AN INVESTIGATION INTO THE ROLE OF RANKL AND SCLEROSTIN IN DENTOALVEOLAR ANKYLOSIS

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Clinical Dentistry (Orthodontics)

Dr Shelley Coburn, BDS (University of Otago)

Orthodontic Unit
School of Dentistry
Faculty of Health Science
The University of Adelaide
South Australia
AUSTRALIA

June 2015
1 CONTENTS

1.1 Table of Contents

1 CONTENTS .. 2
1.1 Table of Contents .. 2
1.2 List of Figures .. 5
1.3 List of Tables ... 6
1.4 List of abbreviations .. 8
2 ACKNOWLEDGEMENTS ... 10
3 THESIS DECLARATION .. 11
4 ABSTRACT .. 12
5 LITERATURE REVIEW ... 15
5.1 The Periodontal Complex ... 15
 5.1.1 The Periodontal Ligament .. 15
 5.1.2 Cementum ... 18
 5.1.3 Bone ... 21
5.2 The Bone Remodelling Cycle .. 29
 5.2.1 Activation of the remodelling cycle ... 31
 5.2.2 Bone resorption .. 31
 5.2.3 The reversal phase ... 38
 5.2.4 Bone formation .. 39
 5.2.5 Termination of the remodelling cycle .. 40
5.3 The OPG/RANK/RANKL Triad .. 41
 5.3.1 Discovery of the molecular triad OPG/RANK/RANKL 41
 5.3.2 RANKL expression by osteocytes ... 49
5.4 Sclerostin .. 54
 5.4.1 Role of sclerostin ... 54
 5.4.2 Sclerostin deficiency in humans ... 55
 5.4.3 Expression of SOST/Sclerostin ... 56
 5.4.4 Possible mechanisms of action ... 59
8.2 Introduction .. 133
8.3 Methods and materials .. 137
8.4 Results .. 141
 8.4.1 Summary of results .. 157
8.5 Discussion .. 157
8.6 Conclusions ... 161
8.7 References .. 162
9 CONCLUDING REMARKS ... 166
 9.1 Conclusions ... 166
 9.2 Limitations of the study ... 167
 9.3 Suggestions for future work: ... 168
10 APPENDICES .. 169
 10.1 Optimisation of immunohistochemical detection for RANKL and sclerostin ... 169
 10.2 Materials Utilised ... 169
 10.3 Tartrate-resistant acid phosphatase (TRAP) staining protocol ... 174
 10.4 Immunohistological staining protocol ... 175
 10.4.1 RANKL ... 175
 10.4.2 Sclerostin .. 177
1.2 List of Figures

Literature Review:

Figure 1. Histological stains for cementum ... 18
Figure 2. Cellular stratified cementum ... 20
Figure 3. Expression of markers during osteoblast-to-osteocyte ontogeny 26
Figure 4. Visualisation of early embedding osteocytes in 12-day murine calvaria 27
Figure 5. Schematic illustration of the local communication mechanisms involved in the remodelling of bone ... 30
Figure 6. Proposed roles of osteocytes under different mechanical conditions 36
Figure 7. Mechanisms of action for OPG, RANKL and RANK 44
Figure 8. Essential signalling pathways activated by RANKL interactions with RANK 49
Figure 9. Micro-CT reconstruction of femurs of 12 week mice 51
Figure 10. Chronological portraits of a patient with sclerosteosis from the age of 3 55
Figure 11. Canaliculi and/or lacunae of osteocytes in human bone positive for sclerostin. ... 56
Figure 12. Sclerostin expression by cementocytes in a human third permanent molar. 56
Figure 13. Schematic diagram of the proposed regulation of a remodelling cortical osteon by osteocytic sclerostin expression .. 58
Figure 14. The Wnt/β-catenin signalling pathway ... 62
Figure 15. The potential role of osteocyte-derived sclerostin in regulating the expression of osteocyte RANKL .. 64
Figure 16. Schematic model for the regulation of the control of bone formation by sclerostin ... 66
Figure 17. Infra-occlusion of a primary molar tooth below the level of the occlusal plane .. 69
Figure 18. Tooth 11 demonstrates infra-occlusion and ankylosis subsequent to avulsion and replantation ... 69
Article 1:

Figure 1. Essential signaling pathways activated by RANKL interactions with RANK. 101
Figure 2. Sampling regions in the rat molar tooth... 108
Figure 3. Positive and negative controls for RANKL ... 109
Figure 4. H and E sections of experimental tooth (external control, day 0) 111
Figure 5. H and E sections of experimental tooth (day 4, day 7)...................................... 112
Figure 6. H and E sections of experimental tooth (day 14, day 28)................................. 113
Figure 7. TRAP-positive cells (external control, day 0) .. 114
Figure 8. TRAP-positive cells (day 7, day 14)... 115
Figure 9. TRAP-positive cells (day 28)... 116
Figure 10. Expression of RANKL .. 117
Figure 11. RANKL expression in the pulp of a rat in the experimental teeth 119
Figure 12. RANKL expression in the PDL of a rat in the experimental teeth 121
Figure 13. Epithelial rests of Malassez.. 121
Figure 14. Osteocytes stain negatively for RANKL ... 122
Figure 15. Alveolar bone at day 14 (maximal ankylosis).. 123

