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EVOLUTION OF DIRECTIONAL WAVE SPECTRA THROUGH
FINITE REGULAR AND RANDOMLY PERTURBED

ARRAYS OF SCATTERERS∗

FABIEN MONTIEL† , VERNON A. SQUIRE‡ , AND LUKE G. BENNETTS§

Abstract. A method is proposed to solve the full linear problem of wave scattering by a large
finite array of circular inclusions in two spatial dimensions and compute the concomitant evolution of
directional wave properties through the array. The method decomposes the array into slabs. Interac-
tions between adjacent slabs are calculated using a representation of the wave fields scattered by each
slab as integrals of plane waves over the directional spectrum plus exponentially decaying branches.
The method is applied to the canonical problem of acoustic sound-hard scatterers. Validation is
sought for (i) regular arrays via comparison with solutions of corresponding infinite, periodic single-
and multiple row arrays and (ii) random arrays via comparison with Foldy’s approximation for the
effective field. A numerical investigation is conducted to determine the effect of introducing random
perturbations into regular arrays on the directional properties of the reflected and transmitted fields.

Key words. multiple scattering, directional spectrum, random array
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1. Introduction. Two-dimensional scattering of linear time-harmonic waves by
large arrays of inclusions forms the basis of many idealized multiple scattering prob-
lems in areas as varied as optics, acoustics, elasticity, and hydrodynamics. Examples
include the study of electromagnetic (EM) waves in photonic crystals (McPhedran
et al. [19]), acoustic waves in phononic crystals (Vasseur et al. [30]), flexural waves in
a plate with circular cavities (Parnell and Martin [22]), and water wave interactions
with offshore structures (Kagemoto and Yue [13]). Martin [18] provides an extensive
review of mathematical methods developed to solve such multiple scattering problems.

Our investigation is motivated by the study of ocean wave propagation through
large arrays of floating ice floes, in the marginal ice zones (MIZs) that form at the
outer edges of the sea-ice-covered oceans. Attenuation of wave energy with distance
traveled into the MIZ and the concomitant broadening of the directional spectrum
have been observed and attributed to scattering (Wadhams et al. [31]).

Modeling the evolution of the directional and energetic wave properties through
large arrays of ice floes has proved challenging, and even the few most recent at-
tempts to do so are based on significant simplifications of multiple scattering effects.
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DIRECTIONAL SCATTERING BY LARGE FINITE ARRAYS 631

A popular approach consists of modeling the ice cover by an infinite array of scat-
terers, with some artificial regular spacing/periodicity assumption applied (Bennetts
and Squire [4], Peter and Meylan [23], Bennetts et al. [3]). Specifically, the scatterers
are arranged into periodic rows (referred to as a multiple row array), so the wave
directional properties are known between rows throughout the array.

In a regular lattice, where all rows are identical, interference mechanisms lead to
stopband/passband structures (Brillouin [6]). Disorder can be included in different
ways, e.g., varying the spacing between rows randomly (Bennetts and Squire [4]) or
taking a random periodic pattern for each row, given a common spatial period (Peter
and Meylan [23]; a method originally used to model photonic crystals by McPhedran
et al. [19]). The rate of wave energy attenuation is calculated from an ensemble
average of random realizations of the array. However, the periodicity in each row
introduces limitations because waves can only travel in certain directions, the so-called
scattering angles, so these approaches cannot be used to estimate the evolution of the
directional wave properties. Bennetts [2] partially relaxed this restriction allowing
for different periodicities in the rows, so that multiple scattering effects between rows
lead to a continuous spectrum of directions in which waves can travel.

We propose a novel method to compute the evolution of directional wave prop-
erties through a large finite array of scatterers in two dimensions. The method is
presented for circular acoustic sound-hard scatterers. It uses a clustering of the array
into parallel slabs and therefore takes advantage of the multiple row array approach
used for infinite rows, while alleviating the constraints of regularity within the rows.

Our method provides a numerical solution to multiple scattering by large finite
arrays, e.g., O

(
103–104

)
scatterers, but differs significantly from existing approaches,

e.g., the order-of-scattering method (Twersky [27]), the scatterer polymerization tech-
nique (Cai and Williams [7]), and the fast multipole method (FMM; Cheng et al. [8];
Lai, Kobayashi, and Greengard [15]). The two former existing methods provide im-
provements but have convergence issues as discussed by Martin [18]. The FMM has
offered the most significant improvements in terms of efficiency, accuracy, and its abil-
ity to consider large arrays, but it does not provide a natural framework to analyze
directional properties of the wave field through the array. Although our clustering
technique cannot claim to match the efficiency of the FMM, the two methods can be
combined to improve the efficiency of our technique. This idea will not be explored
here, however, as the focus of the current paper is different.

We adopt the directional spectrum approach of Bennetts [2], which defines the
wave field as a superposition of plane waves with amplitudes that depend continuously
on the direction. This allows us to describe the wave field on either side of a row of
scatterers as an amplitude function of the angular parameter, the so-called directional
spectrum. The method used to calculate the directional spectra differs significantly
from that of Bennetts [2], however. First, the solution is found in the form of expan-
sions of cylindrical harmonics using separation of variables in polar coordinates. The
second step consists of transforming each circular wave form (cylindrical harmonics)
into a continuous superposition of plane waves. This polar-to-Cartesian mapping is
provided by Sommerfeld’s integral representation of the Hankel function (Sommerfeld
[26, section 19]), in which the integration over the angular parameter extends into the
complex plane.

The plane wave integral representation of the cylindrical harmonics forms the
basis of different methods to solve various two-dimensional multiple scattering prob-
lems. The so-called Twersky’s method (see Twersky [29]) makes use of this integral
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632 F. MONTIEL, V. A. SQUIRE, AND L. G. BENNETTS

representation to express the scattered far field due to arbitrarily many cylinders as
a directional spectrum of plane waves. The directional spectra due to all the scat-
terers are the solutions of a self-consistent system of integral equations that involve
the scattering function of each scatterer in isolation. The method was extended by
Millar in a series of papers to solve a number of scattering problems involving identical
obstructions (see, e.g., Millar [20] for the finite array problem).

Multiple row array methods are efficient and stable as the number of rows in-
creases. They are based on the recursive scattering matrix (S-matrix) method, which
was developed by Ko and Sambles [14] in the context of wave propagation in layered
media to overcome the stability issues of the transfer matrix (T-matrix) method (see,
e.g., Yeh [33]). We note that other stable schemes were devised to remedy numerical
issues of the naive application the T-matrix method (see, e.g., Schwartz and DeSandre
[24]; Moharam et al. [21]). The S-matrix method has been broadly used to model,
for example, EM wave propagation in multilayer periodic gratings (see Cotter, Preist,
and Sambles [10]; Li [16]) and photonic crystals (see McPhedran et al. [19]).

