Predictive modelling and experimental studies on taste-taint as geosmin (GSM) and 2-methylisoborneol (MIB) in farmed barramundi (Lates calcarifer)

by

Priyantha Indrajith Hathurusingha Arachchige

Thesis submitted for the degree of Doctor of Philosophy

in

School of Chemical Engineering
The University of Adelaide

October 2015
DECLARATION

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Mr Priyantha Indrajith Hathurusingha Arachchige
Date ..
EXECUTIVE SUMMARY

Fish farming with Recirculating Aquaculture Systems (RAS) is becoming widespread to fill the demand gap due to diminishing wild caught sea foods. Barramundi fish has a high demand as a premium Australian seafood, and is grown as an RAS farmed-fish. However, the accumulation of ‘earthy’ or ‘muddy’ off-flavours due to taint accumulation as geosmin (GSM) or 2-methylisoborneol (MIB) in the fish-flesh of is a major concern. Inconsistent quality of farmed barramundi has been identified as a major issue in buyer resistance.

Established predictive models for chemical taint in fish-flesh have been based on steady-state assumptions. However, it was thought debatable as to whether a steady-state assumption could be upheld i.e. there was no evidence that the net chemicals exchange is zero across the fish body and RAS water phase.

Against this background, an original, new and quantitative model that predicts the time dependent concentration of taste-taint chemicals as GSM and MIB in harvested fish-flesh was developed (Hathurusingha & Davey, 2013; Hathurusingha & Davey, 2014; Davey & Hathurusingha, 2014). This model is based on conservation of mass and energy, and thermodynamic processes established in (bio)chemical engineering with chemical uptake and elimination routes into and from the fish considered.

The model was simulated for two RAS species, barramundi (Lates calcarifer) and rainbow trout (Onchorhynchus mykiss) with independent data (n ≥ 14) and showed good agreement with experimental observations. A major benefit of this new model is that simulations can be used to investigate a range of growth protocols in RAS farming to minimize taint in fish-flesh. An advantage is that it can readily be simulated in standard spread-sheeting tools by users with a range of sophistication.

Extensive experimental testing of the new model was carried out in both pilot- and commercial-scale plants using low concentrations (≤ 10 mg L⁻¹) of hydrogen peroxide (H₂O₂) as a benign biocide to limit natural occurring taste-taint chemicals in the RAS growth water, and subsequently into the fish-flesh. A dedicated methodology and new dosing apparatus (ProMinent Fluid Control Pty Ltd, Germany) for controlled H₂O₂ dosing was developed. The analyses of taste-taint chemicals as GSM and MIB in water and fish-flesh was carried out with Solid-Phase Micro-Extraction (SPME) followed by Gas Chromatography Mass spectroscopy (GC-MS) (skills training was obtained at both the University of Laval and University of Waterloo, Canada).

Preliminary investigations with a low concentration of H₂O₂ (5 mg L⁻¹) in pilot-scale (2,500 L) studies with barramundi fish demonstrated its potential to mitigate development of
GSM and MIB in RAS water. It was found that controlled dosing of low concentrations of
H$_2$O$_2$ did not impact the pH level in growth waters and was not detrimental to the health and
well-being of the fish as fingerlings (0.01 kg) and until harvest at 240 days (0.8 kg). Additional
benefits of H$_2$O$_2$ as benign biocide include a fish product of whiter colour, an increased
dissolved oxygen concentration (C_{Ox}) in the growth water, a reduction in the number of gill
flukes, and improved particles distribution with increased C:N ratio, and; improved availability
of organic carbon in the growth water.

Based on these preliminary investigations H$_2$O$_2$ was ‘optimised’ at a (low) concentration of
2.5 mg L$^{-1}$ as a benign biocide. This was investigated in commercial-scale studies (conducted at
Barra Fresh Farm, South Australia) for a typical growth of 240 day for barramundi as the
selected RAS fish.

The emerging risk methodology of Davey and co-workers (e.g. Chandrakash et al., 2015)
was applied for the first time to investigate quantitatively the impact of naturally occurring
fluctuations in taste-taint chemicals in the RAS water and their accumulation in the fish-flesh.
This predictive approach was justified because of the prohibitively expensive time and
analytical costs that experimental studies would have necessitated. A Refined Monte Carlo
(with Latin Hypercube) simulation of GSM and MIB in the growth water (C_w), water
temperature (T) and growth time (t) was used to simulate typical RAS farmed barramundi. It
was found in RAS farming of barramundi it would be expected some 10.10 % of all 240 day
harvests, averaged over the long term, would result in fish with taste-taint as GSM above the
desired consumer rejection threshold concentration (0.74 µg kg$^{-1}$) due to natural fluctuations in
an uncontrolled RAS environment. For MIB this predicted failure rate was 10.56 %
(Hathurusingha & Davey, 2016). The vulnerability to taste-taint failure as GSM and MIB was
shown to be principally controlled by the time to fish harvest, and to a lesser extent by
concentration and fluctuation of these taint chemicals in the RAS water. This work was of
practical benefit because growth time can be readily controlled by farmers. The methodology
appears generalizable and therefore is applicable to a range of RAS farmed fish (and possible
crustaceans e.g. prawns- Macrobrachium sp.).

In extensive commercial-scale RAS studies with barramundi and controlled H$_2$O$_2$ dosing,
fish grown from fingerlings to harvest at 240 day was investigated. This was to observe an
entire production cycle. Results from a H$_2$O$_2$ ‘treated’ growth tank (30,000 L) were compared
directly with those obtained from an identical ‘control’ tank (30,000 L). Increased organic
matter (three (3) to four (4) times pilot-scale findings) reduced H$_2$O$_2$ efficacy through inhibiting
generation of reactive oxygen species (ROSs). This is thought to be a consequence of the need
to scale (48 times volume) the pilot-scale studies for in-tank mixing.
Analyses of fish-flesh ($n \geq 167$) showed (moderate) predicted exponential correlation between taste-taint concentrations in the fish-flesh and the growth-mass of the fish for both GSM and MIB as predicted. In addition, the research findings highlighted that accumulation of taste-taint compounds was mainly governed by the combined effect of mass of the fish (m_f) and taste-taint concentrations in the growth water (C_W).

