An investigation of transition metal complex chemistry:
enzyme mimicry and Zn(II) detection

Hilary Ceywood Coleman

A thesis submitted for the degree of
Doctor of Philosophy
in
The University of Adelaide
Department of Chemistry

June 2015
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>vii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>x</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Metalloenzymes</td>
<td>2</td>
</tr>
<tr>
<td>1.1.1 Introduction</td>
<td>2</td>
</tr>
<tr>
<td>1.1.2 Features of metalloenzymes – Carbonic Anhydrase</td>
<td>2</td>
</tr>
<tr>
<td>1.1.3 Ester hydrolysis – the Hydrolases</td>
<td>6</td>
</tr>
<tr>
<td>1.2 Hydrolase Mimics</td>
<td>9</td>
</tr>
<tr>
<td>1.2.1 Introduction</td>
<td>9</td>
</tr>
<tr>
<td>1.2.2 Previous metallo-amine and -cyclodextrin hydrolase mimic systems</td>
<td>11</td>
</tr>
<tr>
<td>1.3 The use of cyclodextrins in ligand design</td>
<td>15</td>
</tr>
<tr>
<td>1.3.1 Cyclodextrin structure</td>
<td>15</td>
</tr>
<tr>
<td>1.3.2 Cyclodextrin host-guest complexes</td>
<td>16</td>
</tr>
<tr>
<td>1.4 Possible mechanisms of enzyme mimic activity</td>
<td>17</td>
</tr>
<tr>
<td>1.5 Enzyme kinetics investigation</td>
<td>19</td>
</tr>
<tr>
<td>1.6 Aims of this research</td>
<td>22</td>
</tr>
<tr>
<td>1.6.1 Ligand suite</td>
<td>23</td>
</tr>
<tr>
<td>1.6.2 Potentiometric titrimetry</td>
<td>26</td>
</tr>
<tr>
<td>1.6.3 UV-Vis absorbance spectrophotometry</td>
<td>28</td>
</tr>
<tr>
<td>1.7 References</td>
<td>30</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>38</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>39</td>
</tr>
<tr>
<td>2.1.1 The properties of Tren and Tacn</td>
<td>39</td>
</tr>
<tr>
<td>2.1.2 Previous studies</td>
<td>41</td>
</tr>
<tr>
<td>2.2 The pK_as of protonated tren, Me$_6$tren, tacn and Me$_3$tacn, and stability constants of their metal complexes</td>
<td>42</td>
</tr>
</tbody>
</table>
2.2.1 Determination of protonated tren, Me$_6$tren, tacn and Me$_3$tacln pK_as

2.2.2 Tren and Me$_6$tren metal complex characterisation

2.2.3 Tacn and Me$_3$tacln metal complex characterisation

2.3 Conclusions

2.4 References

CHAPTER 3

3.1 Introduction

3.1.1 Metallo-cyclodextrins

3.1.2 New ligands βCDMe$tren$ and βCDMe$_2$tacln

3.2 The pK_as of the protonated βCD$tren$, βCDMe$_5$tren, βCDtacln and βCDMe$_2$tacln and stability constants of their metal complexes

3.2.1 Determination of protonated βCD$tren$ and βCDMe$_5$tren pK_as

3.2.2 Determination of protonated βCDtacln and βCDMe$_2$tacln pK_as

3.2.3 βCD$tren$ and βCDMe$_5$tren metal complex characterisation

3.2.4 βCDtacln and βCDMe$_2$tacln metal complex characterisation

3.3 Conclusions

3.4 References

CHAPTER 4

4.1 Introduction

4.1.1 Functionalised β-cyclodextrins in enzyme mimicry

4.1.2 4-Nitrophenyl acetate hydrolysis as a model reaction

4.1.3 The Michaelis-Menten enzyme kinetics model

4.1.4 Adaptation of the Michaelis-Menten model to catalysis by the enzyme mimics [M(βCD$tren$(OH)(H$_2$O))]$^+$

4.1.5 Aims and methods of this study

4.2 Kinetics analysis of the βCD$tren$/Zn$^{2+}$ and βCD$tren$/Cu$^{2+}$ systems

4.2.1 Experimental preparations

4.2.2 The Zn$^{2+}$/βCD$tren$ system

4.2.3 The Cu$^{2+}$/βCD$tren$ system

4.2.4 Discussion of the Zn$^{2+}$/βCD$tren$ and Cu$^{2+}$/βCD$tren$ systems – are they successful enzyme mimics?
4.3 Analysis of other possible catalytic species – free metal, free ligand, free βCD 162
4.4 Mechanistic information gained from qualitative UV-Vis absorbance experiments 172
4.5 Summary of findings 188
4.6 References 190