In our context, we then seek a solution to the reflection/transmission problem
for each slab in the form of an S-matrix which maps incident wave amplitudes to
the corresponding reflected/transmitted wave amplitudes. We use the plane wave
representation of the cylindrical harmonics to derive the reflected and transmitted
(plane wave) directional spectra by a slab of arbitrary scatterers due to an arbitrary
incident spectrum. Our method resembles that proposed by Frezza et al. [12] and
Lai, Kobayashi, and Greengard [15] in the context of EM wave scattering by dielectric
inclusions embedded in a dielectric slab, although we extend these investigations by
considering multiple slabs. This allows us to track the evolution of the directional
properties of the wave field through the array.

We refer to the method described in this paper as the slab-clustering technique.
Considering a large finite array of scatterers, (i) we divide the domain into slab clus-
ters, each containing a smaller number of scatterers; (ii) we solve the multiple scat-
tering problem within each slab using a self-consistent approach; (iii) we transform
the scattered field into reflected and transmitted spectra of plane waves; and (iv) we
combine all the slabs using multiple row array techniques. A discretization of the an-
gular domain, similar to that performed by Bennetts [2], yields a numerical solution
for the directional spectra of plane waves at each slab boundary.

We use the method to show the extent to which the solution to the finite ar-
ray problem approximates the response due to infinite regular and random arrays.
Further, we investigate the effect of introducing random perturbation in a regular
arrangement of scatterers on the directional properties of the scattered field using
Monte Carlo simulations.

2. Preliminaries. We consider a simple setting for wave scattering in an infinite
plane described by the Cartesian coordinates x = (x, y). The plane includes an
arbitrary arrangement of J nonoverlapping sound-hard obstructions, with circular
boundaries. Each obstruction j (for 1 ≤ j ≤ J) is defined by its radius aj and
the location of its center (xj , yj) in the Cartesian reference frame. We assume that
(x1, y1) = (0, 0) and xj > 0 for all j ≥ 2, without loss of generality. Figure 1(a) shows
an example array.

A time-harmonic potential field Re{φ(x) e− iωt} with angular frequency ω is de-
fined everywhere in the domain exterior to the obstructions, denoted by Ω. The
complex (reduced) potential φ(x) is governed by the Helmholtz equation

∇2φ+ k2φ = 0 (x ∈ Ω),(2.1)
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DIRECTIONAL SCATTERING BY LARGE FINITE ARRAYS 633

Fig. 1. (a) Schematic diagram of the finite arbitrary array contained in a slab of width L.
(b) Real part of the incident field φIn for an incident angular spectrum AIn(τ) = cos τ in the region
(x, y) ∈ [−5, 35]× [−20, 20].

where the wavenumber k is a real positive constant that depends on frequency. Letting
Γj denote the boundary of each obstruction j, we prescribe a Neumann boundary
condition

∂nφ = 0 (x ∈ Γj)(2.2)

on all circular contours (1 ≤ j ≤ J).
We define the wave forcing as a continuous directional spectrum of plane waves

traveling toward x → ∞. This may be expressed as an integral of plane waves with
amplitudes that depend continuously on the angle τ (with respect to the x-axis) in
which the waves travel, i.e.,

φIn(x) =

∫ π/2

−π/2

AIn(τ) e ik(x cos τ+y sin τ) dτ.(2.3)

The incident wave directional spectrum AIn(τ) characterizes the angular distribution
of incoming energy at the origin. It is an arbitrary function of the angular param-
eter τ ∈ [−π/2, π/2]. In particular, we can simulate a unidirectional incident wave
traveling at angle τ0 with respect to the x-axis and with unit amplitude by setting
AIn(τ) = δ(τ − τ0), where δ is the Dirac delta function.

It is helpful to visualize the incident field with spectrum AIn(τ) = cos τ , which
will be the default forcing for the results presented in section 7. Figure 1(b) shows
the real part of φIn for k = π and (x, y) ∈ [−5, 35]× [−20, 20]. Plane waves traveling
from left to right at angle τ with amplitude cos τ coherently superpose and peak at
the origin. Note the rapid decay of wave amplitude for increasing |y| at x = 0.

Our goal is to characterize the reflected and transmitted components of the wave
field as directional spectra analogous to the incident field in (2.3). The method, which
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634 F. MONTIEL, V. A. SQUIRE, AND L. G. BENNETTS

will be described in section 4, requires the solution of the multiple scattering problem.
The multipole method, based on separation of variables in polar coordinates (Martin
[18]), is used for this purpose, so a polar-to-Cartesian mapping will be needed to
define the reflection and transmission properties of the wave field.

We introduce the local polar coordinates (rj , θj) associated with each circular
obstruction j and define (r, θ) = (r1, θ1) as the global polar coordinates. These are
related to the Cartesian coordinates through the relationships x = xj + rj cos θj and
y = yj + rj sin θj . We express the radiation condition for the finite array of scatterers
in the global polar coordinate system as

r1/2 (∂/∂r − ik)φS → 0 (r → ∞),(2.4)

where φS = φ− φIn is the scattered wave potential.
To solve the multiple scattering problem, we express the incident wave potential

in the local polar coordinates associated with an arbitrary obstruction j. We obtain
the truncated Fourier-type expansion

φIn(rj , θj) ≈
N∑

n=−N

f (j)
n Jn(krj) e

inθj ,(2.5)

where Jn denotes the Bessel function of the first kind of order n, and

f (j)
n = in

∫ π/2

−π/2

AIn(τ) e− inτ e ik(xj cos τ+yj sin τ) dτ.(2.6)

Under a given wave forcing, each obstruction j produces a scattered wave field,
expressed as a partial sum of polar harmonics

φS
j (rj , θj) ≈

N∑
n=−N

c(j)n Hn(krj) e
inθj ,(2.7)

where Hn denotes the Hankel function of the first kind of order n. A numerical solution
for c

(j)
n is found using the multipole method for finite arrays (see, e.g., Martin [18,

section 4.5]). A summary of the method is given in Appendix A.
We obtain a diffraction transfer operator D of order J(2N +1) mapping incident

to scattered field amplitudes, i.e.,

c = Df ,(2.8)

where c and f are column vectors of length J(2N +1) with entries c
(j)
n and f

(j)
n . The

matrix D is found by inversion of the system derived in Appendix A. Alternatively,
the FMM could be used to obtain D at a lower computational cost (see, e.g., [15]).
The diffraction transfer operator characterizes the system fully in terms of local polar
wave expansions.

