Medical Decision Making:
Modelling Multiple Treatments

Eka Kristiana Baker

Thesis submitted for the degree of
Master of Philosophy
in
Applied Mathematics
at
The University of Adelaide
(Faculty of Engineering, Computer and Mathematical Sciences)

School of Mathematical Sciences

March 4, 2016
Contents

Signed Statement ix
Acknowledgements x
Abstract xii

1 Introduction 1
 1.1 Motivation . 1
 1.2 Background . 2
 1.3 Summary . 4

2 Background 7
 2.1 Discrete-Time Markov Chains . 7
 2.1.1 Time-Inhomogeneous DTMCs . 9
 2.1.2 Discrete-Time Markov Decision Processes 10
 2.2 Clinical Trials . 12
 2.2.1 Randomised Controlled Trials 14
 2.3 Quality of Life . 15
 2.4 The Effect of Comorbidity on Treatment Benefits 19

3 An Extension of the Snapshot Model 24
 3.1 Defining Benefit and Loss . 25
 3.2 Existing Results . 26
3.2.1 Extension of Existing Results ... 28
3.3 Ideal Benefit and Iatrogenic Loss Results 29
3.4 Expected Quality of Outcome ... 34

4 Markov Models for Individual Treatments 51
4.1 An Existing Model of CEA .. 51
 4.1.1 Medical Chain ... 54
 4.1.2 Surgical Chain .. 56
 4.1.3 Recreating Established Parameters for a CEA Model 59
 4.1.4 Calculating the Benefit ... 68
 4.1.5 Validation of the Model .. 72
 4.1.6 Snapshot Benefit in Quality Adjusted Life Years 74
4.2 Issues with the Model .. 84
4.3 A Modified CEA Model ... 85
 4.3.1 Comparison of CEA Results ... 89
 4.3.2 Iatrogenic Loss and Ideal Benefit 90
 4.3.3 Sensitivity Analyses .. 92
4.4 A General Model .. 97
4.5 Modelling a Different Individual Treatment 101
 4.5.1 A Model of Coronary Artery Bypass Graft Surgery 101
 4.5.2 The Benefit of CABG .. 106
 4.5.3 The Ideal Benefit and Iatrogenic Loss of CABG 109
 4.5.4 Sensitivity Analyses .. 113

5 Modelling Multiple Treatments Simultaneously 118
5.1 Assumptions ... 118
5.2 Creating a Combined Model ... 119
5.3 The Combined Benefit ... 126
 5.3.1 Combining Ideal Benefit and Iatrogenic Loss 133
 5.3.2 Sensitivity Analyses .. 139
6 Theoretical Results for Lifetime Benefit and Loss 144
 6.1 Snapshot Quality Adjusted Life Years 144
 6.2 Individual Benefits . 148
 6.3 Benefit in the Presence of Multiple Diseases 151
 6.3.1 Considering Negative Early Benefits 159

7 Conclusion 161
 7.1 A Snapshot Analysis of Benefit . 162
 7.2 Results for Lifetime Benefit . 164
 7.3 Limitations and Further Research . 168

Bibliography 170
List of Figures

4.1 State diagram showing the transitions in the medical chain, for the original CEA model. 56
4.2 State diagram showing the transitions in the surgical chain, for the original CEA model. 59
4.3 Kaplain-Meier curve of any stroke or operative death [15]. The thin line represents the medical group of patients, the thick line represents the surgical group, and each step along the x axis is one year. 61
4.4 Expected lifetime QALYs for patients of varying ages, using a model for CAS by Nagaki et al. [11]. We compare patients receiving CEA, and those having medical treatment only. 75
4.5 Lifetime benefit of CEA in expected QALY gain, for patients of varying ages, using a model for CAS by Nagaki et al. [11]. 75
4.6 Comparing CEA surgical risk sensitivity analysis for a 60-year-old patient, using a model for CAS by Nagaki et al. [11]. 76
4.7 Snapshot expected QALYs for a 70-year-old patient with CAS, at each year after the decision to have CEA or continue with medical treatment only. Original model and parameters from Nagaki et al. [11]. 82
4.8 Snapshot benefit in QALY gain for a 70-year-old patient with CAS, at each year after the decision to have CEA or continue with medical treatment only. Original model and parameters from Nagaki et al. [11]. 82
4.9 Snapshot benefit in QALY gain for patients of varying ages with CAS, at each year after the decision to have CEA or continue with medical treatment only. Original model and parameters from Nagaki et al. [11].

