Tandem MS</td>
</tr>
<tr>
<td>Nd:YAG</td>
<td>Neodymium-doped yttrium aluminium garnet</td>
</tr>
<tr>
<td>NHS</td>
<td>N-hydroxysuccinimide</td>
</tr>
<tr>
<td>nLC</td>
<td>Nano-LC</td>
</tr>
<tr>
<td>OCS</td>
<td>Ovarian cancer screening</td>
</tr>
<tr>
<td>OVA</td>
<td>Ovalbumin</td>
</tr>
<tr>
<td>PA</td>
<td>Phosphoric acid</td>
</tr>
<tr>
<td>PAGE</td>
<td>Poly-acrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>pI</td>
<td>Isoelectric point</td>
</tr>
<tr>
<td>pmol</td>
<td>Picomole</td>
</tr>
<tr>
<td>PMSF</td>
<td>Phenylmethanesulfonylfluoride</td>
</tr>
<tr>
<td>PMT</td>
<td>Photon multiplier tube</td>
</tr>
<tr>
<td>PTMs</td>
<td>Post-translational modifications</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidene fluoride</td>
</tr>
<tr>
<td>Q</td>
<td>Quadrupole</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomised controlled trial</td>
</tr>
<tr>
<td>rf</td>
<td>Radio frequency</td>
</tr>
<tr>
<td>roc</td>
<td>Risk of ovarian cancer</td>
</tr>
<tr>
<td>ROC</td>
<td>Receiver operating characteristic</td>
</tr>
<tr>
<td>RP</td>
<td>Reverse-phase</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulphate</td>
</tr>
<tr>
<td>sec</td>
<td>second</td>
</tr>
<tr>
<td>SILAC</td>
<td>Stable isotope labeling by amino acids in cell culture</td>
</tr>
<tr>
<td>S/N</td>
<td>Signal-to-noise</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>TAA</td>
<td>Tumour associated antigen</td>
</tr>
<tr>
<td>TBST</td>
<td>Tris-buffered saline Tween-20</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic acid</td>
</tr>
<tr>
<td>TIC</td>
<td>Total ion chromatogram</td>
</tr>
<tr>
<td>TOF</td>
<td>Time-of-flight</td>
</tr>
<tr>
<td>T_R</td>
<td>Retention time</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris(hydroxymethyl)-aminomethane</td>
</tr>
<tr>
<td>VSN</td>
<td>Variance stabilisation and normalisation</td>
</tr>
<tr>
<td>XIC</td>
<td>Extracted ion chromatogram</td>
</tr>
<tr>
<td>z</td>
<td>charge</td>
</tr>
</tbody>
</table>
Chapter 1 Manuscript Context

A deep understanding of ovarian cancer, the immune system, biomarkers as well as proteomics and mass spectrometry was essential to perform the quality of research presented in this thesis. To this end a comprehensive literature review on ovarian cancer autoantibody biomarkers and discovery techniques was performed. Furthermore, an appreciation of the current 'gold standard' biomarker for ovarian cancer, cancer antigen (CA)125 was critical in order to understand the current challenges, requirements and need for a screening test for ovarian cancer. In joint authorship, mining of the literature was performed to produce an extensive review on the structure and function of CA125. These two reviews, which form parts of chapter 1, summarise the current knowledge and challenges faced in the field of ovarian cancer detection and screening.
Chapter 1 Manuscript 1

Exploring the Immunoproteome for Ovarian Cancer Biomarker Discovery

Int. J. Mol. Sci. 2011, 12, 410-428; doi:10.3390/ijms12010410

International Journal of Molecular Sciences ISSN 1422-0067
www.mdpi.com/journal/ijms

Review

Karina Martin¹, Carmela Ricciardelli², Peter Hoffmann¹ and Martin K. Oehler²,3*

¹ Adelaide Proteomics Centre, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia; E-Mails: karina.martin@adelaide.edu.au (K.M.); peter.hoffmann@adelaide.edu.au (P.H.);
² Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, Robinson Institute, University of Adelaide, Adelaide, South Australia; E-Mail: carmela.ricciardelli@adelaide.edu.au
³ Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, Australia

* Author to whom correspondence should be addressed; E-Mail: martin.oehler@adelaide.edu.au; Tel.: +61-8-82224816; Fax: +61-8-82224816.

Received: 30 November 2010 / Accepted: 12 January 2011 / Published: 14 January 2011

Keywords: ovarian cancer; autoantibodies; immunoproteomics
Statement of authorship for manuscript 1

Karina Martin (Candidate)

Statement of contribution (in terms of the conceptualisation of the work, its realisation and its documentation)

Performed the literature review and wrote the manuscript.

Certification that the statement of contribution is accurate

Signed……………………………………………………………………Date……………………

Carmela Ricciardelli (co-author)

Statement of contribution (in terms of the conceptualisation of the work, its realisation and its documentation)

Manuscript evaluation.

Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis

Signed……………………………………………………………………Date……………………

XXX
Peter Hoffmann (co-author)

Statement of contribution (in terms of the conceptualisation of the work, its realisation and its documentation)

Manuscript evaluation.

Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis

Signed…………………………………………………………Date……………………

Martin K Oehler (co-author)

Statement of contribution (in terms of the conceptualisation of the work, its realisation and its documentation)

Manuscript evaluation and acted as corresponding author.

Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis

Signed…………………………………………………………Date……………………
Chapter 1 Manuscript 2

Deciphering the Molecular Nature of Ovarian Cancer Biomarker CA125

International Journal of Molecular Sciences ISSN 1422-0067
www.mdpi.com/journal/ijms

Review

Karina Martin1,†, Florian Weiland1,†, Martin K. Oehler2, Peter Hoffmann1,*

1 Adelaide Proteomics Centre, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia; E-Mails: florian.weiland@adelaide.edu.au (F.W.); karina.martin@adelaide.edu.au (K.M)

2 Research Centre for Reproductive Health, Robinson Institute, University of Adelaide, Adelaide, SA 5005, Australia; E-Mail: martin.oehler@adelaide.edu.au

† These authors contributed equally to this work.

* Author to whom correspondence should be addressed; E-Mail: peter.hoffmann@adelaide.edu.au; Tel.: +61-8-8313-5507; Fax: +61-8-8313-4362.

Received: 2 July 2012; in revised form: 3 July 2012 / Accepted: 13 August 2012 / Published: 22 August 2012

Keywords: CA125; MUC16; ovarian cancer; biomarker; mass spectrometry
Statement of authorship for manuscript 2

Karina Martin (Candidate)

Statement of contribution (in terms of the conceptualisation of the work, its realisation and its documentation)

Performed the literature review and wrote the manuscript.

Certification that the statement of contribution is accurate

Signed………………………………………………………….Date……………………

Florian Weiland (co-author)

Statement of contribution (in terms of the conceptualisation of the work, its realisation and its documentation)

Performed the literature review and wrote the manuscript.

Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis

Signed………………………………………………………….Date……………………

XXXIII
Mcn

Martin K Oehler (co-author)

Statement of contribution (in terms of the conceptualisation of the work, its realisation and its documentation)

Manuscript evaluation.

Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis

Signed…………………………………………………..Date……………………

Peter Hoffmann (co-author)

Statement of contribution (in terms of the conceptualisation of the work, its realisation and its documentation)

Manuscript evaluation and acted as corresponding author.

Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis

Signed…………………………………………………..Date……………………