3. Plane wave expansion of cylindrical harmonics. We seek to transform
the cylindrical harmonics Hn(kr) e

inθ for n ∈ Z into directional spectra composed of
plane waves. Such a plane wave representation is given by Cincotti et al. [9] in the
context of EM wave scattering. It is based on Sommerfeld’s integral representation
of the Hankel function of the first kind [26],

Hn(kr) =
(− i)n

π

∫
C

exp( ikr cosw + inw) dw,
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DIRECTIONAL SCATTERING BY LARGE FINITE ARRAYS 635

where C is the integration path, which must be chosen in the complex plane such
that (i) it passes through the origin, (ii) its lower limit is γl + i∞, with −π < γl < 0,
and (iii) its upper limit is γu − i∞, with 0 < γu < π. Choosing γl = −π/2 − θ
and γu = π/2 − θ if x ≥ 0, and γl = π/2 − θ and γu = 3π/2 − θ if x ≤ 0, with an
appropriate substitution, we obtain

Hn(kr) e
inθ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(− i)n

π

∫ π/2− i∞

−π/2+ i∞
e inχ e ik(x cosχ+y sinχ) dχ (x ≥ 0)

in

π

∫ π/2− i∞

−π/2+ i∞
e− inχ e ik(−x cosχ+y sinχ) dχ (x ≤ 0).

(3.1)

Equation (3.1) expresses the cylindrical harmonic as a continuous angular spec-
trum of plane waves. The first and second expressions characterize wave fields travel-
ing in the positive and negative x directions, respectively. In response to an incident
field traveling in the positive x direction, these would correspond to the transmitted
and reflected fields, respectively.

Inspection of the integrands in (3.1) for complex values of χ shows that the
plane wave term decays exponentially with x, and the larger the imaginary part of
χ the faster the decay. These components correspond to evanescent waves, which
may be neglected in the far field, i.e., when |x| → ∞. The approximation consisting
of neglecting the evanescent waves in the near field is often called the wide-spacing
approximation (WSA). It can easily be implemented by reducing the domain of inte-
gration to (−π/2, π/2). We will demonstrate in section 7, however, that the complex
branches of the integration domain in (3.1) may have a significant influence, so that
the WSA is not always suitable for this problem.

4. Reflection and transmission by a slab. The analysis conducted in sec-
tion 3 suggests that we express the reflected and transmitted fields due to each
obstruction at fixed values of x. Let Ωs define an infinite vertical region of finite
width, parallel to the y-axis and containing the center of all the scatterers, i.e.,
Ωs = {x ∈ Ω : ξ0 ≤ x ≤ ξ1}, where ξ0 ≤ 0 and ξ1 ≥ max(xj : 1 ≤ j ≤ J) can
be chosen arbitrarily (see Figure 1(a)). The region Ωs will be referred to as a slab
and L = ξ1 − ξ0 defines its width. We now seek the scattered wave field in the form
of a field reflected and transmitted by the slab, i.e.,

φR(x) =

∫ π/2− i∞

−π/2+ i∞
AR(χ) e ik(−(x−ξ0) cosχ+y sinχ) dχ (x ≤ ξ0) and(4.1a)

φT(x) =

∫ π/2− i∞

−π/2+ i∞
AT(χ) e ik((x−ξ1) cosχ+y sinχ) dχ (x ≥ ξ1),(4.1b)

where the reflected and transmitted spectra AR(χ) and AT(χ) are unknown. For
|x| sufficiently large, the WSA holds and the integration domain may be reduced to
(−π/2, π/2), as explained in section 3.

The reflected spectrum AR(χ) describes the angular distribution of the travel-
ing wave field at x = (ξ0, 0) propagating in the negative x direction. Likewise, the
transmitted spectrum AT(χ) represents the angular distribution at x = (ξ1, 0) of
the wave field traveling in the positive x direction. It is composed of the transmit-
ted component of the scattered field and the incident field and so can be written as
AT(χ) = ÃT(χ) + e ikξ1 cosχAIn(χ), accounting for the appropriate phase change.
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The spectra AR(χ) and AT(χ) can be expressed via integral mappings of the
incident spectrum as

AR(χ) =

∫ π/2

−π/2

R(χ : τ)AIn(τ) dτ and AT(χ) =

∫ π/2

−π/2

T (χ : τ)AIn(τ) dτ,(4.2)

where R(χ : τ) and T (χ : τ) are the reflection and transmission kernels, respectively.
Note that the integration domain need not include the imaginary branches here, as
the incident field is purely traveling. The kernel functions fully characterize the sys-
tem as they map an arbitrary incident spectrum to the corresponding reflected and
transmitted spectra. In particular, R(χ : τ0) and T (χ : τ0) represent the reflected
and transmitted spectra due to a unidirectional incident plane wave traveling at an
angle τ0 with respect to the x-axis, i.e., for AIn(τ) = δ(τ − τ0).

Using the solution of the multiple scattering problem described in the previous
section, we can find semianalytical expressions for the kernel functions. The procedure
is described here for the transmitted field. For each obstruction j, we express the
scattered field (2.7) using the plane wave decomposition of the cylindrical wave form
for x ≥ 0 given in (3.1). We obtain

φS
j (x, y) ≈

∫ π/2− i∞

−π/2+ i∞

(∑
n

(− i)n

π
c(j)n e inχ

)
e ik((x−xj) cosχ+(y−yj) sinχ) dχ,

valid for x ≥ xj . We then use (2.8) and (2.6) in turn to write the amplitudes c
(j)
n in

terms of the incident spectrum AIn(τ). The transmission kernel is finally obtained by
superposing the contribution of all obstructions (i.e., summing over j) and accounting
for the phase change required to align the phase reference for all obstructions at
x = (ξ1, 0). Using vector and matrix notation, we obtain after some algebra

T (χ : τ) =
(
VT(χ)

)tr
DVIn(τ) + e ikξ1 cosχδ(χ− τ),(4.3)

where VT(χ) and VIn(τ) are column vectors of length J(2N + 1) with entries[
VT(χ)

]
(j−1)(2N+1)+N+n+1

=
(− i)n

π
e− ik((xj−ξ1) cosχ+yj sinχ) e inχ,

1 ≤ j ≤ J , −N ≤ n ≤ N , and[
VIn(τ)

]
(p−1)(2N+1)+N+s+1

= is e ik(xp cos τ+yp sin τ) e− isτ ,

1 ≤ p ≤ J , −N ≤ s ≤ N , and the superscript tr indicates matrix transpose. The
second term in (4.3) represents the contribution from the incident field.

In a similar fashion, we derive an expression for the reflection kernel

R(χ : τ) =
(
VR(χ)

)tr
DVIn(τ),(4.4)

where the column vector VR(χ) of length J(2N + 1) has entries[
VR(χ)

]
(j−1)(2N+1)+N+n+1

=
in

π
e ik((xj−ξ0) cosχ−yj sinχ) e− inχ.

We note that these formulas are valid for ξ0 ≤ xj ≤ ξ1, 1 ≤ j ≤ J , so the center of
each scatterer only is required to be contained in the slab. In particular, the method
is still valid if the boundary of a scatterer intersects with the boundary of a slab.
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5. Numerical method. We now approximate the transmission and reflection
kernels given by (4.3) and (4.4) numerically. We seek discrete forms of T (χ : τ) and
R(χ : τ) using uniform sampling of the angular domain. This produces a matrix
mapping that fully describes the system.