CHAPTER 5 196
5.1 Introduction 197
5.2 Chapter 2 – Potentiometric titration characterisation of the Foundation Polyamines 197
5.3 Chapter 3 – Potentiometric titration characterisation of the β-cyclodextrin-Functionalised Polyamines 199
5.4 Chapter 4 – Kinetic characterisation of the enzyme mimic systems 201
 5.4.1 Summary of findings 201
 5.4.2 Short term Future Work 202
 5.4.3 Expansion of the original ligand suite 203
5.5 References 205

CHAPTER 6 206
6.1 Physiological Zn(II) 207
 6.1.1 Introduction 207
 6.1.2 Developments in detection methods 209
 6.1.3 The mechanism of the quinoline fluorophores: Chelation Enhanced Fluorescence 210
 6.1.4 The chemistry of Zinquin 211
6.2 Aims of this research 214
 6.2.1 Potentiometric titrations 215
 6.2.2 Electronic spectroscopy 216
6.3 References 219

CHAPTER 7 224
7.1 Potentiometric titration of 2-((E)-2-Phenyl)ethenyl-8-(N-4-methylbenzenesulfonyl)aminoquinol-6-yloxyacetic Acid (stZQA) for ligand pK_a determination 225
7.2 UV-Vis characterisation of 2-((E)-2-Phenyl)ethenyl-8-(N-4-methylbenzenesulfonyl)aminoquinol-6-yloxyacetic Acid 229
7.2.1 UV-Vis titration: determination of stability constants for Zn(II) complexes of stZQA 229

7.2.2 Photoisomerism of the stZQA ligand 234

7.2.3 Binding of metals other than Zn(II) 236

7.3 Fluorescence characterisation of 2-((E)-2-Phenyl)ethenyl-8-(N-4 methylbenzenesulfonyl)aminoquinol-6-yloxyacetic Acid (stZQA) 239

7.3.1 Determination of Adventitious Zn(II) 239

7.3.2 Fluorescence signal with other metals: stZQA, a selective probe? 241

7.3.3 Fluorescence titration: determination of stability constants for Zn(II) complexes of stZQA 243

7.4 Conclusions and Future Work 249

7.5 References 252

CHAPTER 8 254

8.1 General 255

8.1.1 Measurements 255

8.1.2 Materials 256

8.1.3 Data analysis tools 257

8.2 Experimental for Part I, Chapters 2 and 3 260

8.2.1 Preparation of compounds 260

8.2.2 Procedures for potentiometric titrations (Part I) 262

8.3 Experimental procedures for Part I, Chapter 4 266

8.3.1 Preparation for UV-Vis kinetics studies (Part I) 266

8.4 Experimental for Par II, Chapter 7 – stZQA 270

8.4.1 Procedures for potentiometric titrations (Part II) 270

8.4.2 UV-Visible studies (Part II) 271

8.4.3 Fluorescence studies (Part II) 272

8.5 References 274

APPENDIX A 276

APPENDIX B 288

APPENDIX C 309
ABSTRACT

This thesis presents research in the field of transition metal complex chemistry.

The major project, reported in Part I, is focussed on the mimicking of enzymes in order to produce simple catalyst molecules that enhance the rate of ester hydrolysis. This work involved a systematic characterisation of a suite of potential enzyme mimics which were based on the simple template molecules tris(2-aminoethyl)amine (tren) and 1,4,7-triazacyclononane (tacn). The effects of substituting tren and tacn with methyl groups and β-cyclodextrin and then complexing these with Zn$^{2+}$, Cu$^{2+}$, Cd$^{2+}$ and Ni$^{2+}$ were examined. The aim was to produce stable complexes with lowered pK$_a$s for their associated aqua ligands (‘pK$_{a\text{H}_2\text{O}}$’), such that the catalytically active hydroxo ligands (responsible for the ester hydrolysis) were readily available over a broad pH range.