Article 2:

Figure 1. Sampling regions in the rat molar tooth... 140
Figure 2. H and E sections of experimental tooth (external control, day 0) 143
Figure 3. H and E sections of experimental tooth (day 4, day 7)...................................... 144
Figure 4. H and E sections of experimental tooth (day 14, day 28)................................. 145
Figure 5. Negative control ... 146
Figure 6. Lack of positive sclerostin expression in pulp and PDL..................................... 147
Figure 7. Positive sclerostin expression (cementocytes, osteocytes).................................. 148
Figure 8. Osteocytes showing positive staining for sclerostin 149
Figure 9. Empty lacunae and positive sclerostin staining... 149
Figure 10. Empty lacunae and lack of osteocytes near the furcation area 151
Figure 11. Expression of sclerostin in osteocytes in alveolar bone in the experimental teeth .. 152
1.3 List of Tables

Literature Review:
Table 1. Acronyms and synonyms for proteins from the OPG/RANKL/RANK pathway. 42
Table 2. Expression patterns of OPG, RANKL, RANK ... 48

Article 1:
Table 1: Expression patterns of RANKL and RANK ... 100
Table 2: Percentage of bone in the sampled area of the experimental tooth 111

Article 2:
Table 1. Intraclass Correlation Coefficients ... 141
Table 2. Percentage of bone in the sampled area of PDL of the experimental tooth 143
Table 3. Empty lacunae counts: Interaction of group and day of sacrifice 150
Table 4. Empty lacunae counts: Interaction of group and zone ... 150
Table 5. Least squares means for outcome: sclerostin positive cells vs time, zone and side ... 153
Table 6. Global P values for outcome: sclerostin positive cells vs time, zone and side ... 153
Table 7. Differences of Least Squares Means for outcome: positive cells vs zone 154
Table 8. Least Squares Means for outcome: sclerostin positive cells vs time and zone*side ... 154
Table 9. Global P values for outcome: positive cells versus time and zone*side 155
Table 10. Differences of Least Squares Means for outcome: positive cells vs time and zone*side ... 155
Table 11. Global P values for outcome: sclerostin positive cells vs zone and time*side ... 155
Table 12. Positive cell counts: interaction of zone and day of sacrifice, adjusting for group ... 156
1.4 List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ab</td>
<td>Antibody</td>
</tr>
<tr>
<td>ABC</td>
<td>Avidin-biotin complex</td>
</tr>
<tr>
<td>AEC</td>
<td>3-Amino-9-ethylcarbazole</td>
</tr>
<tr>
<td>Ag</td>
<td>Antigen</td>
</tr>
<tr>
<td>ALP</td>
<td>Alkaline phosphatase</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine-5’-triphosphate</td>
</tr>
<tr>
<td>BMP</td>
<td>Bone morphogenetic protein</td>
</tr>
<tr>
<td>BMU</td>
<td>Basic metabolic unit</td>
</tr>
<tr>
<td>CSF</td>
<td>Colony stimulating factor</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular matrix</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetra-acetic acid</td>
</tr>
<tr>
<td>ERM</td>
<td>Epithelial rests of Malassez</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunoglobulin</td>
</tr>
<tr>
<td>IGF</td>
<td>Insulin-like growth factor</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>M</td>
<td>Molar (molarity)</td>
</tr>
<tr>
<td>M-CSF</td>
<td>Macrophage colony-stimulating factor</td>
</tr>
<tr>
<td>MMP</td>
<td>Matrix metalloproteinases</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger ribonucleic acid</td>
</tr>
<tr>
<td>OPG</td>
<td>Osteoprotegerin</td>
</tr>
<tr>
<td>OY</td>
<td>Osteocyte</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered solution</td>
</tr>
<tr>
<td>PDL</td>
<td>Periodontal ligament</td>
</tr>
</tbody>
</table>
PTH Parathyroid hormone
PTHrP Parathyroid hormone-related protein
RANK Receptor activator of nuclear factor kappa-β
RANKL Receptor activator of nuclear factor kappa-β ligand
RNA Ribonucleic acid
SCL Sclerostin
SOST The gene encoding for sclerostin
TGF Transforming growth factor
TNF Tumour necrosis factor
TRAP Tartrate-resistant acid phosphatase

Abbreviations of length

mm Millimetre
µm Micrometre

Abbreviations of volume

ml Millilitre
µl Microlitre

Abbreviations of weight

g Gram
kg Kilogram
mg Milligram
ng Nanogram
2 ACKNOWLEDGEMENTS

I wish to express my appreciation and gratitude to the following people for their invaluable assistance in the completion of this thesis.

