Spatial Simulation Based Riverbank Slope Instability and Susceptibility Assessment in the Lower River Murray

By

CHEN LIANG
B.E., M.Sc.

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

The University of Adelaide
Faculty of Engineering, Computer and Mathematical Sciences
School of Civil, Environmental and Mining Engineering

Copyright © February 2015
To my beloved parents

Xu-Dong Liang and Xiao-Feng Niu

And my beloved grandparents

Tin Jiao and Zhen-xiang Luo

Shu-ren Niu and Yu-Lan Feng
Spatial Simulation Based Riverbank Slope Instability and Susceptibility Assessment in the Lower River Murray

By:

Chen Liang, B.E., M.Sc.

Supervised by:

Professor Mark B. Jaksa, B.E.(Hons), Ph.D.

and

Associate Professor Bertram Ostendorf, B.S., Ph.D

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

School of Civil, Environmental & Mining Engineering
Faculty of Engineering, Computer and Mathematical Sciences
The University of Adelaide
North Terrace, Adelaide, SA 5005, Australia
Phone: +61 8 8313 1575
Fax: +61 8 8303 4359
Email: cliang@civeng.adelaide.edu.au, mjlc7777@gmail.com
Copyright © Chen Liang, February, 2015
Abstract

Riverbank collapse is a natural and expected phenomenon associated with the evolution of rivers worldwide and has been studied extensively over the last two decades and remains an active research topic. The evolution of riverbank stability analysis has followed closely the developments in analytical methods, investigation tools, stabilisation methods and data acquisition technology. Furthermore, the stability of riverbanks is a multifaceted issue which involves the study of geology, topography, stratigraphy, hydrology, climate, spatial variation and geotechnical engineering.

The River Murray is one of the only river systems in the world that can fall below sea level due to the barrages preventing the inflow of sea water during periods of low river flows. Over the last few years, an unprecedented period of dry conditions and low flows between 2005 – 2010 led to more than 162 reported riverbank collapse-related incidents along the Lower River Murray, in South Australia (downstream of Lock 1 at Blanchetown to Wellington). Those collapse-related incidents threatened public infrastructure, private property and the safety of river users, and also provide significant challenges for environmental and river management. From the inventory of the South Australian Department of Environment, Water and Natural Resources (DEWNR), riverbank collapse, erosion, cracking, tree leaning and collapse and levee problems are the main forms of the recorded incidents.

Geographical information systems (GIS) is well known for its efficient and cost-effective spatial data processing capabilities, which include spatial data collection, manipulation and analysis, and has been widely used in riverbank instability research. As a significant feature of this thesis, GIS, incorporating high-resolution spatial data, such as aerial photographs and LIDAR (light detecting and ranging) images, facilitates the assessment of riverbank instability in several ways. Firstly, the actual location of the historical collapse can be determined and verified by the use of high-resolution aerial image comparison and interpretation to facilitate accurate back-analyses. Secondly,
the 2D and 3D geometry of the riverbank is able to be readily extracted from the LIDAR digital elevation models (DEM). Thirdly, the dimensions of the predicted collapsed regions can be validated against high-resolution aerial images, and finally, the influencing factors are able to be manipulated and mapped with GIS to predict regions susceptible to riverbank collapse.

This thesis aims to: (1) examine the failure mechanisms affecting riverbank collapse along the Lower River Murray and identify the most relevant mechanism; (2) identify potential triggers for riverbank collapse events that should be monitored and managed in the future; (3) develop a framework, incorporating spatial information, GIS and geotechnical data, to facilitate the prediction of riverbank collapse along the Lower River Murray (between Blanchetown and Wellington, South Australia); and (4) develop a framework, based on GIS and geotechnical data, to identify regions susceptible to high risk of riverbank collapse along the Lower River Murray.

In order to realise these aims, numerical analyses have been performed using two commercially available software programs, ArcGIS and SVOOffice, which integrate the limit equilibrium method, back-analysis of collapse incidents, transient unsaturated flow modelling, steady state modelling, and DEMs and high-resolution aerial images within a GIS framework. The modelling has been informed by a series of geotechnical investigations undertaken at various sites along the River Murray.
Statement of Originality

I, Chen Liang, hereby certify that this work has not been previously accepted for any other degree or diploma at any other University or Institution. To the best of my knowledge and belief, no material in this thesis is from the work of other people, except where due reference are made in the text.