The thirty two resulting transition metal complex systems were characterised by potentiometric titration under identical experimental conditions (aqueous NaClO$_4$ solution, $I = 0.10$ mol dm$^{-3}$, 298.2 K). For selected systems which were characterised by large stability constants and relatively low aqua ligand pK$_{a\text{H}_2\text{O}}$s, their ability to enhance the rate of hydrolysis of 4-nitrophenyl acetate was measured using UV-Visible spectroscopy. A modified Michaelis-Menten enzyme kinetics analysis was developed specifically for this study. Information about the possible mechanism of catalysis was also obtained by a qualitative investigation of the UV-Vis spectra of several systems over the course of the reaction.

The chapters comprising Part I therefore describe the synthesis of the ligands (including two new compounds; 6A-[(E)-2-((E)-2-phenyl)ethenyl]-6A-deoxy-β-cyclodextrin (βCDMe$_3$tren) and 6A-1,4,7-trimethyl-1,4,7-triazacyclononan-1-yl)-6A-deoxy-β-cyclodextrin (βCDMe$_2$tacn)), potentiometric titrations to establish speciation of the systems and the subsequent monitoring of the hydrolysis of 4-nitrophenyl acetate using UV-Vis spectroscopy.

The secondary project, reported in Part II, is focussed on the detection of physiological Zn$^{2+}$ using a newly characterised ligand; 2-((E)-2-phenyl)ethenyl-8-((N-4-methylbenzenesulfonyl)aminoquinol-6-yloxyacetic acid. A styryl functional group was added to the commercially available Zn$^{2+}$-selective fluorophore “Zinquin” which detects physiological Zn$^{2+}$ by complexing it and producing a fluorescent signal exclusively on Zn$^{2+}$ binding. The
intention of the styryl addition was to enhance the bulk of the Zinquin analogue and thereby hope to improve the selectivity of this fluorophore for free, intracellular Zn$^{2+}$ over the Zn$^{2+}$ found in the structures and catalytic centres of proteins and enzymes. This styryl Zinquin derivative was characterised using potentiometric titrimetry, UV-Vis spectroscopy and fluorimetry. This includes an analysis of the photoisomerism introduced by the styryl functionality. The absorbance and fluorescence characteristics of the free and Zn$^{2+}$-complexed ligand were measured and stability constants for the Zn$^{2+}$ complexes were determined. The results were compared to Zinqu in under the same experimental conditions. Like Zinqu, the new styryl analogue was found to be Zn$^{2+}$ selective.
DECLARATION

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. The author acknowledges that copyright of those works resides with the copyright holder(s) of those works. In addition, I certify that no part of this work will, in the future, be used in a submission in my name for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Hilary Ceywood Coleman

B.Sc. (Hons), University of Adelaide

27/10/2015
ACKNOWLEDGEMENTS

There are so many people who deserve my heartfelt thanks, that their names could fill another thesis.

Thank you to Prof Stephen Lincoln for your supervision over many years, and particularly your encouragement in gaining Chemistry communication and education skills.

Thank you very much to Associate Professor Chris Sumby for your support and editing efforts.

Thank you to past members of Lab 12 who became my second family (Corri, Renée, Jacquie, Lara, Charlotte, Jianjia and Sean).

Thank you to the Lab 8 members for your many years of support and friendship (Jo, Trang, Hamish, Noby and Tien) and, in particular, thank you to Truc for your invaluable help at the end of this work and for providing me with βCDMe·tacn.

Thanks also to Dr. Bruce May for synthesising the stZQA compound used in this study.

Many thanks to all the other members of the Chem Department who filled my time with such wonderful memories and who made me a better scientist and teacher – in particular Nat, Jason, Erin, Sean, Anton, Claire, Jason, Alex, Danielle, Jon, David and Natalie.

Thank you to Pamela for all your support, above and beyond the norm.

Gerald, thank you for turning me into the scientist I am. You are greatly missed.

Ray, thank you for the wonderful opportunity of working with you and producing something to be proud of during my studies.

Ann, thank you for your passion for chemistry and teaching that sparked mine.

Thank you to Jo, thank you to Ricky, Steve and Karl, and thank you to Andrew, Jamie, Micah, Laura and Eric, for the literally hundreds of hours of audio company during all the long, lonely and late hours in the lab.

Thank you to so many of my friends who put up with, and supported me over so many lab- and desk-bound years: Sally, Kimberley, Abby and Bec (the Hackies), Katie (the Top Half of
Miss Christine Felton), Fi (oh my Darwin), Joanne and Richard (my favourite Meyers), Christine and Kathryn (you rock), Shusuke (thanks for all the coffee), Tony (thanks for all the words).