Professor W.J. Sampson, Emeritus Professor and Visiting Research Fellow, The University of Adelaide, for his advice and guidance. His patience and enthusiasm for teaching and research is invaluable.

Professor C.W. Dreyer, P.R. Begg Chair of Orthodontics, The University of Adelaide, for his comprehensive knowledge of the subject matter and pragmatic advice.

Dr Kencana Dharmapatni, School of Medical Sciences, The University of Adelaide, for her expertise and assistance especially with the laboratory work. Without her dedicated input this project would never have been completed.

Ms Suzanne Edwards, Discipline of Public Health, The University of Adelaide, for her expert statistical advice.

Mr Jim Manavis, Laboratory Manager, Hanson Institute Centre for Neurological Diseases, for his assistance in using the Nanozoomer Digital Microscope.

And finally, to my parents, Marion and Derek. Thank you for raising me to believe I can accomplish whatever I set my mind to.
3 THESIS DECLARATION

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Shelley Coburn

30th June 2015
4 ABSTRACT

Background: Dentoalveolar ankylosis may occur spontaneously or as a sequela to dental trauma and results in an area of bone fusing to the tooth (Kurol 1981). Infraocclusion following dentoalveolar ankylosis results in a number of significant orthodontic sequelae. These include over-eruption of the opposing tooth, tipping of adjacent teeth towards the ankylosed tooth, a loss of arch length, space loss and a shift of the dental midline (Messer and Cline 1980; Andlaw 1974; Ponduri et al. 2009). Vertical alveolar growth may also be hindered (Kjaer et al. 2008). The understanding of the biological processes behind the formation and repair of the ankylosis lesion is incomplete. Following dental trauma, the periodontal ligament (PDL) may be the source of the cells that repopulate a tooth root defect that determine whether ankylosis occurs (Erausquin and Devoto 1970; Lin et al. 2000; Melcher 1970; Line et al. 1974). When the PDL space is repopulated by cells from a source outside the true PDL tissues (such as the alveolar bone) healing may occur by way of dentoalveolar ankylosis.

Research in the field of bone biology has recently focused on the role of the osteocyte. This cell, with its unique location embedded in bone, may have an essential role in bone metabolism. Osteocytes produce sclerostin, a protein that inhibits bone formation. There is also evidence that the osteocyte may be a major source of receptor activator of NF-κB (RANKL) which is essential for osteoclastogenesis. This project aims to investigate the expression of RANKL and sclerostin in a rat model of dentoalveolar ankylosis induced by a hypothermal insult.

The null hypothesis is that an applied cold insult and subsequent ankylosis does not affect the expression of RANKL and sclerostin within the dentoalveolar complex.
Methods: Dentoalveolar ankylosis was induced in fifteen, eight week old, male, Sprague-Dawley rats (5 groups of 3 rats each) by application of dry ice to the upper right first molar tooth. An additional 3 rats served as untreated controls and the experimental rats were sacrificed at days 0, 4, 7, 14 and 28. Immunohistochemical detection of RANKL and sclerostin was performed and the number of RANKL and sclerostin positive and negative cells as well as the number of empty lacunae representing dead osteocytes were calculated and compared between groups.

Results: The cold insult resulted in dentoalveolar ankylosis, with the periodontal ligament (PDL) almost completely replaced by bone in the furcation region of the root 14 days after injury with regeneration of the PDL evident after 28 days. Resorption of the ankylosis bone and cementum was evident in the furcation region. There was also a statistically significant increase in the number of empty lacunae due to osteocyte death that coincides with the incidence of maximal ankylosis.

RANKL was detected in bone marrow stromal cells, osteoblasts and bone lining cells, osteoclasts, endothelial-like cells lining vessels, epithelial cells, odontoblasts and periodontal fibroblasts. However, clear staining in osteocytes was not evident. Epithelial rests of Malassez showed strong expression of RANKL.

When ankylosis was present, there was a statistically significant difference in sclerostin expression between the areas of bone closest to, and farthest away, from the furcation area. There was a non-statistically significant trend towards reduced sclerostin expression at days 7 and 14 followed by a slight increase in expression at day 28. The slight increase in sclerostin expression at day 28 may indicate the establishment of a healing response.

In considering these results, it should be noted that this experiment uses a model of ankylosis in which the ankylosis lesion develops following a thermal insult. The factors that initiate ankylosis in a clinical situation are incompletely understood and may differ from this model.
Conclusions: Whilst RANKL was not detected in osteocytes in this model of ankylosis there was strong expression of RANKL by ERM in the PDL and a significant change in sclerostin expression near the area of ankylosis. This may contribute evidence that RANKL, sclerostin and the osteocyte might have a role in influencing the regeneration of the PDL following dentoalveolar ankylosis.

The null hypothesis that an applied cold insult and subsequent ankylosis does not affect the expression of RANKL and sclerostin within the dentoalveolar complex is rejected.