In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I acknowledge that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I give permission for the digital version of this work being made available on the web, via the University’s digital research repository, the Library catalogue, the Australian Digital Thesis Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed…………………… Date:……………………
Acknowledgements

I would like to give my sincerest thanks to my parents and grandparents, who have been giving their unconditional support to my life and work from the beginning to the end. Without their love, all the work I have done would hardly be possible. To revere and learn my parents’ and grandparents’ love, goodness, integrity and selflessness has inspired me to keep moving on.

I would like to take this opportunity to sincerely acknowledge my Principal Supervisor Professor Mark Jaksa and Co-supervisor Associate Professor Bertram Ostendorf for their guidance, invaluable support and encouragement throughout my Ph.D. studies but without requiring anything in return. Without their valuable advice and comments, I would not have been able to complete my project, nor would I have produced four journal papers. Special thanks to Professor Mark Jaksa who provided me with casual work opportunities in the School and provided me a top-up scholarship to cover my daily life expenses.

I would also like to show my appreciation to Drs. Yien Lik Kuo and An Deng who have provided me great suggestions for my research. Special thanks to the ladies in our School Office, Dr. Stephen Carr from the IT section and Gary Bowman, Dale Hodson and the other technical staff from the laboratories of the School of Civil, Environmental & Mining Engineering. They have provided me great assistance in my daily work and site investigations.

I would like to sincerely acknowledge the assistance of Jai O’Toole, Geoff Eaton and Richard Brown from DEWNR who provided me with the high resolution aerial images of the Lower River Murray, opportunities for site visits and valuable advice throughout my research. I’d also like to thank the Goyder Institute for Water Research who funded this project (Project E1.8 Riverbank Stability).

Finally, I would like to thank the University of Adelaide and the China Scholarship Council for awarding me the scholarship to support my Ph.D.
program. Without the CSC tuition-fee-waiver scholarship and stipend, my research and thesis would not have been possible.
Table of Contents

Abstract

Statement of Originality

Acknowledgements

Table of Contents

List of Figures

List of Tables

<table>
<thead>
<tr>
<th>1</th>
<th>Introduction</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Research Aims</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>Layout of Thesis</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Literature Review</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Methods for slope susceptibility assessment</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Methods for calculating the factor of safety</td>
<td>12</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Introduction</td>
<td>12</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Conventional calculation</td>
<td>12</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Infinite slope stability calculation</td>
<td>17</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Finite slope stability calculation</td>
<td>18</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Slope stability classification</td>
<td>20</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Groundwater and subsurface flow</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>Failure processes</td>
<td>25</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Introduction</td>
<td>25</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Erosion processes</td>
<td>26</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Failure mechanisms</td>
<td>27</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Weakening factors</td>
<td>29</td>
</tr>
<tr>
<td>2.4</td>
<td>Effects of vegetation on slope stability</td>
<td>32</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Background</td>
<td>32</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Hydrological effects</td>
<td>33</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Mechanical effects</td>
<td>35</td>
</tr>
</tbody>
</table>
2.4.4 Reinforcement calculation 37
2.5 GIS approaches to landslide hazard mapping 41
2.6 Summary 43
References for Chapters 1 and 2 45

3 GIS-based Back Analysis of Riverbank Instability in the Lower River Murray 59
 3.1 Introduction 62
 3.2 Riverbank stability model and back-analysis 63
 3.3 Analysis and discussion 69
 3.4 Conclusion 74
Acknowledgements 75
References for Chapter 3 76

4 Influence of River Level Fluctuations and Climate on Riverbank Stability 79
 4.1 Introduction 82
 4.2 Study area 86
 4.3 Methodology and model development 87
 4.3.1 Topography 89
 4.3.2 Geotechnical properties 92
 4.3.3 Hydrological and climatic variables 99
 4.3.4 Boundary conditions 101
 4.4 Riverbank collapse back-analyses 101
 4.4.1 Pore water pressure variation 103
 4.4.2 Factor of safety 107
 4.5 Influence of rainfall and river level drawdown 110
 4.6 Conclusion 115
Acknowledgements 116
Notation 117
References for Chapter 4 119