Comparisons between the model predictions and experimental observations showed good agreement over the range of low taste-taint concentration (0 to 2, µg kg$^{-1}$), especially below the consumer rejection threshold (~ 0.7 µg kg$^{-1}$). However, a minor anomaly was an over-prediction for greater concentrations (2 to 11, µg kg$^{-1}$). Current predictions are therefore conservative or ‘safe’ by about 20%. Possible reasons for over prediction might be attributed to rapid fluctuation of taste-taint concentration in growth water with growth time and different (exponential) growth constants shown by larger and smaller fish, and; errors in obtaining representative samples from fish-flesh.

Model predictions and experiments further highlighted that the new model could be meaningfully applied to RAS systems with lower variations and/or lower taste-taint concentrations in RAS growth water.

These theoretical and experimental results are the first for RAS farmed fish covering an entire production period to harvest.

Approval for this research was gained from both *The University of Adelaide Animal Ethics Committee Science* and, *Australian Pesticides and Veterinary Medicines Authority* (see Appendices F and G).

Research findings will be of immediate benefit to RAS farmers, fish processors and risk analysts in foods processing.
ACKNOWLEDGMENTS

I thank my principal supervisor Dr K R (Ken) Davey (FICheM), School of Chemical Engineering for his patience, instructions, encouragement and time for guiding me throughout this research. I especially acknowledge his immense help and support in resolving various issues that arose. I thank my co-supervisor A/Prof. David Lewis (FICheM), School of Chemical Engineering, and industry supervisor Ms Sue Poole for advice.

I thank Mr Steven Mawer, proprietor of Southern Barramundi Farm, South Australia, for the use of his RAS facility for the pilot-scale studies, and Mr and Mrs Adrian Mathews proprietors of Barra Fresh Farm, South Australia, for use of their RAS facility for the commercial-scale studies.

I acknowledge gratefully the Cooperative Research Centre (CRC) Seafood Australia (Grant 757/2012) for a scholarship and travel grants, and; Adelaide Graduate Research Scholarship (AGRS), The University of Adelaide. These permitted me to undertake training for analyses of taste-taint chemicals at the University of Laval Quebec, Canada, and practical applications of SPME technology at the University of Waterloo, Ontario, Canada. I would like to thank Prof. Grant Vandenberg and Prof. Janusz Pawliszyn, respectively of these Universities.

I am grateful to two companies: ProMinent Fluid Control Pty Ltd, Germany, and Global Pumps Pty Ltd, South Australia, for commissioning a special hydrogen peroxide (H$_2$O$_2$) dosing sensor. I wish to thank Dr Tony Hall, School of Earth and Environmental Sciences, The University of Adelaide for technical advice with GC/MS analyses. I am grateful to my research colleagues, especially, James Chu for help on the written work. Finally, I am indebted to my only brother Mr Indika Sanjeewa Hathurusingha for his encouragement and all-round support throughout the years when I was away from my home.

I hope that the results of my efforts justify the expectations and confidence of the people concerned, and the interest, help, and encouragement of my family, friends and colleagues.

DEDICATION

This thesis is dedicated my mother Mrs Kusumawathie Hathurusingha who passed away one year after starting my PhD research work. She was my inspiration in all my life and unfortunately she is not with us to see the success of my studies. I wish her attainment of supreme ‘Nibbana’ according to the Buddhist philosophy.
PUBLICATIONS FROM THIS RESEARCH

REFEREED SCIENTIFIC JOURNALS

REFEREED CONFERENCE PROCEEDING(S)

MANUSCRIPTS TO BE SUBMITTED AND IN PREPARATION

Hathurusingha, P.I., Davey, K.R., 2015. Modifying and validating the model for predicting the accumulation of geosmin (GSM) and 2-methylisoborneol (MIB) in RAS farmed barramundi (Lates calcarifer) with the von Bertalanffy growth function (VBGF). Ecological Modelling - in preparation.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	iii
ACKNOWLEDGMENTS	vi
PUBLICATIONS FROM THIS RESEARCH	vii
TABLE OF CONTENTS	viii
LIST OF FIGURES	xiv
LIST OF TABLES	xxi

CHAPTER 1 INTRODUCTION

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

2.1.1 Taste-taint chemicals

2.1.2 Taste-taint causing microorganisms

2.1.3 Factors influencing taste-taint producing microorganisms and release of taint chemicals

2.1.4 Taste-taint problem in RAS farmed fish

2.1.5 Bio-concentration of **GSM** and **MIB**

2.1.6 Taste-taint threshold

2.1.7 Taste-taint control methods

2.1.8 Recent developments and implications

2.1.9 Hydrogen peroxide (H_2O_2) as a potential biocide

2.1.10 Chemistry of **H$_2$O$_2$**

2.1.11 Recirculating Aquaculture system (RAS)

2.2 Barramundi farming and modelling in RAS

2.2.1 Taste-taint problem in RAS farmed barramundi

2.2.2 Overview of predictive models for chemical congeners in fish-flesh

2.2.3 Chronological development of a model for chemical congeners in fish

2.3 Models for predicting **GSM** and **MIB** in fish-flesh

2.3.1 Inadequacies of existing models

2.3.2 Development and limitations of predictive models

2.3.3 Factors to be considered in developing an adequate model for RAS fish

2.3.4 Benefits of the model to the supply chain

2.3.5 Risk analysis and predictive models

2.4 Concluding remarks

CHAPTER 3 SYNTHESIS OF A NEW TIME-DEPENDENT MODEL

3.1 Introduction

3.2 Synthesis of a new model

3.2.1 Background to the model synthesis
3.2.2 Uptake of GSM and MIB chemicals
3.2.3 Taint distribution in fish-flesh
3.2.4 Bio-transformation (metabolism)
3.2.5 Elimination of GSM and MIB taste-taint chemicals
3.2.6 Model synthesis
3.2.7 Rate constants k_1, k_2 and k_g
3.2.8 Illustrative simulations for GSM in barramundi (Lates calcarifer) fish-flesh

