Response latencies to chromatic
and achromatic visual stimuli

Adam Kane
School of Psychology
University of Adelaide
2014

Thesis submitted for the degree of
Doctorate of Philosophy
Acknowledgements

I wish to acknowledge the support of the following people during my candidature. I thank Prof. David O’Carroll for his guidance on critical thinking and discussions of data analysis. I thank Prof. Alex Wade for his help, particularly in understanding colour vision and estimating neural response functions. I thank Dr. Mark Yates for his guidance on writing for publication. I also wish to thank Assoc. Prof. Anna Ma-Wyatt for her help, effort, support and understanding over the duration of my candidature.

Finally, I wish to acknowledge the extended support and tolerance of my wife. My candidature has impacted on her as much, if not more, than it has on me. Her acceptance of such a long period of limited income during such an unsure and changing period of our relationship demonstrated that, often against rational thought, she was willing to let me pursue my goals in developing my career as I saw fit. Without her support, this thesis would not have been possible.
Abstract

There has been considerable debate about how visual information is processed for the perception of stimuli and the generation of motor responses to the same stimuli. While there are well-documented differences in conduction latencies of the luminance and chromatic pathways, it is unclear if information that is integrated from these pathways is used in a similar way across motor and perceptual tasks. Key aspects of human behaviour have different requirements in terms of the spatial and temporal resolution required to complete the task. Certain tasks may therefore rely on processing of information that has spatial or temporal characteristics that are most informative for that specific task. Three studies examined tasks with different task demands; a simple reaction time task, three perceptual asynchrony tasks and a reaching task. Differences in processing for perceptual and motor responses were investigated by measuring differences in the relative response latencies to chromatic and luminance stimuli in these tasks.

In the first study, I investigated ways to equate the contrast of different chromatic and luminance stimuli. I then measured RTs to these stimuli as a function of contrast. RTs to luminance stimuli were approximately 45 and 60 ms shorter than RTs to L-M and S-cone stimuli respectively. RTs decreased as a function of contrast more rapidly to luminance stimuli than to chromatic stimuli.

In the second study, I used three tasks to investigate relative latencies with which chromatic and luminance stimuli were perceived to appear. I demonstrated that two of the existing tasks typically used to investigate
perceptual asynchrony were unsuited for this comparison. I then developed a task that determined the minimum backmask onset delays that allowed participants to accurately locate stimuli. The differences in the delays between the pathways indicated the differences in the latencies in when the stimuli appeared to participants. The temporal advantage for the luminance pathway was only approximately 9 and 14 ms over the L-M and S-cone pathways respectively.

In the final study, I examined the delays in correcting rapid reaches to luminance and chromatic stimuli. The temporal advantage for the luminance pathway was approximately 15 and 20 ms over the L-M and S-cone pathways respectively.

The temporal advantage found for the luminance pathway in the RT task may be larger than the advantage that would be predicted on the basis of differences in conduction latencies alone. Thus, the relatively rapid decrease in RT with contrast for the luminance pathway, and the large dissociation in the response latencies measured in the RT and perceptual tasks, is consistent with there being separate decision making processes for RT and perception, with the RT response being relatively more reliant on luminance information. The reaching correction response however appears to rely on a similar contribution from the pathways to the perception of the stimuli. It is discussed how these stimuli and results could be readily utilised to extend these comparisons to further develop understanding of commonality and differences in processing visual information for different visual tasks.
Contents

Declaration ...11
Abbreviations..12

1. Introduction ...13

1.1. Do the different visual pathways have similar contributions to different visual functions? ..13

1.2. Responses require neural decision making ...15

2. Literature review ..18

2.1. The geniculate pathways ..19

2.1.1. The achromatic or luminance pathway..19

2.1.2. The L-M opponent pathway...20

2.1.3. The S-cone pathway...21

2.2. Do different visual tasks use common processing or utilise required pathway characteristics? ...23

2.3. Physiological comparisons of response latencies between the pathways ..26

2.4. Three tasks to investigate how visual information is used across different tasks ..27

2.5. Comparing RTs between the pathways..29

2.5.1. How should stimuli be scaled to get comparable RT across the pathways? ..34

2.6. Perceptual measures of delays to chromatic and luminance information ..39
2.7. Reaching measures of delays to chromatic and luminance information ...40

2.8. Comparing RT and perceptual latencies..42
 2.8.1. RT/perceptual comparisons not manipulating chromaticity ..43
 2.8.2. RT/perceptual comparisons manipulating chromaticity47

2.9. Critical points from literature review ..48

3. Details on the experiments in this thesis50

3.1. The Stimuli ..50

3.2. Calibrating the stimuli for individual participants51
 3.2.1. Isolating the chromatic pathways ..51
 3.2.2. Isolating the tritan line ...52
 3.2.3. Equating chromatic and achromatic contrast ..54