The uniform sampling method consists of discretizing the variables χ and τ to
perform numerical integration of (4.1) and (4.2). We sample the complex angular
domain along the contour parametrized by χ(t) = −π/2 − i(1 + t), for t < −1,
χ(t) = π/2t, for −1 ≤ t ≤ 1, and χ(t) = π/2 + i(1 − t), for t > 1. Numerical
integration requires that we truncate the limits to −π/2 + γ i and π/2 − γ i, where
γ ≥ 0, which is appropriate considering that the integrands decay exponentially faster
as γ increases. The parameter γ is then chosen to ensure convergence of the improper
integrals. We select 2Ns + 1 samples χi ,−Ns ≤ i ≤ Ns, from the truncated contour
and define the column vectors AIn, AR, and AT of length 2Ns + 1, containing the
values of the incident, reflected, and transmitted spectra, respectively, at these angular
samples. We seek to compute square matrices R and T of size 2Ns + 1 such that

AR = RAIn and AT = TAIn.(5.1)

Therefore, we discretize the integral mappings given in (4.2), using the trapezoidal rule
with a nonuniform grid, due to the mix of real and complex samples, to approximate
the integrals. Sampling the kernel functions at the angles selected above, we then
obtain the discrete maps of (5.1) in a straightforward manner.

The numerical scheme described here was found to converge as O
(
N−4

s

)
. We

note that the trapezoidal rule is particularly robust for integrating noisy directional
spectra. Higher order schemes, e.g., a Gaussian quadrature with special sampling (see
Borghi et al. [5]), were found to perform poorly compared to the trapezoidal rule for
strongly scattering arrays. Higher efficiency may be obtained by using more advanced
numerical schemes, such as the nonuniform fast Fourier transform (see [15] for an
application to a similar problem with EM waves), but the simplicity and robustness
of our scheme was preferred in this case.

6. Multiple slabs. We now seek to determine the evolution of the directional
spectrum through very large arrays. The method is based on clustering the full array
into slabs, so we can apply a multiple-row interaction technique. We note that the
multipole method described in section 2 was found to be impractical for more than
O (100) scatterers, due to the numerical cost of computing the diffraction transfer
matrix D by inversion of the large system (A.3). Consequently, the slab-clustering
method provides an effective means of increasing the number of scatterers, with no
restrictions on the spacing or size of scatterers.

Consider M adjacent slabs Ω
(q)
s = {x ∈ Ω : ξq−1 ≤ x ≤ ξq}, 1 ≤ q ≤ M , with

width Lq = ξq − ξq−1. Each slab contains the centers of arbitrarily many circular
obstructions, Jq, say. The system is forced to respond under an incident field of the
form given by (2.3) and we consider multiple scattering effects between the slabs.
As a consequence, we describe the potential field between two adjacent slabs as the
coherent superposition of left-traveling and right-traveling directional spectra. The
field at x = ξq can be expressed as

φq(x) =

∫ π/2− i∞

−π/2+ i∞

(
A+

q (χ) e
ik((x−ξq) cosχ+y sinχ)(6.1)

+ A−
q (χ) e

ik(−(x−ξq) cosχ+y sinχ)
)
dχ,
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0 ≤ q ≤ M , where A+
q (χ) and A−

q (χ) represent the right- and left-traveling directional

spectra, respectively. The forcing terms are given by A+
0 (χ) = AIn(χ) e ikξ0 cosχ and

A−
M (χ) = 0, and all the other spectra A±

q (χ) are unknowns of the problem.
The method used to couple the wave interaction effects of all slabs is essentially

the same as that used by Bennetts [2] for multiple rows of infinite regular arrays. Each
wave spectrum is emitted from a slab by the superposition of a reflection process due
to a spectrum incident on the slab and traveling in the opposite direction, and a
transmission process, due to an incident spectrum traveling in the same direction.
Using similar notation as in section 4, the wave spectra at the boundary x = ξq are
then coupled as follows:

A+
q (χ) =

∫ π/2− i∞

−π/2+ i∞

(
T +
q (χ : τ)A+

q−1(τ) +R−
q (χ : τ)A−

q (τ)
)
dτ,(6.2a)

A−
q (χ) =

∫ π/2− i∞

−π/2+ i∞

(
R+

q+1(χ : τ)A+
q (τ) + T −

q+1(χ : τ)A−
q+1(τ)

)
dτ.(6.2b)

The superposition of these reflection and transmission processes requires that we
define two reflection kernels and two transmission kernels for each slab, i.e., R±

q (χ : τ)
and T ±

q (χ : τ). The + and − superscripts correspond to a wave forcing traveling in
the positive and negative x directions, respectively.

The kernel functions R±
q and T ±

q , q = 1, . . . ,M , are obtained using the method
described in section 4, being careful to apply the proper phase changes. Calculation of
the reflection and transmission kernels due to a wave forcing traveling in the negative
x direction needs only very little modification, as they differ only in the phase terms
and their expressions follow straightforwardly from the method of section 4.

Discretizing (6.2) as in section 5 we obtain the following matrix equations:

A+
q = T+

q A
+
q−1 +R−

q A
−
q and A−

q = R+
q+1A

+
q + T−

q+1A
−
q+1.(6.3)

Column vectors A±
q and square matrices R±

q and T±
q are discretized versions of the

corresponding spectra and reflection and transmission kernels, as defined in (5.1).
The solution method for the multiple slab interaction problem is then obtained by

combining reflection and transmission matrices of all slabs, using a recursive S-matrix
technique. We introduce the reflection and transmission matrices R±

p,q and T±
p,q for

the slabs p to q with p ≤ q. They satisfy the relations

A−
p−1 = R+

p,qA
+
p−1 + T−

p,qA
−
q and A+

q = T+
p,qA

+
p−1 +R−

p,qA
−
q(6.4)

and can be calculated using the following identities:

R+
p,q = R+

p,q−1 + T−
p,q−1

(
I−R+

q R
−
p,q−1

)−1
R+

q T
+
p,q−1,

T−
p,q = T−

p,q−1

(
I−R+

q R
−
p,q−1

)−1
T−
q , R−

p,q = R−
q + T+

q R
−
p,q−1

(
I−R+

q R
−
p,q−1

)−1
T−
q ,

and T+
p,q = T+

q

(
I+R−

p,q−1

(
I−R+

q R
−
p,q−1

)−1
R+

q

)
T+
p,q−1,

where the matrix I denotes the identity matrix of order 2Ns+1. Numerical inspection
of the behavior of the matrix I−R+

q R
−
p,q−1 shows that it has a condition number of

O (10) in most cases, so its inverse is always well-behaved. The recursive procedure
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requires the initialization R±
1,1 = R±

1 and T±
1,1 = T±

1 and runs until R±
1,M and T±

1,M

are calculated.