3.3 Results
3.3.1 Predicted GSM taint in barramundi fish-flesh

3.4 Discussion
3.4.1 Impact of varying GSM in growth water (C_W) on accumulation in fish-flesh
3.4.2 Impact of varying water temperature (T) on taint accumulation in fish-flesh
3.4.3 Generalized model and simulations for rainbow trout (Onchorhynchus mykiss)
3.4.4 Model validation with independent data
3.4.5 Applying the model to investigate RAS growth protocols on accumulated taint
3.4.6 The model for fish with S-curve growth
3.4.7 Benefits of the model to the supply chain

3.5 Concluding remarks

CHAPTER 4 MATERIALS AND METHODS
4.1 Introduction
4.1.1 GSM and MIB analysis in water and in fish-flesh
4.2 Analyses of GSM and MIB in RAS growth water
4.2.1 RAS water samples extraction with SPME (Solid-Phase Micro-Extraction)
4.2.2 SPME optimisation
4.3 Instrumentation - Gas Chromatography and Mass Spectroscopy (GC-MS) condition
4.3.1 Quantification of GSM and MIB in water
4.3.2 Computation of actual concentration in the samples
4.4 Determination of GSM and MIB concentration in fish-flesh
4.4.1 Sample preparation and distillation
4.4.2 Taste-taint chemicals extraction with SPME technique
4.4.3 Method optimisation for GSM and MIB extraction
4.4.4 Quantification of GSM and MIB in fish-flesh
4.5 Quality assurance of GSM and MIB analyses
4.5.1 Linearity and working range
4.5.2 Limit of detection (LOD)
4.5.3 Recovery of extraction using optimized condition
4.5.4 Intra-day reproducibility and inter-day repeatability
4.6 Hydrogen peroxide (H_2O_2) dosing apparatus
CHAPTER 5 PRELIMINARY STUDIES WITH HYDROGEN PEROXIDE