Thank you to grandparents, aunts, uncles and cousins for all your support and encouragement.

Many thanks to Patrick (Perchik) – you are the best brother a person could hope for. (FAD.)

Finally, there are several people without whom this study would simply not have been accomplished –

Corri, completing this is as much for you as it is for me. You are a supervisor, postdoc, friend, teacher and sister all in one crucible.

Mum and Dad, mcsquared, I would be absolutely nowhere without you. Thank you for your never ending love and support.

“\textit{It was, he thought, the difference between being dragged into the arena to face a battle to the death and walking into the arena with your head held high. Some people, perhaps, would say that there was little to choose between the two ways, but Dumbledore knew - and so do I, thought Harry, with a rush of fierce pride, and so did my parents - that there was all the difference in the world.}”

Harry Potter and the Half-Blood Prince
ABBREVIATIONS

1. General

\(\delta \quad \) chemical shift (parts per million)

\(\nu \quad \) frequency (s\(^{-1}\))

\(\Phi \quad \) quantum yield

\(\lambda \quad \) wavelength (nm)

\(A_{\text{infinity}} \quad \) UV-Vis absorbance at an infinite reaction time

\(c \quad \) speed of light, \(3 \times 10^8 \) m s\(^{-1}\)

CHEF \quad chelation enhanced fluorescence

\(\text{dm} \quad \) decimeter

\(E \quad \) enzyme (Pat I)

\(E \quad \) observed electrode potential (millivolts) (Part II)

\(E_0 \quad \) standard electrode potential (millivolts)

EPR \quad electron paramagnetic resonance

E•S \quad enzyme-substrate Michaelis complex

\(\text{et al.} \quad \text{et alia} \)

\(F \quad \) Faraday constant, \(9.6487 \times 10^4 \) C mol\(^{-1}\)

\(h \quad \) Planck’s constant, \(6.63 \times 10^{-34} \) J s

\([H^+] \quad \) proton concentration (mol dm\(^{-3}\))

\(I \quad \) constant ionic strength (mol dm\(^{-3}\))

\(J \quad \) coupling constant (context; NMR) or joules

\(K \quad \) stability constant

\(K_1 \quad \) stability constant for the 1:1 (M\(^{2+}\):ligand) transition metal complex
\(K_2 \)
stability constant for the 2:1 (M\(^{2+}\):ligand) transition metal complex

\(K_a \)
acid dissociation constant

\(K_{aH2O#1} \)
acid dissociation constant for the first aqua ligand deprotonation

\(K_{aH2O#2} \)
acid dissociation constant for the second aqua ligand deprotonation

\(K_{aH2O#3} \)
acid dissociation constant for the third aqua ligand deprotonation

\(k_{cat} \)
rate constant (s\(^{-1}\)) for the catalysed rate of hydrolysis of 4-nitrophenyl acetate

\(k_{obs} \)
rate constant for the overall observed rate of hydrolysis of 4-nitrophenyl acetate

\(k_{un} \)
rate constant for the uncatalysed rate of hydrolysis of 4-nitrophenyl acetate

\(K_D \)
dissociation constant for the reformation of the free enzyme and substrate from the Michaelis complex (E•S)

\(K_M \)
Michaelis constant

\(L \)
free, deprotonated ligand

\(LH^+ \)
free, monoprotonated ligand

\(LH_2^{2+} \)
free, diprotonated ligand

\(LH_3^{3+} \)
free, triprotonated ligand

\(LH_4^{4+} \)
free, tetraprotonated ligand

\(MHz \)
Megahertz

\([MLH]^{3+}\)
1:1 M\(^{2+}\):monoprotonated ligand complex (Part I)

\([ML]^{2+}\)
1:1 M\(^{2+}\):deprotonated ligand (Part I)

1:1 stZQA:M\(^{2+}\) (Part 2)

\([MLOH]^+\)
1:1:1 M\(^{2+}\):ligand:hydroxo

\([ML(OH)_2]\)
1:1:2 M\(^{2+}\):ligand:2×hydroxo
[M(L)$_2$]$^{2+}$ 1:2 M$^{2+}$:2×ligand

Note: the five complexes above may or may not contain water ligands as is noted for each specific example in the text.