We can also calculate the vectors of scattered amplitudes at each slab boundary
x = ξq in terms of the forcing vectors using the identities

A+
q =

(
I−R−

1,qR
+
q+1,M

)−1 (
T+
1,qA

+
0 +R−

1,qT
−
q+1,MA−

M

)
and(6.5a)

A−
q =

(
I−R+

q+1,MR−
1,q

)−1 (
R+

q+1,MT+
1,qA

+
0 + T−

q+1,MA−
M

)
.(6.5b)

7. Numerical results. In this section, we will show results that demonstrate
how our model can be used to analyze regular and randomly perturbed scattering
systems. The response of a system mostly depends on the relative size between wave-
length, scatterer radii, and relative distance between scatterers (spacing). We limit
the number of parameters by nondimensionalizing with respect to the wavenumber
k = π and setting the nondimensional radius of all scatterers j to aj = 0.5.

We establish the convergence of the numerical procedure with respect to the an-
gular discretizations devised in section 5 by ensuring the energy conservation relation∫ π/2

−π/2

∣∣A+
0 (χ)

∣∣2 dχ =

∫ π/2

−π/2

∣∣A−
0 (χ)

∣∣2 dχ+

∫ π/2

−π/2

∣∣A+
M (χ)

∣∣2 dχ(7.1)

holds with an accuracy of four decimal places to limit the computational cost. Note
that the two integrals on the right-hand side converge as O

(
N−3

s

)
, so the numerical

scheme presented in the previous sections can provide higher accuracy if needed.

Consider an arrangement of 5 slabs of nondimensional width L = 2, each con-
taining 11 scatterers centered in the slab and with regular nondimensional center-to-
center spacing s = 2. We force the system with the incident spectrum AIn(τ) = cos τ ,
−π/2 ≤ τ ≤ π/2, which is commonly used in the study of ocean wave spectra, for
instance. Figure 2 shows the real part of the potential Reφ through the rectangular
lattice. In the left panel, the solution was computed using the WSA, while in the
right panel we accounted for a portion of the evanescent plane wave components up
to γ = 2. We observe significant discrepancies for the WSA particularly at the bound-
aries between slabs, where the wave field appears discontinuous. The discontinuity is
removed in the second surface plot, suggesting that few evanescent components are
required to characterize the wave field properly throughout the domain. Farther away
from the scattering region, the discrepancies seem to persist, suggesting the WSA is
not accurate when looking at far-field properties for this problem.

To confirm these qualitative observations we conduct a convergence analysis of
the transmission coefficient with respect to the truncation parameter γ, with the
transmission coefficient defined as

T =

√√√√(∫ π/2

−π/2

∣∣A+
M (χ)

∣∣2 dχ

)/(∫ π/2

−π/2

∣∣A+
0 (χ)

∣∣2 dχ

)
.

Figure 3 shows the transmission coefficient for γ = 0 to 3. It is clear that convergence is
reached for γ ≈ 1. A similar level of convergence was found throughout the simulations
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Fig. 2. Real part of the potential φ for the scattering of an incident field with angular spectrum
AIn(τ) = cos τ , −π/2 ≤ τ ≤ π/2, by a 5 by 11 rectangular regular lattice of scatterers. The surface
plots were obtained using (a) the WSA, i.e., γ = 0, and (b) a truncation parameter of evanescent
components γ = 2.

0 0.5 1 1.5 2 2.5 30.36

0.38

0.4

0.42

0.44

Fig. 3. Convergence of the transmission coefficient with respect to the extent of evanescent
wave components included in the simulations

conducted as part of this investigation, so we set γ = 2 for the remainder of this study,
unless otherwise specified. In particular, for a single slab, the far-field properties
computed with the WSA would match those which include evanescent components, as
the evanescent/traveling interactions occur only in multiple slab problems. Therefore,
we take γ = 0 for the single slab problem.

We now investigate the relationship between a finite row of regularly spaced scat-
terers and the corresponding infinite periodic row, using the method of Bennetts [2],
which accommodates directional incident spectra. We consider a row of J scatterers
with constant center-to-center spacing s, aligned vertically along the y-axis and ar-
ranged symmetrically with respect to the x-axis. The incident spectrum is the same as
that in the previous example, which we note was also used in Bennetts [2] to analyze
the response by infinite arrays.
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Fig. 4. Angular spectrum of transmitted energy for a regular array of scatterers with spacing
(a) s = 2 and (b) s = 4. In each panel, responses are given for J = 11 and 101 scatterers (thick and
thin lines, respectively) and compared to the infinite regular array response provided by Bennetts [2]
(circles). The MSE between finite and infinite array responses is plotted in the lower panels against
the number of scatterers in the finite array for the two spacings considered.

Figure 4(a), (b) shows the angular spectrum of transmitted energy for spacings
s = 2 and s = 4, respectively. In each panel, we compare the spectra computed from
the finite array model with J = 11 and J = 101 (thick and thin lines, respectively)
and the spectrum of the corresponding infinite array (circles). We find that for both
spacings the finite array model with 101 scatterers gives a very good approximation
of the infinite array response. This is all the more remarkable, observing that the
methods used in our model and that of Bennetts [2] are substantially different. This
comparison therefore helps validate the method devised in the current paper.

We can also examine the rate of convergence of the finite array model toward the
infinite array with respect to the number of scatterers M . Figure 4(c), (d) shows the
mean square error (MSE) between the finite and infinite array transmitted energy
spectra for increasing M . We find a quasi-exponential decay of the MSE between
J = 3 and 31 for s = 2, and J = 3 and 51 for s = 4. This suggests that convergence
toward the infinite array response is fast, so a good approximation of the behavior of
an infinite array can be simulated reasonably easily with our model. We note that
the MSE levels off below 10−4 in both cases, which is attributed to the finite array
case converging to a solution slightly different from the infinite array solution, likely
due to scattering near the edges of the finite array. Consequently, the approximation
of the infinite array is valid only when the phase origin of the incident field is chosen
in the middle of the finite array, so the edge effects are sufficiently small to have little
influence on the reflected and transmitted spectra, also measured in the middle of the
array.

The transmitted energy spectra plotted in Figure 4(a), (b) display features that
are worthy of comment. In particular, the resonances observed in these spectra are
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characterized by double spikes at certain angles. For an infinite regular array, it is well
established that scattered waves propagate at a finite number of well-defined angles,
the so-called scattering angles, determined by the direction of the incident plane wave
and the spacing between scatterers. The double spikes occur around the scattering
angles excited for an incident plane wave in the normal direction. The normal direction
carries the most energy in the incident spectrum considered here. It is interesting
to observe that the transmitted field carries most of its energy not at these angles
but at angles nearby. When forced by an incident angular spectrum, all angular
components superpose coherently, so interference mechanisms lead to cancellations
at certain angles, which is the most reasonable explanation for the energy minimum
at these scattering angles. Inspection of the reflected spectrum shows that sharp
peaks occur at the scattering angles. These look similar to enhanced backscattering
cones that form the basis of the coherent backscattering effect (weak localization)
in weakly disordered media (Sheng [25]). This may indicate the physical nature of
these resonances, although no references were found to confirm this hypothesis. A
link to coherent backscattering is supported by the observation (not shown here)
that the peaks and troughs (for reflected and transmitted spectra, respectively) occur
consistently at these scattering angles regardless of the shape of the incident spectrum,
e.g., for an asymmetric spectrum.