5.1 Introduction

5.1.1 This study

5.2 Materials and methods

5.2.1 Experimental site

5.2.2 Experimental Design

5.2.2.1 Preliminary study

5.2.2.2 RAS growth tanks

5.2.2.3 H₂O₂ dosing

5.2.2.4 H₂O₂ stock solution

5.2.2.5 Calibration of H₂O₂ sensor

5.2.3 Water and fish-fillet samples collection the analyses of GSM and MIB

5.2.4 Quantification of GSM and MIB in RAS water and fish-flesh

5.2.5 General water quality

5.2.6 Fish health

5.3 Results

5.3.1 Variation of GSM in growth waters

5.3.2 Variation of MIB in growth waters

5.3.3 GSM and MIB in fish-flesh

5.3.4 Water quality of the two tanks

5.4 Discussion

5.4.1 Variation of GSM and MIB in RAS growth waters

5.4.2 Possible mechanisms for the control of GSM and MIB by H₂O₂

5.4.3 Variation of pH and dissolved oxygen (C_OX) in the trial RAS tanks

5.4.4 Nutrients and water quality

5.4.5 Potential benefits and implications observed in H₂O₂ trials

5.5 Concluding remarks

CHAPTER 6 OPTIMISATION OF HYDROGEN PEROXIDE DOSING FOR COMMERCIAL-SCALE RAS APPLICATION

6.1 Introduction

6.1.1 This study

6.2 Materials and methods

6.2.1 Experimental design

6.2.2 Dosing apparatus setup

6.2.3 Water and fish sampling program
6.2.4 General water quality and fish health study

6.3 Results

6.3.1 Variation of GSM and MIB in growth water with 2.5 mg L\(^{-1}\)\(\text{H}_2\text{O}_2 \) dosing

6.3.2 Variation of GSM and MIB in growth water with 10.0 mg L\(^{-1}\)\(\text{H}_2\text{O}_2 \) dosing

6.3.3 GSM and MIB in fish-flesh

6.3.4 Water quality of the tanks

6.3.5 Fish health

6.4 Discussion

6.4.1 Comparison of the GSM concentrations in water from three (3) pilot-scale studies

6.4.2 Comparison of the MIB concentrations in water from three (3) pilot-scale studies

6.4.3 Comparison of GSM/MIB concentrations in fish-flesh from three (3) pilot-scale studies

6.4.4 Evaluation of the water quality of six (6) tanks

6.4.5 Fish health and well-being

6.5 Concluding remarks

CHAPTER 7 A Fr 13 CHEMICAL RISK ASSESSMENT FOR TASTE-TAINT ACCUMULATION AS GSM AND MIB IN BARRAMUNDI

7.1 Introduction

7.1.1 Fr 13 framework

7.2 Materials and methods

7.2.1 Fr 13 simulation of RAS

7.2.3 Defining Fr 13 taste-taint failure

7.2.4 Fr 13 computations

7.3 Results

7.4 Discussion

7.4.1 Prevalence of Fr 13 taste-taint failures

7.4.2 Consumer tolerance and taint failures

7.4.3 Probability distributions to define key input parameters

7.4.4 Impact of growth time on taint accumulation

7.4.5 Second-tier Fr 13 simulations and mitigating taint

7.4.6 Presenting and picturing Fr 13 taint accumulations

7.4.7 Results overview

7.5 Concluding remarks

CHAPTER 8 APPLICATION OF LOW CONCENTRATION HYDROGEN PEROXIDE IN COMMERCIAL-SCALE RAS TANKS AND MODEL VALIDATION

8.1 Introduction

8.1.1 This study

8.2 Materials and methods
8.2.1 Experimental site
8.2.2 Experimental Design
 8.2.2.1 Data collection plan
 8.2.2.2 Water and fish sampling plan
8.3 Commercial application of H$_2$O$_2$
 8.3.1 Preliminary study with fingerlings in a nursery tank
 8.3.2 Introduction of fingerlings to the commercial tanks
 8.3.3 The dosing point
 8.3.4 Dosing of H$_2$O$_2$ to commercial-scale RAS growth tank (2B)
 8.3.5 Optimisation of dosing
 8.3.5.1 Direct immersion of the dosing probe in RAS tank
 8.3.5.2 Use of a cage to avoid direct contact of H$_2$O$_2$ with fish
 8.3.5.3 Demonstrated benefit of a mixing tank
 8.3.5.4 Adoption of the protective cage and mixing tank
8.4 Results
 8.4.1 Fish growth curves for treated and control tanks
 8.4.2 Variations of the GSM and MIB in treated and control tanks
 8.4.2.1 GSM concentration in the RAS growth water
 8.4.2.2 MIB concentration in the RAS growth water
 8.4.2.3 MIB dominant taste-taint chemical in the RAS growth water
 8.4.3 Variation of lipid concentration in fish-fillets
 8.4.4 Dissolved oxygen (C_{OX}) and water temperature
 8.4.5 Water quality in the growth water of treated and control tanks
 8.4.6 GSM concentration in fish-flesh
 8.4.7 MIB concentration in fish-flesh
8.5 Discussion
 8.5.1 Fish growth
 8.5.2 Dissolved oxygen (C_{OX}) concentration and RAS water temperature
 8.5.3 GSM and MIB in growth water
 8.5.4 Accumulation of taste-taint with growth of fish
 8.5.5 Relationship between taste-taint concentration in RAS growth water and their concentration in fish-flesh
 8.5.6 Fish mortality
 8.5.7 Impact of H$_2$O$_2$ dosing on RAS growth water
 8.5.8 Impact of scale-up and organic matter on reduced efficacy of low concentration H$_2$O$_2$ in commercial-scale RAS
 8.5.9 Possible improvement in future development and studies
8.6 Predictive model validation for taste-taint
 8.6.1 Pre-exponential and exponential growth constants
 8.6.2 Lipid concentration
 8.6.3 Dissolved oxygen concentration
 8.6.4 Water temperature
 8.6.5 Computation of rate constant k_1 for fish from treated and control tanks
APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A definition of some important terms used in this study</td>
<td>186</td>
</tr>
<tr>
<td>B</td>
<td>Detailed solution to the model synthesis of Chapter 3</td>
<td>192</td>
</tr>
<tr>
<td>C</td>
<td>Standard Operating Procedures (SOPs) for microwave distillation</td>
<td>194</td>
</tr>
<tr>
<td>D</td>
<td>Standard Operating Procedures (SOPs) for low concentration H₂O₂ dosing apparatus</td>
<td>198</td>
</tr>
<tr>
<td>E</td>
<td>Photographic documentation of the pilot-scale preliminary study with 5 mg L⁻¹ H₂O₂</td>
<td>205</td>
</tr>
<tr>
<td>F</td>
<td>Approvals from The University of Adelaide Animal Ethics Committee Science to research with barramundi fish</td>
<td>208</td>
</tr>
<tr>
<td>G</td>
<td>Permit from Australian Pesticides and Veterinary Medicines Authority (APVMA) to use H₂O₂ in this research</td>
<td>211</td>
</tr>
<tr>
<td>H</td>
<td>Fish mortalities in commercial treated- and control- tanks during the first nine (9) week period</td>
<td>212</td>
</tr>
<tr>
<td>I</td>
<td>Photographic documentation of commercial-scale application of H₂O₂ to RAS growth water</td>
<td>213</td>
</tr>
<tr>
<td>J</td>
<td>Calculated model input parameters: k₁, k₂ and k₈ for GSM and MIB in fish-flesh from commercial control- and treated- tanks</td>
<td>215</td>
</tr>
<tr>
<td>K</td>
<td>An example simulation of the new model validation for both GSM and MIB taste-taint chemicals from the commercial-scale RAS studies</td>
<td>231</td>
</tr>
</tbody>
</table>

NOMENCLATURE

REFERENCES
<table>
<thead>
<tr>
<th>Listing</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 2.1</td>
<td>Schematic of GSM and MIB (Tucker, 2000)</td>
<td>6</td>
</tr>
<tr>
<td>Fig. 2.2</td>
<td>Atomic structure of H$_2$O</td>
<td>18</td>
</tr>
<tr>
<td>Fig. 3.1</td>
<td>Schematic of fish with uptake (k_1C_W) and elimination ($k_2y + k_3y$) of taint chemicals (as GSM or MIB). The term ‘y’ indicates the taste-taint in fish-flesh (as GSM or MIB)</td>
<td>36</td>
</tr>
<tr>
<td>Fig. 3.2</td>
<td>Fit of growth data (●) of Glenn et al. (2007) for barramundi fish farmed in ponds at a water temperature 28 °C($m_f = 0.0519 \exp^{0.013t}$, $R^2 = 0.9623$)</td>
<td>39</td>
</tr>
<tr>
<td>Fig. 3.3</td>
<td>Predicted taint as GSM (---) and MIB (——) in barramundi-flesh with RAS growth time at a growth water temperature 28 °C with C_W, respectively, 0.0004 and 0.003, μg L$^{-1}$</td>
<td>43</td>
</tr>
<tr>
<td>Fig. 3.4</td>
<td>Comparison of predicted taint (y) as GSM in barramundi fish-flesh with growth time with constant (0.0004 μg L$^{-1}$) C_W (---) and C_W varying (——) (0.00026 to 0.00068, μg L$^{-1}$) with growth time (t)</td>
<td>45</td>
</tr>
<tr>
<td>Fig. 3.5</td>
<td>Predicted taint (y) as GSM in barramundi fish-flesh with RAS growth time at two (2) different growth water temperature: 28 °C (---) and 18 °C (——)</td>
<td>46</td>
</tr>
<tr>
<td>Fig. 3.6</td>
<td>Comparison between observed and predicted taste-taint (y) as GSM in farmed barramundi ($n = 14$) supplied by Department of Agriculture Fisheries and Forestry, Australia. S. Poole, pers. comm.</td>
<td>48</td>
</tr>
<tr>
<td>Fig. 4.1</td>
<td>RAS water samples extraction with Solid Phase Micro Extraction (SPME) (A = SPME manual holder; B = sealed cap; C = Duran bottle; D = programmable hotplate with stirrer)</td>
<td>55</td>
</tr>
<tr>
<td>Fig. 4.2</td>
<td>Effect of salt content of the sample on the extraction efficiencies for GSM (■) and MIB (■) under incubation temperature = 50 °C, extraction time = 30 min, extraction temperature = 50 °C</td>
<td>56</td>
</tr>
<tr>
<td>Fig. 4.3</td>
<td>Effect of incubation temperature on the extraction efficiencies for GSM (■) and MIB (■) under extraction time = 30 min, extraction temperature = 50 °C, salt = 25 g</td>
<td>57</td>
</tr>
<tr>
<td>Fig. 4.4</td>
<td>Effect of extraction time of the sample on extraction efficiencies for GSM (■) and MIB (■) under incubation temperature = 50 °C, extraction temperature = 50 °C, salt = 25 g</td>
<td>58</td>
</tr>
<tr>
<td>Fig. 4.5</td>
<td>Effect of extraction temperature on extraction efficiencies for GSM (■) and MIB (■) under salt = 25 g, incubation temperature = 50 °C, extraction time = 30 min</td>
<td>59</td>
</tr>
<tr>
<td>Fig. 4.6</td>
<td>A typical full-scan chromatogram of Agilent GC-MS for a RAS growth water sample from a control tank</td>
<td>60</td>
</tr>
<tr>
<td>Fig. 4.7</td>
<td>SIM chromatograms of Agilent GC-MS for TCA (a) GSM (b), and MIB (c), with their retention times of 21.10, 23.27 and 17.88, min respectively. An m/z of 195 for TAC, 112 for GSM, 95 for MIB are also shown in each respective chromatogram</td>
<td>61</td>
</tr>
</tbody>
</table>
Fig. 4.8 Barramundi fish-flesh sample preparation for microwave distillation

