Postprandial Hypotension in Older People

Thesis submitted by
Dr. Shailaja Nair G. N. Nair (FRACP, MRCP, MBBS)
Department of Medicine
Faculty of Health Science
The University of Adelaide

April 2015
Dedication
I dedicate this thesis to my parents, without whom I would not be where I am today, and to my dear husband, Remesh, whose unwavering support has helped me grow, day by day.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>iii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>v</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vi</td>
</tr>
<tr>
<td>Publications and Awards Arising from Thesis</td>
<td>vii</td>
</tr>
<tr>
<td>Declaration</td>
<td>viii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>ix</td>
</tr>
<tr>
<td>Abstract</td>
<td>x</td>
</tr>
<tr>
<td>Chapter 1</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>1.1 Healthy ageing</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Falls in older people</td>
<td>3</td>
</tr>
<tr>
<td>1.2.1 Consequences of falls</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2 Falls prevention</td>
<td></td>
</tr>
<tr>
<td>1.3 Research aims</td>
<td>6</td>
</tr>
<tr>
<td>1.4 The organisation of the thesis</td>
<td>6</td>
</tr>
<tr>
<td>Chapter 2</td>
<td></td>
</tr>
<tr>
<td>Postprandial hypotension</td>
<td>8</td>
</tr>
<tr>
<td>Summary</td>
<td>8</td>
</tr>
<tr>
<td>2.1 Defining PPH and measuring for prevalence</td>
<td>9</td>
</tr>
<tr>
<td>2.1.1 Definition of PPH</td>
<td></td>
</tr>
<tr>
<td>2.1.2 Prevalence of PPH</td>
<td></td>
</tr>
<tr>
<td>2.2 Clinical significance of PPH</td>
<td>16</td>
</tr>
<tr>
<td>2.3 Pathophysiology and treatment of PPH</td>
<td>18</td>
</tr>
<tr>
<td>2.3.1 Pathophysiology</td>
<td></td>
</tr>
<tr>
<td>2.3.2 Treatment of PPH</td>
<td></td>
</tr>
<tr>
<td>2.4 Conclusion</td>
<td>26</td>
</tr>
<tr>
<td>Chapter 3</td>
<td></td>
</tr>
<tr>
<td>Gait and falls in older people</td>
<td>27</td>
</tr>
<tr>
<td>Summary</td>
<td>27</td>
</tr>
<tr>
<td>3.1 Human gait</td>
<td>28</td>
</tr>
<tr>
<td>3.1.1 Physiological control of gait</td>
<td></td>
</tr>
<tr>
<td>3.1.2 Gait parameters</td>
<td></td>
</tr>
<tr>
<td>3.2 Gait impairment and the consequences</td>
<td>29</td>
</tr>
<tr>
<td>3.2.1 Assessing gait</td>
<td></td>
</tr>
<tr>
<td>3.2.2 Gait parameters associated with falls</td>
<td></td>
</tr>
<tr>
<td>3.2.3 Gait and fear of falling</td>
<td></td>
</tr>
<tr>
<td>3.4 Conclusion</td>
<td>35</td>
</tr>
</tbody>
</table>
Chapter 4
The postprandial systolic blood pressure decline following a glucose drink affects gait detrimentally in older people

Summary

4.1 Introduction

4.2 Method
 4.2.1 Ethics
 4.2.2 Subjects
 4.2.3 Protocol
 4.2.4 Measurements

4.3 Results
 4.3.1 SBP
 4.3.2 Gait speed
 4.3.3 Stride length variability
 4.3.4 Double-support time variability
 4.3.5 Swing time variability

4.4 Discussion

4.5 Conclusion

Chapter 5
Intermittent walking:
A potential treatment for older people with postprandial hypotension

Summary

5.1 Postprandial hypotension

5.2 Attenuating postprandial fall in SBP in response to meals

5.3 Methods
 5.3.1 Subjects
 5.3.2 Protocol
 5.3.3 Measurements
 5.3.4 Statistical analysis

5.4 Results

5.5 Discussion

5.6 Conclusion

Chapter 6
Neck of femur fractures within two hours of a meal

Summary

6.1 Introduction

6.2 Materials and methods
 6.2.1 Participants
 6.2.2 Protocol
 6.2.3 Statistical analysis

6.3 Results

6.4 Discussion

Chapter 7
Conclusion

References

Appendices
List of Tables

Table 1.1 Risk factors for falls in older people 5

Table 2.1 Studies investigating prevalence of postprandial BP decline among older people in the community, residential care and hospitals 11
Table 2.2 Studies investigating prevalence of postprandial BP decline among older people with co-morbidities 14
Table 2.3 Studies exploring PPH and falls 17
Table 2.4 Exercise and PPH 22
Table 2.5 Summary of studies investigating water and postprandial BP decline in older people 24

Table 3.1 Gait variables associated with falls 32

Table 4.1 Maximum decline in systolic blood pressure (SBP) among subjects following ingestion of a glucose drink 42
Table 4.2 Subjects’ characteristics 43