Our next goal is to investigate how random perturbation of a regular finite array
of scatterers affects the angular spectrum of transmitted energy. For this purpose,
we consider an array of 101 scatterers perturbed from their mean position on the
y-axis, with regular spacing s = 5 and centered about the x-axis. The position of
each scatterer j is then defined by (xj , yj) = (0, (j − 51)s) + (εdx, εdy) for 1 ≤ j ≤ J .
The quantity ε is a random variable with uniform distribution in the interval [−1, 1],
and dx and dy define the nondimensional maximum deviation from the mean position
in the x and y directions, respectively.

We test the impulse response of the system for different degrees of disorder, for
an impulse in the normal direction, i.e., AIn(τ) = δ(τ). Discretizing the problem
by taking 2Ns + 1 samples of the angular domain (see section 5), the response of the
system is provided by the (Ns+1)th column of the reflection and transmission matrices
defined by (5.1). We denote the transmitted impulse response by T 0 and compute the
average 〈|T 0|〉 of 50 random realizations of the array, which is a sufficient number for
this particular simulation. The results are displayed in Figure 5 for different values
of dx and dy, which control the amount of disorder imposed on the system.

Panel (a) shows the impulse response of the unperturbed array and, as expected,
we can see spikes at the scattering angles (real solutions of sinχ = 2lπ/(ks), l ∈ Z).
Panels (b) and (c) show the response of the system for dx = 1 and 2, respectively, and
no perturbation in the y direction (dy = 0). As dx increases, the scattering angles
sinχ = ±4/5 are gradually filtered out of the response, while the other spikes appear
to be unaffected. Numerical results not shown here indicate that, for larger dx, the
scattering angles sinχ = ±2/5 eventually disappear from the response, too. Similar
conclusions are found when the array is perturbed in the y direction only (see panels
(d) and (f) obtained for dy = 1 and 2, respectively), and of course in both directions.

With equal disorder in the x and y directions, scattering angles are filtered signifi-
cantly more rapidly with a disturbance in the y direction. This is a sensible result due
to the fact that scattering angles are determined by the spacing between scatterers,
and the effect of a small perturbation on the spacing in the y and x directions is first
and second order, respectively.
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Fig. 5. Effect of a random perturbation on the transmitted spectrum due to an impulse in the
normal direction incident on an array composed of 101 scatterers. Ensemble averages of transmitted
angular spectra are plotted in all panels with perturbation parameters dx = 0, 1, and 2 in the panels
of the first, second, and third columns, respectively, and dy = 0, 1, and 2 in the panels of the three
rows.

With sufficient disorder in the system, we have shown that the array acts as a filter
of the nonnormal scattering angles, so that the perturbed row only transmits a wave
in the same direction as the incident wave. This suggests that a directional spectrum
of arbitrary shape traveling through the disordered row will transmit a spectrum of
the same shape, but with reduced amplitude. To test this conjecture, we compute the
transmitted and reflected spectra through the same array with perturbation parame-
ters dx = 4 and dy = 2. We consider the three incident spectra:

AIn
1 (τ) = cos τ,

AIn
2 (τ) = H(τ + 3π/10)−H(τ + π/10),

AIn
3 (τ) =

(
0.5 cos10(τ + π/4) + cos10(τ − π/6)

)
cos τ

for −π/2 ≤ τ ≤ π/2. In the second incident spectrum, H(τ) = 0 if τ < 0 and 1 if
τ ≥ 0 is the Heaviside step function, which allows us to simulate the response to a
discontinuous step. We estimate the ensemble average of the reflected and transmitted
directional spectra from 5000 random realizations of the array.

Figure 6 shows the incident, reflected, and transmitted spectra for the three forc-
ings considered. We observe that in all cases the transmitted directional response
preserves the shape of the incident spectrum, as conjectured from the analysis of
impulse responses. In particular, the response to the step function AIn

2 (τ) (see (b))
is characterized by discontinuities in the transmitted spectrum at the same angles
χ = −3π/10 and −π/10. We observe further that the reflected spectra are all quasi-
constant over the angular range, suggesting that randomizing the array produces a
diffuse reflected field that is fully isotropic.

Inspection of the reflected field impulse response (not displayed here) shows
that this diffuse state is predicted as the limiting behavior of the system under
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Fig. 6. Incident (thick solid), transmitted (thin solid), and reflected (thin dashed) directional
spectra due to an array composed of 101 scatterers perturbed randomly from the regular arrangement
with spacing s = 5. Ensemble averages of each spectra are obtained from 5000 random realizations
with perturbation parameters dx = 4 and dy = 2.

increasing degrees of random perturbation. Similarly to the transmitted response,
spikes at the scattering angles are gradually filtered out by introducing more and
more perturbations, although in this case the contribution of the normally incident
mode also disappears.

We now consider the response of a multiple row array composed of 10 slabs,
computed using the WSA (γ = 0). We seek to validate the multiple row technique
described in section 6 for a regular arrangement of scatterers by comparing the trans-
mitted energy directional spectrum with that provided by the infinite array model of
Bennetts [2], restricted to the WSA. We fix the spacing between scatterers of each
row to s = 2 and the spacing between rows to 2, and consider the incident field shown
in Figure 1(b).

Figure 7 shows the transmitted energy spectra for 101 and 201 scatterers in each
row (thick and thin lines, respectively), compared to the infinite row arrays response
of Bennetts [2] (circles). We see that 101-scatterer rows give a reasonably good ap-
proximation of the infinite row spectrum, although we can observe discrepancies at
the peaks occurring at sinχ ≈ ±0.4, ±0.6, and ±0.95. The two latter pairs of peaks
are recovered by taking 201 scatterers in each row, but not the former one. Sensitivity
tests (not shown) demonstrate that as the number of scatterers in each row increases,
more angular samples are needed to satisfy the energy conservation relation (7.1). As
for the single row problem, the finite array solution does not seem to converge exactly
to the infinite array solution, likely due to edge effects in the finite array case. A good
approximation can be obtained with a few tens of scatterers, however, which captures
the main features of the transmitted spectrum.

We observe, as for the single row problem, a significant drop of transmitted en-
ergy in the normal direction, which resembles the coherent backscattering effect that
characterizes wave scattering in weakly disordered media.

We now seek to validate our method when disorder is introduced in the system.
Foldy [11] proposed a simple approximation for the mean field in three-dimensional
random media composed of sparsely concentrated identical isotropic scatterers. Two-
dimensional versions of Foldy’s effective media theory were subsequently given by
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Fig. 7. Directional spectrum of transmitted energy for a regular lattice composed of 10 rows of
101 (thick dashed line) and 201 (thin solid line) scatterers. The spacing between scatterers in a row
is s = 2 and the spacing between rows is L = 2. The responses are compared to the infinite array
transmitted energy spectrum provided by Bennetts [2] (circles).