Fig. 4.9 Microwave assisted distillation device showing main parts without metallic cover (E = microwave oven; F = holding table; G = cooler box; H = 50 mL graduated measuring cylinder; J = N₂ exiting line; K = N₂ flow meter; L = N₂ intake line)

Fig. 4.10 Microwave Mediated Distillation with metallic cover (E = Microwave oven; F = holding table; G = Cooler box; J = N₂ exiting line; K = N₂ flow meter; M = Metallic cover)

Fig. 4.11 After placing the fish sample in the microwave oven (L = N₂ intake line; N = digestion vessel; J = N₂ exiting line; O = fish-flesh sample)

Fig. 4.12 Schematic of the microwave distillation unit (E = Microwave oven; F = A stand for the microwave digestion unit; G = Cooler box; H = 50 ml graduated cylinder; J = N₂ exiting line; M = Metallic cover)

Fig. 4.13 Fish-flesh distillation extraction with Solid Phase Micro Extraction (SPME) (A = SPME manual holder; P = 40 mL SPME vial; Q = water bath; D = programmable hotplate with stirrer)

Fig. 4.14 Effect of salt content of the sample on extraction efficiencies for GSM (■) and MIB (■) under extraction time = 25 min, extraction temperature = 40 °C, sample volume = 20 mL

Fig. 4.15 Effect of extraction time of the sample on extraction efficiencies for GSM (■) and MIB (■) under salt = 2.5 g, extraction temperature = 40 °C, sample volume = 20 mL

Fig. 4.16 Effect of extraction temperatures on extraction efficiencies for GSM (■) and MIB (■) under salt = 2.5 g, extraction time = 25 min, sample volume = 20 mL

Fig. 4.17 Effect of samples volumes on extraction efficiencies for GSM (■) and MIB (■) under salt = 2.5 g, extraction time = 25 min, temperature = 40 °C

Fig. 4.18 The correlation between either GSM or MIB concentration (µg L⁻¹) and GSM/TCA (■ ■) or MIB/TCA (■ ■■■) for water samples extraction. (R² for GSM/TCA = 0.996 and MIB/TCA = 0.989)

Fig. 4.19 The correlation between either GSM and MIB concentration (µg kg⁻¹) and GSM/TCA (■ ■) or MIB/TCA (■ ■■■) for fish samples extraction. (R² for GSM/TCA = 0.990 and for MIB/TCA= 0.980)

Fig. 4.20 Controlled H₂O₂ dosing apparatus featuring its main components. (R = DLC display; S = transducer/controller; T = metering pump; X = place for H₂O₂ container; W = sensor holder; Z = water flow meter; Y = H₂O₂ sensor)

Fig. 4.21 Correlation between sensor readings and the experimental values (R² = 0.997). Error bars indicate standard deviation on triplicates

Fig. 5.1 Nursery tanks used for the pilot-scale experiments. These were set up adjacent commercial RAS growth tanks
Fig. 5.2 Schematic of the pilot-scale experiment study ($T_1 =$ treatment tank; $T_0 =$ control tank; $M =$ mechanical filters; $B =$ biological filters; $A =$ H$_2$O$_2$ dosing apparatus; $P =$ a pump for water to the dosing apparatus)

Fig. 5.3 Variation of GSM concentrations in the control tank, T_0 (---) and treated tank, T_1 (—) over 35 day. Results are presented as mean concentration of ($n = 3$) three samples. Error bars indicate standard deviation on the triplicates. Limiting concentration for GSM (0.015 μg L$^{-1}$) in the growth water is shown with the dashed line.

Fig. 5.4 Variation of MIB concentration in the control tank, T_0 (---) and treated tank, T_1 (—) over 35 day. Results are presented as the mean concentrations of ($n = 3$) three samples. Error bars indicate standard deviation on the triplicates. Limiting concentration for MIB (0.018 μg L$^{-1}$) of the growth water is shown with the dashed line.

Fig. 5.5 Concentration of GSM (■) and MIB (●) in fish-flesh from control tank, T_0 and treated tank, T_1. Results are presented as the mean concentration of ($n = 3$) three samples. Error bars indicate standard deviation on the triplicates. The consumer rejection threshold concentration ($\sim 0.70 $ μg kg$^{-1}$) for GSM and MIB is shown with the dashed line.

Fig. 5.6 Variation of CO_X and pH in the control tank (T_0) and treated tank (T_1) over 18 day.

Fig. 5.7 Appearance of fish from control, T_0 and treated, T_1, tanks after 35 day.

Fig. 5.8 Particle size distributions in the control tank (■) and treated tank (●) growth waters.

Fig. 6.1 Variation of GSM concentration in control tank, T_2 (——) and treated tank, T_3 (—) over 35 day when treated with 2.5 mg L$^{-1}$ of H$_2$O$_2$. Results presented are the average of ($n = 3$) replicates. Error bars indicate standard deviation on the triplicates.

Fig. 6.2 Variation of MIB concentration in control tank, T_2 (——) and the treated tank, T_3 (—) over 35 day when treated with 2.5 mg L$^{-1}$ of H$_2$O$_2$. Results presented are the average of ($n = 3$) replicates. Error bars indicate standard deviation on the triplicates.