mV millivolts

nm nanometer

NMR nuclear magnetic resonance

pH -log[H$^+$]

pK_a -log[K_a]

$pK_{aH_2O#1}$ -log[$K_{aH_2O#1}$]

$pK_{aH_2O#2}$ -log[$K_{aH_2O#2}$]

$pK_{aH_2O#3}$ -log[$K_{aH_2O#3}$]

ppm parts per million

R Ideal gas constant, 8.314 J K$^{-1}$ mol$^{-1}$

S substrate (in this study; ester 4-nitrophenyl acetate – Part I)

S_0 ground electronic state (Part II)

S_1 first excited electronic state (Part II)

T Temperature (°C or Kelvin)

t$_{infinity}$ An infinite time into a reaction

UV-Vis UV-Visible

v_0 ground vibrational state

v_1 first excited vibrational state

Zn$^{2+}_{Ad}$ adventitious Zn$^{2+}$
2. Chemicals

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACES</td>
<td>2-(carbamoylmethylamino)ethanesulfonic acid (buffer)</td>
</tr>
<tr>
<td>βCD</td>
<td>β-cyclodextrin</td>
</tr>
<tr>
<td>βCDMe₂tacn</td>
<td>6^A-(1,4,7-trimethyl-1,4,7-triazacyclononan-1-yl)-6^A-deoxy-β-cyclodextrin</td>
</tr>
<tr>
<td>βCDMe₅tren</td>
<td>6^A-{2-[bis(2-dimethylamino)ethyl]amino}^-6^A-deoxy-β-cyclodextrin</td>
</tr>
<tr>
<td>βCDtacn</td>
<td>6^A-(1,4,7-triazacyclononan-1-yl)-6A-deoxy-β-cyclodextrin</td>
</tr>
<tr>
<td>βCDtacdo</td>
<td>6^A-(1,5,9-triazacyclododecan-1-yl)-6A-deoxy-β-cyclodextrin</td>
</tr>
<tr>
<td>βCDtren</td>
<td>6^A-{2-[bis(2-aminoethyl)amino]ethylamino}^-6^A-deoxy-β-cyclodextrin</td>
</tr>
<tr>
<td>Bicine</td>
<td>2-(bis(2-hydroxyethyl)amino)acetic acid (buffer)</td>
</tr>
<tr>
<td>DEPP</td>
<td>1,4-diethylpiperazine (buffer)</td>
</tr>
<tr>
<td>HEPES</td>
<td>2-[4-(2-hydroxyethyl)piperazin-a-yl]ethanesulfonic acid (buffer)</td>
</tr>
<tr>
<td>Me₃tacn</td>
<td>1,4,7-trimethyl-1,4,7-triazacyclononan</td>
</tr>
<tr>
<td>Me₆tren</td>
<td>tris(2-dimethylaminoethyl)amine</td>
</tr>
<tr>
<td>MES</td>
<td>2-(N-morpholino)sulfonic acid (buffer)</td>
</tr>
<tr>
<td>MOPS</td>
<td>3-morpholinopropane-1-sulfonic acid (buffer)</td>
</tr>
<tr>
<td>PIPES</td>
<td>1,4-piperazinediethanesulfonic acid (buffer)</td>
</tr>
<tr>
<td>Tacn</td>
<td>1,4,7-triazacyclononane</td>
</tr>
<tr>
<td>TAPSO</td>
<td>3-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]-2-hydroxypropane-1-sulfonic acid (buffer)</td>
</tr>
<tr>
<td>TEEN</td>
<td>N-N-N′-N′-tetraethylethylenediamine (buffer)</td>
</tr>
<tr>
<td>TES</td>
<td>2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid (buffer)</td>
</tr>
<tr>
<td>Tren</td>
<td>tris(2-aminoethyl)amine</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Name</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>TRIS</td>
<td>2-amino-2-hydroxymethyl-propane-1,3-diol (buffer)</td>
</tr>
<tr>
<td>stZQA</td>
<td>2-((E)-2-Phenyl)ethenyl-8-(N-4-methylbenzenesulfonyl)aminoquinol-6-yloxyacetic Acid (styryl Zinquin A)</td>
</tr>
<tr>
<td>ZQA</td>
<td>2-methyl-8-p-toluenesulfonamido-6-quinolyloxyacetic acid (Zinquin A)</td>
</tr>
</tbody>
</table>