Twersky [28], Aristégui and Angel [1], and Linton and Martin [17], for instance.
Following the latter paper [17], the mean field through a semi-infinite random medium
due to an incident plane wave with wavenumber k, angle τ with respect to the x-axis,
and amplitude AIn(τ) (see the integrand of (2.3)) is given by

φeff(x, y) = AIn(τ)U0 e
iK(x cosϕ+y sinϕ), where(7.2)

K2 = k2 − 4 in0g, K sinϕ = k sin τ, and U0 = 2k cos τ/(k cos τ +K cosϕ).

The parameter n0 defines the number of scatterer per unit area and should be small,
while g describes the scattering strength of each isotropic scatterer. For finite size
scatterers, it is given by g = f(0), where

f(θ) ≈
N∑

n=−N

(
−J

′
n(ka)/H

′
n(ka)

)
e inθ

is the far field pattern of each individual scatterer. The mean field due to a continuous
incident directional spectrum as given by (2.3) is then obtained by integrating (7.2)
with respect to τ with the understanding that U0, K, and ϕ are functions of τ .

We simulate a random medium with our model by considering an array of 50 slabs
containing 101 scatterers of radius a = 0.2 each. As for the single slab problem, we
define a finite regular array of scatterers in each slab and then perturb randomly the
position of the scatterers. We fix the spacing in each row to s = 2 and the width of all
slabs to Lq = 5, 1 ≤ q ≤ 50, so that n0 = 0.1. We consider a forcing with directional
spectrum AIn(τ) = cos τ , as defined in Figure 1(b). In each slab q, scatterers have
their position defined by (xj , yj) = (2(q− 1), 2(j− 51))+ (εdx, εdy), 1 ≤ j ≤ Jq, with
dx = Lq/2− a and dy = s/2− a to avoid overlap.

D
ow

nl
oa

de
d 

04
/2

5/
16

 to
 1

29
.1

27
.7

8.
51

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

646 F. MONTIEL, V. A. SQUIRE, AND L. G. BENNETTS

0 50 100 150 200 250
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10−1

100

101

Fig. 8. Modulus of the mean wave field along the x-axis in a random medium composed of
small identical scatterers. The mean field is estimated using Foldy’s approximation as described in
Linton and Martin [17] (solid line) and as the ensemble average of 1000 random realizations of a
finite array of 5050 scatterers using the slab-clustering method described in this paper (circles).

We perform Monte Carlo simulations to estimate the modulus of the mean field
through the array along the x-axis |〈φ(x, 0)〉|. For each random realization of the array,
we calculate the field at each slab boundary using (6.1) with y = 0, and we average
over 1000 realizations of the array. Figure 8 shows the modulus of the mean field
through the medium using Foldy’s approximation and the slab-clustering technique.
We observe good agreement between the two approaches, providing another validation
of the method devised in this paper.

The effective medium theory of Foldy can only estimate the mean field in a ran-
dom medium |〈φ(x, y)〉|, which is in general different compared to the mean of the
individual (physical) fields 〈|φ(x, y)|〉 (see, e.g., Wu [32]). Only the latter can be
used to estimate the evolution of the wave properties, e.g., attenuation of energy and
changes in directional spreads, as experienced by individual fields and which concern
most physical applications. Consequently, we do not discuss mean fields further.

We now consider the response of an array composed of 50 slabs containing 101
scatterers of radius a = 0.5 each, and we introduce a random perturbation on the
position of the scatterers for different values of 0 ≤ dx, dy ≤ 0.5. The reflected and
transmitted directional spectra A−

0 (χ) and A+
50(χ) are displayed in Figures 9(a) and

9(b), respectively, for the regular array case (dx = dy = 0). The spectra contain
many spikes and irregularities as a result of complicated coherent interactions within
this large array (5050 scatterers). Of particular interest is the spike in the reflected
spectrum in the normal direction and the corresponding minimum at the same angle
in the transmitted spectrum. This behavior is analogous to that observed in the
response of a single slab, where minima in the transmitted spectrum at the scattering
angle were observed in the periodic row case. For the present multiple slab array, the
only scattering angle is the normal direction, indicating that the minimum there may
also be linked to the coherent backscattering effect.

We introduce random perturbations in the array in Figures 9(c) and 9(d), where
we show the average reflected and transmitted spectra, respectively, for an ensemble
of 1000 realizations of the array. The response of the system is given for three different
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Fig. 9. (a), (c) Reflected and (b), (d) transmitted spectra for an array composed of 50 slabs
of 101 scatterers, under an incident spectrum as defined in Figure 1(b). Responses are displayed
for (a), (b) the regular array with constant spacing s = 2 and (c), (d) an ensemble of 1000 random
realizations with perturbation parameters (i) dx = 0.5 and dy = 0 (thick dashed), (ii) dx = 0 and
dy = 0.5 (thin solid), and (iii) dx = dy = 0.5 (thick solid).

types of perturbation: (i) in the x direction only (dx = 0.5 and dy = 0), (ii) in the
y direction only (dx = 0 and dy = 0.5), and (iii) in both directions (dx = dy = 0.5).
The reflected spectra are similar for all three cases. They are almost constant over a
large portion of the angular range. They characterize a quasi-isotropic diffuse state
for which wave energy can be reflected in all directions with equal probability.

The transmitted spectra, however, preserve some of the structure of the regular
case. In cases (i) and (ii), we observe several peaks indicating preferred directions of
propagation of the transmitted energy. The peaks occur in subintervals of the angular
range where the regular array transmits more energy (see Figure 9(a)), suggesting
that the shape of the spectra is mainly governed by similar coherent interactions as
those observed for the regular array. In particular, the spacing between the rows is
constant in case (ii), which provides a regularity in the array that allows the wave
field to resonate in certain directions. More evidence toward this conjecture will be
given shortly. In case (iii), more perturbation is introduced in the system and the
transmitted spectrum is more uniform and smooth across the angular range. The
degree of disorder is now sufficient to filter most resonating features associated with
the regular array, although maxima can still be observed for sinχ ≈ ±0.45.

To understand how the reflected and transmitted spectra form, we plot the left-
and right-traveling spectra at the interfaces between rows 10 and 11, 〈|A±

10(χ)|〉, and
between rows 30 and 31, 〈|A±

30(χ)|〉, in Figure 10. The spectra for cases (i) and
(iii) look remarkably similar and travel quasi-isotropically through the array. This
behavior indicates that the shape of the transmitted spectra observed in Figure 9(d)
form closer to the end of the array. Inspection of the directional spectra deeper in the
multiple row array (not displayed here) shows that the peaks seen in the transmitted
spectrum form after the 40th row. This observation suggests that the transmitted
spectrum is strongly influenced by the boundary rows of the array.
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Fig. 10. Ensemble average of directional spectra after (a), (c) 10 slabs and (b), (d) 30 slabs, for
the situation considered in Figure 9. The left- and right-traveling spectra are shown in panels (a),
(b) and (c), (d), respectively. Results are given for different degrees of disorder with thick dashed,
thin solid, and thick solid lines corresponding to the perturbation parameters of cases (i), (ii), and
(iii), respectively, considered in Figure 9.