Fig. 6.3 Variation of GSM concentration in control tank, T_4 (——) and treated tank, T_5 (—) over 35 day when treated with 10.0, mg L$^{-1}$ of H$_2$O$_2$. Results presented are the average of ($n = 3$) replicates. Error bars indicate standard deviation on the triplicates.

Fig. 6.4 Variation of MIB concentration in control tank, T_4 (——) and the treated tank, T_5 (—) over 35 day when treated with 10.0, mg L$^{-1}$ of H$_2$O$_2$. Results presented are the average of ($n = 3$) replicates. Error bars indicate standard deviation on the triplicates.

Fig. 6.5 Concentration of GSM (■) and MIB (●) in fish-flesh in control tanks T_2, T_4, and treated tanks T_3 and T_5 with 2.5 and 10.0, mg L$^{-1}$ dosing with H$_2$O$_2$, respectively. Results are presented as the average of ($n = 3$) replicates. Error bars indicate standard deviation on the triplicates. The consumer rejection threshold concentration ($\sim 0.70 $ μg kg$^{-1}$) for GSM and MIB is shown with the dashed line.
Fig. 6.6 Comparison of variations of GSM concentrations in control tanks, T_0 (---), T_2 (---) and T_4 (---) and treated tanks T_1 (---), T_3 (---) and T_5 (---) with 5.0, 2.5 and 10.0, mg L$^{-1}$ dosing with H$_2$O$_2$, respectively over 35 day growth period.

Fig. 6.7 Comparison of variation of MIB concentrations in control tanks, T_0 (---), T_2 (---) and T_4 (---) and treated tanks T_1 (---), T_3 (---) and T_5 (---) with 5.0, 2.5 and 10.0, mg L$^{-1}$ dosing with H$_2$O$_2$, respectively over 35 day growth period.

Fig. 6.8 Concentration of GSM (■) and MIB (■) of fish-flesh in control tanks T_0, T_2 and T_4 and treated tanks T_1, T_3 and T_5 with 5.0, 2.5 and 10.0, mg L$^{-1}$ dosing with H$_2$O$_2$, respectively. Results presented are the average of (n = 3) replicates. Error bars indicate standard deviation on the triplicates. The consumer rejection threshold concentration (~ 0.70 µg kg$^{-1}$) for GSM and MIB is shown with the dashed line.

Fig. 6.9 Variation of NH$_3$ as N (mg L$^{-1}$) in T_0 (---), T_1 (---), T_2 (---), T_3 (---), T_4 (---) and T_5 (---) in weekly water sampling. Results presented are the average of (n = 3) replicates. Error bars indicate standard deviation on the triplicates.

Fig. 7.1 Distribution RiskNormal(0.0014, 0.0007, RiskTruncate(0.00126, 0.00154)) for taste-taint chemical GSM in RAS growth water (C_W) with a mean concentration of 0.0014 µg L$^{-1}$ and truncated concentrations at a minimum of 0.00126 and maximum 0.00154, µg L$^{-1}$, respectively.

Fig. 7.2 Fr 13 simulation of the risk factor (p) for taste-taint as GSM in flesh of RAS farmed barramundi with 10,000 scenarios. The figure shows the 10.1% failure rate to the right ($p > 0$).

Fig. 7.3 Fr 13 simulation of the risk factor (p) for taste-taint as MIB in flesh of RAS farmed barramundi with 10,000 scenarios. The figure shows the 10.5% failure rate to the right ($p > 0$).

Fig. 7.4 Impact of %tolerance on the number of failures with GSM taste-taint accumulation per 10,000 scenarios of RAS farmed barramundi.

Fig. 7.5 Impact of harvest time (t) greater than 240 day on the number of failures with GSM taste-taint accumulation per 10,000 scenarios of RAS farmed barramundi. The risk function is RiskNormal (240, (t - 240), RiskTruncate (240 - 2 x (t - 240), 240+ 2 x (t + 240))).

Fig. 7.6 Impact of stdev (%) in the input distribution for C_W on the number of taste-taint failures as GSM accumulation per 10,000 scenarios of RAS farmed barramundi. The risk function is RiskNormal (0.0014, stdev, RiskTruncate (mean - 2 x stdev, mean + 2 x stdev))).

Fig. 7.7 Plot of 33 selected Fr 13 failures ($p > 0$) of Table 7-3: 3D scatter plot (a) and 3D surface plot (b).

Fig. 8.1 H$_2$O$_2$ dosing into a cage to avoid the direct contact with fish (A = H$_2$O$_2$ dosing tube; B = sampling line to the dosing apparatus; C = growth water outlet; D = cage; E = treated tank wall).

Fig. 8.2 Schematic of mixing tank showing dosing apparatus, mixing tank and RAS growth tank (not to scale).
Fig. 8.3 Practical H$_2$O$_2$ dosing into RAS growth water using the mixing tank (F = H$_2$O$_2$ dosing apparatus; G = commercial grade Interox 50% (w/w) H$_2$O$_2$ of 25 kg drum; H = a stand for mixing tank; I = mixing tank)

Fig. 8.4 Releasing, treated RAS water with H$_2$O$_2$ back to treated tank (F = H$_2$O$_2$ dosing apparatus; I = mixing tank; J = treated water with H$_2$O$_2$; K = submersible pump to pump RAS water to the mixing tank)

Fig. 8.5 Fit of growth data determined for barramundi from the treated tank at water temperature (actual measured) ~ 27°C ($m_f = 0.0226e^{0.0169t}$, $R^2 = 0.92$). Error bars indicate standard deviation on 20 fish

Fig. 8.6 Fit of growth data determined for barramundi from the control tank at water temperature (actual measured) ~ 27°C ($m_f = 0.0229e^{0.00161t}$, $R^2 = 0.98$). Error bars indicate standard deviation on 20 fish

Fig. 8.7 Variation of GSM concentration (C_w) in RAS growth water in treated (—) and control (——) tanks over a 35 week period. Results presented are the average of ($n = 3$) replicates. Error bars indicate standard deviation on the triplicates. The down arrow with dashed-line indicates the day dosing started. The horizontal dashed-line indicates the limiting concentration for GSM (0.015 µg L$^{-1}$) in RAS growth water