5 Back Analysis of Lower River Murray Riverbank Collapses Using Transient Water Model 127
 5.1 Introduction 130
Table of Contents

5.2 Study area and regions of collapse 132
5.3 Methodology 133
 5.3.1 Topography and soil properties 138
 5.3.2 River level and climatic data 140
5.4 Back-analysis and validation 141
5.5 Summary 149
Acknowledgements 151
References for Chapter 5 152

6 Identifying Areas Susceptible to High Risk of Riverbank Collapse along the Lower River Murray 163
 6.1 Introduction 166
 6.2 Study area and historical collapses 169
 6.3 Methodology 171
 6.3.1 Topography 172
 6.3.2 Geotechnical properties and back-analysis 175
 6.3.3 Cross-sectional modeling 176
 6.4 Hazard prediction and validation 177
 6.5 Summary 187
Acknowledgements 188
References for Chapter 6 189

7 Summary and Conclusions 201
 7.1 Summary 201
 7.2 Research contributions 203
 7.3 Limitations and Recommendations for Future Research 205

8 Appendix: Copies of Papers (as published) 207
List of Figures

Figure 1.1 Overview of the River Murray and the study area............................2
Figure 1.2 Overview of Lower River Murray (Source: SKM, 2010)..................5
Figure 1.3 Slope failure on riverbanks (a) rotational slip on over-steepened riverbanks, (b) slab failure on over-heightened riverbanks (Source: Thorne, 1999). ...6
Figure 2.1 Proposed classification of slope failure susceptibility assessment methods (Source: Aleotti and Chowdhury, 1999). ..13
Figure 2.2 Method of slices: (a) division of slip mass; (b) forces on a slice (Source: Whitlow, 1990). ..15
Figure 2.3 Infinite slope failure in \(c - \phi \) soil with parallel seepage (Source: Abramson et al., 2002). ...17
Figure 2.4 Definitions of terms used for finite element method (FEM) (Source: Abramson et al., 2002). ..19
Figure 2.5 Limitation of \(FS \) compared with probability of failure..............22
Figure 2.6 Bank failure modes (Source: Hey et al., 1991).31
Figure 2.7 Effect of root reinforcement on shear strength of soil (Source: Coppin and Richards, 1990). ..33
Figure 2.8 Reduction in soil moisture content near a Poplar tree growing in boulder clay (Source: Biddle, 1983). ...34
Figure 2.9 Illustration of the root matrix system of vegetation on riverbank (Source: Schwarz et al., 2010). ...36
Figure 2.10 Influence of vegetation on riverbank (Source: Coppin and Richards, 1990). ..36
Figure 2.11 Angle of angle of shear distortion in the shear zone..................38
Figure 2.12 Average shear stress versus displacement plots for the four tree species and the soil-only tests (Source: Docker and Hubble, 2008).39
Figure 3.1 Location of the study area..63
Figure 3.2 Examples of visual interpretation on 2008 and 2010 aerial images under ArcGIS in (a) Murray Bridge and; (b) Tailem Bend.64
Figure 3.3 Long Island Marina study site: (a) locations of 5 significant failures; (b) location plan of in situ testing and recorded collapses; (c) distribution of bank cross sections in 3-D view.............................. 67
Figure 3.4 River Murray water at Murray Bridge 1/12/1986 to 11/07/2011 (DFW 2010).. 68
Figure 3.5 Schematic of the locations and the deadweight of the external loads on the riverbank.. 68
Figure 3.6 Minimum FOS and potential slip surface of deep-seated rotational failure at No. 21 model when water level was 0 m AHD......................... 70
Figure 3.7 Back-analyses using three geotechnical models. 70
Figure 3.8 Factors of Safety of neighbouring cross sections (0 and 0.5 m AHD). ... 72
Figure 3.9 Predictions of riverbank susceptibility with river levels at (a) 0 m AHD and (b) 0.5 m AHD... 73
Figure 4.1 Details of the Long Island Marina site.. 88
Figure 4.2. Riverbank geometry definition.. 91
Figure 4.3. Example of adopted visual interpretation process on high resolution, aerial images within the ArcGIS framework. 92
Figure 4.4 Geotechnical profiles based on soil samples taken from SR-BH1 and SR-CPTu6s at Long Island Marina... 94
Figure 4.5 Particle size distributions based on the soil samples from four different depths in borehole SR-BH1... 95