In case (ii), perturbations are introduced in the y direction only, so the spacing
between rows is the same. This allows resonant peaks to persist through the array as
observed in Figure 10, unaffected by the disorder introduced within each row. This
behavior contrasts with the outcome of the single row analysis, where perturbations
in the y direction eliminated resonant behaviors more strongly than perturbations in
the x direction. The constant row spacing of this array suggests a relation to Bragg
scattering, which occurs in regular lattices. Interestingly, the peaks observed in this
case are not present in the reflected spectrum, although we can observe them from
the second row onward (not shown here).

As a final observation, we note that, apart from the boundary rows within the
array, the shape of the directional spectrum is quasi-constant in disordered multiple
row arrays, while localization causes wave energy to decay exponentially. The regular
array case shows a similar behavior (not displayed here), although wave energy does
not decay in the same way.

8. Concluding remarks. A new method has been proposed to describe the
multiple scattering of waves by a large finite array of circular obstructions in two
dimensions and the concomitant evolution of directional wave properties through the
array. The method was presented for a canonical planar acoustic problem with sound-
hard scatterers. The wave forcing consists of a directional spectrum of plane waves,
i.e., a superposition of plane waves with amplitudes that vary continuously with their
direction of propagation. The method allowed us to simulate the response of regular
and randomly perturbed arrays and to investigate the effect of the disorder on the
directionality of the scattered field.

Given an arbitrary array, we define a slab that contains it. We are able to find
semianalytical expressions for the reflected and transmitted fields, also defined as
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directional spectra of plane waves, by combining the multipole method for multiple
scattering by finite arrays and the integral transform of cylindrical harmonics into
directional spectra of plane waves. Discretizing the angular domain, we obtain a
scattering matrix for the slab. The extension to multiple slabs follows from the S-
matrix method and provides a directional spectrum representation of the wave field
at each slab boundary, allowing us to track its evolution through the array. Numerical
limitations related to the number of scatterers within each slab exist, although the
FMM could be used as a remedy. Instead, increasing the number of slabs with our
method allows us to solve multiple scattering problems for very large arrays, e.g.,
O (103–104) scatterers.

Numerical simulations were conducted to investigate (a) the validity of the WSA
for multiple slabs, (b) the approximation of the infinite single or multiple row response
by finite rows/slabs of regularly spaced scatterers, (c) the attenuation of the mean
field through a random array using Monte Carlo simulations and the analytical Foldy’s
approximation, and (d) the effect of randomly perturbing the position of each scatterer
from its regular arrangement on the directional properties of the wave field traveling
through the array. The main findings are summarized below.

1. The WSA does not capture accurately the reflected and transmitted proper-
ties for multiple slabs, due to the traveling/evanescent wave interactions that occur
between slabs. Few evanescent wave components are needed to compute the solution
with high accuracy.

2. The transmitted energy spectrum due to an infinite row (provided by
Bennetts [2]) is approximated accurately by the corresponding finite regular row,
therefore validating our solution method. For multiple rows, we found reasonably
good agreement as most features of the transmitted spectrum are captured, although
numerical limitations for an increasing number of scatterers in each row impede the
convergence toward the infinite multiple row array response.

3. Further validation of our method was obtained for random arrays, where a
comparison of the mean field through a large random array between Monte Carlo
simulations with our method and Foldy’s approximation for the effective properties
of semi-infinite random media showed very good agreement.

4. Under random perturbations in the position of regularly spaced scatterers in
a finite row, we analyzed the ensemble average of the transmitted spectrum due to
impulse forcing in the normal direction. We found that energy in the direction of the
scattering angles is gradually filtered out, except that in the direction of the forcing,
for increasing levels of disorder, while the reflected spectrum becomes isotropic. This
observation suggests that for sufficient disorder in a single row, the transmitted spec-
trum has the same shape as the incident spectrum. This conjecture was validated for
three different incident spectra.

5. The directional spectra through a 50-slab array, each containing 101 ran-
domly perturbed scatterers, were computed from an average of random realizations
of the array. We found that the reflected spectrum is quasi-isotropic, while the trans-
mitted spectrum exhibits resonances at certain angles that depend on the type of
perturbation introduced. In contrast, the directional spectrum through the array and
sufficiently far from the boundary rows evolves without such resonances, except when
the row spacing is fixed. We also found that the shape of the spectra remains quasi-
constant except close to the boundary rows, a feature that was also observed for a
regular multiple row array.D
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Appendix A. The forcing experienced by obstruction j is the superposition of
the incident wave φIn and the scattered waves due to all obstructions, except j. The
total wave field is then given by

φ(rj , θj) = φIn(rj , θj) + φS
j (rj , θj) +

J∑
p=1, p�=j

φS
p(rp(rj , θj), θp(rj , θj)).(A.1)

We invoke Graf’s addition theorem (see Martin [18, Theorem 2.12]) to express
the multipole expansion of φS

p in the local coordinates of obstruction j, i.e.,

φS
p(rj , θj) =

∞∑
n=−∞

( ∞∑
s=−∞

c(p)s Hs−n(kRpj) e
i(s−n)ϑpj

)
Jn(krj) e

inθj ,(A.2)

with (Rpj , ϑpj) the polar coordinates of the center of obstruction j in the local sys-
tem associated with obstruction p. Note that (A.2) is valid for rj ≤ Rpj , although
this condition is automatically satisfied if the obstructions do not overlap. We can
now apply the boundary condition (2.2) on Γj , using (2.5), (2.7), (A.1), and (A.2).
Truncating infinite sums to include 2N + 1 modes only, we obtain

−c(j)n

H
′
n(kaj)

J′
n(kaj)

−
J∑

p=1, p�=j

N∑
s=−N

c(p)s Hs−n(kRpj) e
i(s−n)ϑpj = f (j)

n(A.3)

for all n, −N ≤ n ≤ N , and j, 1 ≤ j ≤ J . This is a system of J(2N + 1) algebraic

equations, which can be solved numerically for the c
(j)
n . Symmetries in the system

can be used to reduce the number of Hankel function evaluations, which are computa-
tionally expensive. The second term of the left-hand side in (A.3), related to multiple
scattering effects, is generally expensive to compute. It could be accelerated using
the FMM, based on the far-field expansions of cylindrical harmonics (see, e.g., Lai,
Kobayashi, and Greengard [15]). Achieving maximal efficiency is not the focus of this
paper, however, so we do not consider FMM acceleration here.
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