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Abstract

Microstructured optical fibres (MOFs) are a design of optical fibre comprising

a series of longitudinal air channels within a thread of material that form a

waveguide for light. The flexibility of this design allows optical fibres to be

created with adaptable and previously unrealised optical properties. A MOF

is typically constructed by first creating a macroscopic version of the design,

known as a preform, with a centimetre-scale diameter that is later drawn into

a fibre with a micrometer-scale diameter.

There are several methods for constructing a preform. In the extrusion

method molten material is forced through a die containing an array of blocking

elements that match the required pattern of channels. Preforms may also be

constructed by stacking tubes and fusing them together with heat. In both

processes the fluid flow that arises can deform the air channels, rendering the

fibre useless. At present there is only a limited understanding of the relative

importance of the various physical parameters in determining the final preform

geometry, which means that the development of new MOF technology requires

time-consuming and costly experimentation.

This thesis develops mathematical models of the fluid flows that occur

during the extrusion and stacking methods of MOF preform fabrication. These

models are used to determine which physical mechanisms are important during

xv



the manufacturing process so as to inform the fabrication of MOF preforms.

A model is constructed of a fixed slender fluid cylinder with internal structure

stretching under gravity and with surface-tension-driven deformation. The

molten material is modelled as a Newtonian fluid with a temperature-dependent

viscosity, which is assumed known. The variables are expanded as series in

powers of a slenderness parameter so that, after dropping higher-order terms,

the resulting equations partially decouple into a one-dimensional model for

the axial flow and a two-dimensional model for the transverse flow. Under a

suitable transformation of variables the transverse equations are precisely the

Stokes equations with unit surface tension. After reviewing the use of complex

variables to represent the transverse problem, three numerical solution methods

are considered: two based upon spectral methods and one using the method of

fundamental solutions (MFS). These methods are compared for their efficiency

and accuracy.

Several example solutions for stretching cylinders are presented and the role

of surface tension is investigated using approximate solutions derived for zero

and small surface tension. The model is validated against experimental data and

found to be in good agreement. The stretching model is extended to the case of

an extruded fluid cylinder, neglecting extrudate-swell effects, where again the

fluid flow decouples in axial and transverse models. The results are compared

with experimental observations and the model used to analyse the formation

of distortions during preform extrusion and how these may be controlled.

Two problems related to preform fabrication are considered that feature cross

sections with non-circular initial outer boundaries. A technique is developed

for deriving initial conformal maps describing such domains, which are used in

the stretching and extrusion models to analyse the proposed problems.
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