Table 5.1 Subject characteristics 55

Table 6.1 Characteristics of patients admitted with neck of femur (NOF) fractures: overall patient characteristics comparing those who fell within and after two hours of a meal 66
List of Figures

Figure 3.1 Participant walking on the GAITRite®

Figure 4.1 Mean change in systolic blood pressure, gait speed and stride length variability in subjects with and without PPH

Figure 4.2 Mean change in double-support time and swing time variability in subjects with and without PPH

Figure 5.1(a, b, c) Mean changes in a) SBP, b) DBP and c) HR from baseline on the control (glucose only) vs the intervention day (glucose and walking). Values are means for 13 subjects, with standard deviation represented by vertical bars.
Publications and Awards Arising from Thesis

Published articles

Published abstracts

Awards
RM Gibson Prize for the best platform presentation by an advanced trainee in geriatric medicine at the 2013 Australia and New Zealand Society for Geriatric Medicine (ANZSGM) Annual Scientific Meeting in Adelaide, South Australia (Appendix 4).

Best oral presentation in the Clinical Research Group at the Basil Hetzel Institute and The Queen Elizabeth Research Day 2013 (Appendix 4).

Best oral presentation in the Clinical Research Group, at the Basil Hetzel Institute and The Queen Elizabeth Research Day 2014 (Appendix 4).

Conference presentations
‘The effects of a postprandial blood pressure decline following a glucose drink on gait parameters in healthy older volunteers’. Oral presentation at the Australia and New Zealand Society for Geriatric Medicine (ANZSGM) Annual Scientific Meeting in Sydney, 2012.

‘The postprandial blood pressure decline following a glucose drink affects gait detrimentally in older people’ at the Basil Hetzel Institute and The Queen Elizabeth Research Day, 2014.
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed:

Date:
Acknowledgements

- Thank you to my two dynamic, dedicated and enthusiastic supervisors, Prof. Renuka Visvanathan and Dr. Diana Piscitelli for your invaluable guidance and encouragement.
- Ms Kylie Lange, for her advice regarding the statistical analyses conducted in Chapters 4 to 6.
- Dr. Khai Tam and Dr. Shirantha Adhikari who assisted with the data collection for some participants for the study in Chapter 6.
- All members of the Aged and Extended Care Services, The Queen Elizabeth Hospital who have directly and indirectly provided support over the last four years.
- Dr. Cynthia Piantadosi who assisted with data collection for some participants for the study in Chapter 5
- Dr Sharmalar Rajendran, cardiologist, The Queen Elizabeth Hospital for her advice on the cardiovascular response to hypotension and exercise in Chapter 4.
- All the wonderful participants who made this study possible.
- I would like to acknowledge Mrs. Barbara Brougham for her editorial assistance.
- Finally, my husband Remesh, who has been my pillar of strength and support, throughout this journey.
Abstract

Postprandial hypotension refers to an excessive decline in blood pressure that occurs following a meal. This occurs commonly among older people and is clinically relevant as it is associated with multiple negative consequences, including falls, which itself has significant detrimental medical, psychological, functional and socio-economic consequences. As the ageing population is increasing, postprandial hypotension is going to be an increasingly prevalent condition. Where possible, it is important to prevent this, in order to maintain an older persons’ functional independence. Therefore appropriate management strategies are required to address postprandial hypotension. However, current management strategies are sub-optimal. Non-pharmacological strategies have not been specifically evaluated in older people and available options may not be widely applicable, whereas pharmacological strategies may result in potential adverse effects.

(a) The primary goal of the research reported in this thesis was to determine the effects of low-intensity, intermittent walking on postprandial blood pressure among older people with PPH. The hypothesis was that low-intensity, repeated exercise would attenuate the hypotensive effects of a glucose drink in older people with PPH, and that this effect would be sustained for the duration of the exercise. The results of the investigation provided evidence for the first time that intermittent walking exercise is an effective and practical therapeutic option for older people with PPH.

(b) There is a gap in our knowledge about the ways in which gait parameters can be influenced by a decline in blood pressure after a meal, as observed in people with PPH. We therefore initiated a study designed to determine whether a postprandial decline in SBP following a 50 g glucose drink would affect gait parameters in older people with and without PPH. We hypothesised that the decline in blood pressure among older people with PPH would detrimentally affect gait parameters compared to the effect on older people without PPH. The results showed that postprandial BP decline does affect gait parameters, an insight which will assist in understanding the relationship between PPH, gait impairments and falls.

(c) In addition, we sought to determine in older hospitalised patients the prevalence of NOF fractures occurring within two hours of a meal and the factors associated with these fractures, since this is the time when postprandial hypotension occurs. Results indicated that one-fifth of fractures occurred within two hours of a meal. Patients who sustained a NOF fracture within two hours of a meal were more likely to be from residential care, experience symptoms associated with hypotension before a fall and have a history of recurrent falls in the preceding 12 months than patients who fell after more than two hours following a meal.