Figure 4.6 Estimated SWCCs for the three soil layers at Long Island Marina using the Fredlund and Xing fit estimation method. 95
Figure 4.7 Typical CPTu profile and dissipation test results............................ 96
Figure 4.8 Daily river levels, daily rainfall and daily mean temperature from 1 May 2008 to 28 February 2009 at Long Island Marina......................... 100
Figure 4.9 Results of 2D and 3D riverbank stability analyses of Long Island Marina site at Day 282 (6 February 2008)... 102
Figure 4.10 Evolution of pore water pressure at 6 selected nodes through the entire research period accounting for, and without, evaporation......... 104
Figure 4.11 PWP distributions as a result of (a) the highest (Day 138) and (b) lowest (Day 302) river levels.. 106
Figure 4.12 Factors of safety from the 2D, 3D and CRLM models 108
Figure 4.13 Factors of safety for historical model (HM) and constant river stage model (CRLM) in two scenarios ... 112
Figure 4.14 Magnified rainfall model (MRM) under different river level scenarios ... 114
Figure 5.1 Details of the study area ... 134
Figure 5.2: Adopted visual interpretation method of high-resolution aerial images: (a), (c), (e) and (g) are aerial photographs acquired in March 2008 at EFR, WR, MB and WS, respectively; (b), (d), (f), and (h) are aerial photographs acquired in May 2010 at EFR, WR, MB and WS, respectively. .. 136
Figure 5.3: Example of adopted elevation comparison method on DEMs at Woodlane Reserve (a) 1 m resolution DEM acquired in 2008; (b) 0.2 m resolution DEM acquired in 2010). ... 137
Figure 5.4: Daily river levels and daily rainfall recorded at (a) East Front Road, Mannum (EFR) site in April 2009; (b) Woodlane Reserve (WR) site in February 2009; (c) River Front Road, Murray Bridge (RFR) site in February 2009; and (d) White Sands (WS) site in April 2009 ... 143
Figure 5.5: Riverbank stability analysis of the East Front Road, Mannum (EFR) site on 23 April 2009. ... 145
Figure 5.6: Riverbank stability analysis of the Woodlane Reserve (WR) site on 26 February 2009 ... 146
Figure 5.7: Riverbank stability analysis of the River Front Road, Murray Bridge (RFR) site on 6 February 2009 ... 147
Figure 5.8: Riverbank stability analysis of the White Sands (WS) site on 23 April 2009 ... 148
Figure 5.9: Riverbank collapse factor of safety time series for: (a) EFR in April 2009; (b) WR in February 2009; (c) RFR in February 2009; and (d) WS in April 2009 ... 150
Figure 6.1 Diagram of study area, locations of historical collapses, cross-sectional models and geotechnical investigations ... 173
Figure 6.2 Example of high-resolution aerial image based visual interpretation and validation. ... 174
Figure 6.3 Riverbank stability analyses at three historical sites under SVSlope framework .. 180
Figure 6.4 Grid size based surface slope calculation................................. 182
Figure 6.5 Relationships between average elevation (H), inclination (α) and factor of safety of the cross-sectional models with a 0 m AHD river level. 183
Figure 6.6 Example of riverbank collapse prediction.................................. 186
List of Tables

Table 2.1 Slope stability classes (modified from Ray and de Smelt, 2009) 23
Table 4.1 Soil parameters for stability assessment .. 97
Table 4.2 Equations used to calculate Fredlund and Xing SWCC fitting parameters based on the soil grain size distribution .. 98
Table 5.1 Historical riverbank collapse related incidents associated with the four examined sites .. 132
Table 5.2 Soil properties for saturated and unsaturated flow modelling 139
Table 5.3 Geotechnical models of the clay layer obtained from back-analyses 144
Table 5.4 Model validation .. 144
Table 6.1 Riverbank collapse related incidents with associated slope inclinations .. 171
Table 6.2 Soil properties for saturated and unsaturated flow modelling 181
Table 6.3 Acceptable H and α combination for each research region when river levels equal to 0 and –1 m AHD ... 185