3.3. Aim and overview of thesis ...54

4. Publication 1; Reaction time to chromatic and luminance stimuli..........................56

4.1. Statement on contribution to publication ..56

4.2. Preface ..58

4.3. Manuscript ..59
 Abstract...60
 Introduction ...61
 The experimental challenges ...62
 Do RTs simply reflect conduction delays? ...64
How have the calibration challenges been addressed and what were the outcomes? ...64

Do different tasks use input from the pathways differently?66

Aims ...67

Method..68

Participants ..68

Equipment ...68

Stimuli ..69

Measuring reaction time ...72

Analysis ...72

Results ..73

Absolute differences in RT ..73

Determining linearity of RT/ENR functions ..75

Discussion ..75

Why was only the luminance RT/ENR relationship significantly non-linear?76

Conclusions ..78

References ..78

4.4. Addition notes on RT study ..83

5. Publication 2; Perceptual latencies for chromatic and luminance stimuli...85

5.1. Statement on contribution to this publication ..85

5.2. Preface ..87

5.3. Manuscript ...88

Abstract ..89
Acknowledgements..124
References ..124

5.4. Additional notes on perceptual latency study...129

6. Publication 3; Delays in using chromatic and luminance information to correct rapid reaches ..132

6.1. Statement on contribution to this publication ...132

6.2. Preface ..134

6.3. Manuscript ...135

Abstract ...136

Introduction ..137

The visual control of reaching ...137

Visual pathways involved in guiding reaches ..138

The three pathways have different conduction velocities ...139

Do conduction delay differences produce differences in motor responses?...140

Reaching corrections ...142

Reaction time ..143

Aim ...146

Method ...146

Participants ..146

Equipment ..146

Stimuli ..147

Equating stimulus contrast and estimated neural responses150

Reaching experiments ...154

Analysis ...155
Results .. 158

Reaching times and Correction times ... 158

Comparing CT50 at 2x threshold and 0.3 Rmax .. 159

Discussion ... 163

Comparing methods of equating stimuli for contrast 164

Correcting reaches and reaction time to achromatic and chromatic stimuli 165

Comparing reaction times and correction times .. 168

Summary and conclusion .. 169

Acknowledgements ... 170

References .. 171

6.4. Additional notes on reaching correction study ... 179

7. Exegesis .. 180

7.1. Summary of results and conclusions .. 180

7.2. Comparing the results from the three tasks .. 183

7.2.1. Comparing the RT and perceptual results .. 183

7.2.2. Comparing the RT and reaching correction findings 185

7.2.3. Comparing the reaching and perceptual results 189

7.3. Novel contributions from this thesis ... 189

7.4. Possible directions for future research ... 192

8. References ... 196
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

I acknowledge that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

Adam Kane
Abbreviations

(in order of appearance)

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-M</td>
<td>L-M opponent or parvocellular retino-geniculate pathway</td>
</tr>
<tr>
<td>S-cone</td>
<td>S-cone opponent or koniocellular retino-geniculate pathway</td>
</tr>
<tr>
<td>RT</td>
<td>Simple reaction time</td>
</tr>
<tr>
<td>VEP</td>
<td>Visually evoked potential</td>
</tr>
<tr>
<td>TOJ</td>
<td>Temporal order judgement</td>
</tr>
<tr>
<td>SJ</td>
<td>Simultaneity judgement</td>
</tr>
<tr>
<td>AFC</td>
<td>Alternative forced choice</td>
</tr>
<tr>
<td>MOA</td>
<td>Mask-onset asynchrony</td>
</tr>
<tr>
<td>L</td>
<td>Long wavelength photoreceptive cone</td>
</tr>
<tr>
<td>M</td>
<td>Medium wavelength photoreceptive cone</td>
</tr>
<tr>
<td>S</td>
<td>Short wavelength photoreceptive cone</td>
</tr>
<tr>
<td>LGN</td>
<td>Lateral geniculate nucleus</td>
</tr>
<tr>
<td>MT</td>
<td>Middle temporal</td>
</tr>
<tr>
<td>PPC</td>
<td>Posterior parietal cortex</td>
</tr>
<tr>
<td>MB-DKL</td>
<td>MacLeod, Boynton, Derrington, Krauskopf & Lennie colour space</td>
</tr>
<tr>
<td>CRT</td>
<td>Cathode ray tube</td>
</tr>
<tr>
<td>RMS</td>
<td>Root mean square</td>
</tr>
<tr>
<td>MDT</td>
<td>Multiples of detection threshold</td>
</tr>
<tr>
<td>PA</td>
<td>Perceptual asynchrony</td>
</tr>
<tr>
<td>SOA</td>
<td>Stimulus onset asynchrony</td>
</tr>
<tr>
<td>ART</td>
<td>Anticipatory reaction time</td>
</tr>
</tbody>
</table>