Fig. 8.8 Variation of MIB concentration (C_w) in RAS growth water in treated (—) and control (——) tank over a 35 week period. Results presented are the average of ($n = 3$) replicates. Error bars indicate standard deviation on the triplicates. The down arrow with dashed-line indicates the day of dosing started. The horizontal dashed-line indicates the limiting concentration for MIB (0.018 µg L$^{-1}$)

Fig. 8.9 Variability in lipid concentration (w/w %) within the fillet of 0.35 kg barramundi. The lipid concentrations (w/w %) shown were determined from sample taken from the area marked by the respective dashed-lines

Fig. 8.10 Relationship between GSM concentration in fish-flesh of the treated tank and mass of the fish. Results are presented for $n = 167$ data. The number of fish used was 121. $R^2 = 0.45$

Fig. 8.11 Relationship between GSM concentration in fish-flesh of the control tank and mass of the fish. Results are presented for $n = 186$ data. The number of fish used was 145. $R^2 = 0.53$

Fig. 8.12 Relationship between MIB concentration in fish-flesh of the treated tank and mass of the fish. Results are presented for $n = 167$ data. The number of fish used was 121. $R^2 = 0.50$

Fig. 8.13 Relationship between MIB concentration in fish-flesh of the control tank and the mass of the fish. Results are presented for $n = 186$ data. The number of fish used was 145. $R^2 = 0.59$

Fig. 8.14 GSM concentration in RAS growth water and concentration in fish-flesh from treated tank. Results are presented for $n = 167$ data. The number of fish used was 121. $R^2 = 0.15$
Fig. 8.15 **GSM** concentration in RAS growth water and concentration in fish-flesh from control tank. Results are presented for \(n = 186 \) data. The number of fish used was 145. \(R^2 = 0.17 \)

Fig. 8.16 **MIB** concentration in RAS growth water and concentration in fish-flesh from treated tank. Results are presented for \(n = 167 \) data. The number of fish used was 121. \(R^2 = 0.11 \)

Fig. 8.17 **MIB** concentration in RAS growth water and concentration in fish-flesh from control tank. Results are presented for \(n = 186 \) data. The number of fish used was 145. \(R^2 = 0.01 \)

Fig. 8.18 Predicted vs observed taste-taint (y) as **GSM** in fish-flesh from RAS ‘treated’ tank. Results are presented for \(n = 167 \) data from 121 fish. The number of fish harvested in the 30,000 L was 3,326. The box (LL) indicates those data below the consumer rejection threshold for **GSM** (0.74 µg kg\(^{-1}\))

Fig. 8.19 Predicted vs observed taste-taint (y) as **GSM** in fish-flesh from RAS ‘control’ tank. Results are presented for \(n = 186 \) data from 145 fish. The number of fish harvested in the 30,000 L was 3,318. The box (LL) indicates those data below the consumer rejection threshold for **GSM** (0.74 µg kg\(^{-1}\))

Fig. 8.20 Predicted vs observed taste-taint (y) as **MIB** in fish-flesh from RAS ‘treated’ tank. Results are presented for \(n = 167 \) data from 121 fish. The number of fish harvested in 30,000 L was 3,326. The box (LL) indicates those data below the consumer rejection threshold for **MIB** (0.7 µg kg\(^{-1}\))

Fig. 8.21 Predicted vs observed taste-taint (y) as **MIB** in fish-flesh from RAS ‘control’ tank. Results are presented for \(n = 186 \) data from 145 fish. The number of fish harvested in 30,000 L was 3,318. The box (LL) indicates those data below the consumer rejection threshold for **MIB** (0.7 µg kg\(^{-1}\))

Fig. 8.22 Expanded area of Fig. 8.18 for taste-taint concentration (y) (covering 0 to 2, µg kg\(^{-1}\)) as **GSM** in fish-flesh from RAS ‘treated’ tank. Results are for \(n = 137 \) data from 80 fish. The shaded area shows fish-flesh exceeding the consumer rejection threshold for **GSM** (0.74 µg kg\(^{-1}\))

Fig. 8.23 Expanded area of Fig. 8.19 for taste-taint concentration (y) (covering 0 to 2, µg kg\(^{-1}\)) as **GSM** in fish-flesh from RAS ‘control’ tank. Results are for \(n = 160 \) data from 121 fish. The shaded area shows fish-flesh exceeding the consumer rejection threshold for **GSM** (0.74 µg kg\(^{-1}\))

Fig. 8.24 Expanded area of Fig. 8.20 for taste-taint concentrations (y) (covering 0 to 2, µg kg\(^{-1}\)) for as **MIB** in fish-flesh from RAS ‘treated’ tank. Results are for \(n = 111 \) data from 85 fish. The shaded area shows fish-flesh exceeding the consumer rejection threshold for **MIB** (0.7 µg kg\(^{-1}\))
Fig. 8.25 Expanded area of Fig. 8.21 for taste-taint concentration (y) (covering 0 to 2, µg kg⁻¹) as MIB in fish-flesh from RAS ‘control’ tank. Results are for n = 107 data from 91 fish. The shaded area shows fish-flesh exceeding the consumer threshold for MIB (0.7 µg kg⁻¹).

Fig. C.1 Process flow-chart of microwave distillation unit for barramundi fish-flesh digestion

Fig. D.1 Overview of the H₂O₂ dosing apparatus. The relevant function and description of the keys are given in Table D.1

Fig. D.2 The continuous display-2 showing the value of main parameters

Fig. D.3 Continuous display-3 showing the measuring range

Fig. D.4 Main display showing the calibration steps

Fig. D.5 Main display showing the steps involved in setting the measured value

Fig. D.6 Main display showing the steps involved in pump setting

Fig. D.7 Main display showing the steps involved in setting the limits

Fig. D.8 Main display showing the steps involved in control setting(s)

Fig. E.1 Continuous dosing of 5 mg L⁻¹ of H₂O₂ to the nursery tank (T₁)

Fig. E.2 Filters used with RAS growth waters

Fig. E.3 Colour of growth water in nursery treated tank (T₁) five (5) days after dosing

Fig. E.4 Pumping RAS growth water to the H₂O₂ dosing apparatus

Fig. E.5 Interox 50 % (w/w) H₂O₂ drum connected to the metering pump

Fig. I.1 H₂O₂ dosing into a cage to avoid direct contact with fish (A = H₂O₂ dosing tube; B = growth water inlet to H₂O₂ dosing apparatus; D = cage; F = H₂O₂ dosing apparatus)

Fig. I.2 H₂O₂ dosing into the mixing tank (A = H₂O₂ dosing tube; B = growth water inlet to the H₂O₂ dosing apparatus; C = growth water outlet; I = mixing tank; L = growth water inlet to the mixing tank)
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table 2-1</th>
<th>Selected physical and chemical properties of GSM and MIB</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3-1</td>
<td>Model simulation showing inputs, calculations and output for predicted taste-taint as both GSM and MIB in barramundi fish-flesh at 150 day growth in RAS tanks</td>
<td>42</td>
</tr>
<tr>
<td>Table 3-2</td>
<td>Predicted taste-taint (y) as GSM and MIB in barramundi fish-flesh with growth time (t) in RAS tanks at constant CW = 0.0004 µg L⁻¹ for GSM and CW = 0.003 µg L⁻¹ for MIB. (The bolded text for 150 day is the detailed illustrative simulation presented in Table 3-1)</td>
<td>42</td>
</tr>
<tr>
<td>Table 3-3</td>
<td>Comparison of observed (Petersen et al., 2011) versus predicted taste-taint as GSM in rainbow trout (n = 15) grown in RAS at 12 °C for 9-months to a typical mass of 308 (± 72) g</td>
<td>49</td>
</tr>
<tr>
<td>Table 4-1</td>
<td>Percentage recoveries for taint extractions from fish-flesh</td>
<td>73</td>
</tr>
<tr>
<td>Table 5-1</td>
<td>Variation of NH₃ as N (mg L⁻¹), NO₂⁻ as N (mg L⁻¹), NO₃⁻ as N (mg L⁻¹), phosphorus as PO₄³⁻ (mg L⁻¹) and alkalinity as CaCO₃ (mg L⁻¹) of the control tank and treated tank over 35 day. Sampling was weekly and the average concentration of (n = 3) triplicates is presented. The standard deviation of the triplicates is shown in parentheses</td>
<td>90</td>
</tr>
<tr>
<td>Table 6-1</td>
<td>Variation of NH₃ as N (mg L⁻¹), NO₂⁻ as N (mg L⁻¹), and NO₃⁻ as N (mg L⁻¹) of the tanks T₂ (control), T₃ (treated with 2.5 mg L⁻¹), T₄ (control) and T₅ (treated with 10.0 mg L⁻¹). Sampling was weekly and the average concentration of (n = 3) replicates is presented. The standard deviation of the triplicates is shown in parentheses</td>
<td>110</td>
</tr>
<tr>
<td>Table 6-2</td>
<td>Reported fish mortalities at the end of 35 day period from three (3) pilot-scale studies</td>
<td>115</td>
</tr>
<tr>
<td>Table 7-1</td>
<td>Summary comparison of the SVA model of Chapter 3 (see Hathurusingha & Davey, 2014) with Fr 13 simulation of taste-taint chemical as GSM in RAS farmed barramundi with 10 % tolerance. Column 2 is the SVA value for each of the RAS parameters. Fr 13 values of column 3 are for one-only of 10,000 simulated scenarios. Failure is defined for all p > 0</td>
<td>121</td>
</tr>
<tr>
<td>Table 7-2</td>
<td>Summary comparison of the SVA model of Chapter 3 (see Hathurusingha & Davey, 2014) with Fr 13 simulation of taste-taint chemical as MIB in RAS farmed barramundi with 10 % tolerance. Column 2 is the SVA for each RAS parameter. Fr 13 values of column 3 are for one-only of 10,000 simulated scenarios. Failure is defined for all p > 0</td>
<td>122</td>
</tr>
<tr>
<td>Table 7-3</td>
<td>Thirty three (33) of 1,010 failures in the 10,000 scenarios for taste-taint chemical as GSM in RAS farmed barramundi with 10 % tolerance</td>
<td>125</td>
</tr>
<tr>
<td>Table 7-4</td>
<td>Impact of %tolerance on the number of Fr 13 failures in taste-taint accumulations per 10,000 scenarios for both GSM and MIB. The bolded text of row-5 denotes the particular failed scenarios of, respectively, Table 7-1 and Table 7-2</td>
<td>128</td>
</tr>
</tbody>
</table>
Table 7-5 | Spearman rank correlation coefficient (Snedecor & Cochran, 1989) for key input parameters on GSM taste-taint accumulation in RAS farmed barramundi |
---|---|

Table 8-1 | Weekly average dissolved oxygen concentration (C_{OX}) and RAS growth water temperature (T) of the treated and control tanks over the 35 week period. Results are the average value of 7-day readings. The standard error is shown in parentheses |

Table 8-2 | Weekly average nitrate (NO_2^{-} as N), ammonia (NH_3 as N) and Secchi disk value (as m) of the treated and control tanks over 35 week period. Results presented are the average value of the triplicates. The standard error is shown in parentheses |

Table 8-3 | Mass gain determined at 30 day intervals over 240 day period. The number of fish used for the analyses was 20 |

Table 8-4 | Variance comparison of data points against $Y = X$ line. The data is presented for both GSM and MIB in treated and control tanks as a percentage of total number of data points (n). The evaluation is based on the data points of Figs. 8.18 to 8.21 |

Table D-1 | Main function and description of the keys of the H$_2$O$_2$ apparatus |

Table H-1 | Reported fish mortalities in treated and control tanks during the first 9 weeks |

Table J-1 | Calculated model inputs k_1 for GSM and MIB in fish from commercial control tank using m_f, C_{OX} and G_v values |

Table J-2 | Calculated model inputs k_1 for GSM and MIB in fish from commercial treated tank using m_f, C_{OX} and G_v values |

Table J-3 | Calculated model inputs k_2 and k_g for GSM and MIB in fish from commercial control tank |

Table J-4 | Calculated model inputs k_2 and k_g for GSM and MIB in fish from commercial treated tank |

Table K-1 | Example model simulation showing inputs, calculations and output for predicted taste-taint as both GSM and MIB in barramundi fish-flesh from an average fish (0.435 kg) from the commercial-scale RAS studies