4.10 Benefit of CEA in expected lifetime QALYs gained, for patients of varying ages. Comparing an original model of the progression of CAS (from Nagaki et al. [11]) with our modified model.

4.11 How the various options contribute to the lifetime QALYs for patients of varying ages suffering from CAS (using our modified model).

4.12 CEA sensitivity analysis: The effects of surgical risk on the QALY gain and loss for patients of varying ages undergoing CEA (modified model).

4.13 CEA sensitivity analysis: The effects of $P(\text{die} \mid \text{have stroke}) = d$ on the QALY gain and loss for patients of varying ages, with CAS (modified model).

4.14 CEA sensitivity analysis: The effects of $P(\text{die} \mid \text{have stroke}) = d$ on the expected lifetime QALYs of patients of varying ages, with CAS (modified model).

4.15 CEA sensitivity analysis: The effects of the post stroke state utility value, u_3, on QALY gain and loss of patients of varying ages, with CAS (modified model).

4.16 Kaplan-Meier survival curve for patients in clinical trials for CABG [21]. 1325 patients were allocated medical treatment, while 1324 were allocated surgery (CABG).

4.17 Net benefit for patients of varying ages, suffering either from CAD or CAS.

4.18 Accumulated net benefit each year after surgery, for a 70-year-old patient suffering either from CAD or CAS.

4.19 Snapshot net benefit each year after surgery, for a 70-year-old patient suffering either from CAD or CAS.
4.20 How the various options contribute to the lifetime QALYs for patients suffering from CAD. .. 112
4.21 Comparison of the ideal benefits (in expected QALY gain) for patients of varying ages, suffering either from CAD or CAS. 112
4.22 Accumulation of QALY loss and gain measures for a 70-year-old patient, suffering either from CAS or CAD. 113
4.23 Sensitivity analysis: Effect of surgical risk on the accumulated net benefit, each year after surgery, for a 70-year-old patient undergoing CABG. ... 115
4.24 Sensitivity analysis: Effect of surgical risk on the expected lifetime QALY gain and loss, for patients of varying ages undergoing CABG. 115
4.25 Sensitivity analysis: Effect of $P(\text{die} \mid \text{have MI}) = d$ on the expected lifetime QALY gain and loss, for patients of varying ages, undergoing CABG. ... 116
4.26 Sensitivity analysis: Effect of the post MI state utility value, u_3, on the expected lifetime QALY gain and loss, for patients of varying ages, undergoing CABG. .. 117

5.1 Comparison of the expected lifetime QALYs of different treatment paths. Patients are of varying ages and suffering from both CAS and CAD, CAS only, or CAD only. 130
5.2 Comparison of the various measures of lifetime net benefit when having both CEA and CABG surgeries, for patients of varying ages. . . . 132
5.3 Comparison of the various measures of lifetime net benefit when having either CEA or CABG, for patients of varying ages. 132
5.4 Comparison of the various measures of accumulated net benefit when having both CEA and CABG surgeries, for a 70-year-old patient. . 134
5.5 Comparison of the various measures of accumulated net benefit when having either CEA or CABG, for a 70-year-old patient. 134
5.6 Comparison of the ideal lifetime benefits for patients of varying ages, undergoing both CEA and CABG. .. 137

5.7 Comparison of the lifetime iatrogenic losses for patients of varying ages, undergoing both CEA and CABG. 137

5.8 Comparison of QALY gains and losses of CEA, for patients of varying ages, suffering from both CAS and CAD. 138

5.9 Comparison of QALY gains and losses of CABG, for patients of varying ages, suffering from both CAS and CAD. 138

5.10 Accumulated QALY differences for a 70-year-old patient suffering from CAS and CAD, undergoing both CEA and CABG. 139

5.11 Sensitivity analysis: Effect of surgical risks, s_1 and s_2, of CEA and CABG respectively, on the QALY gains and losses of a 70-year-old patient undergoing both CEA and CABG. 140

5.12 Sensitivity analysis: Effect of $P(\text{die} \mid \text{have stroke}) = d_1$ and $P(\text{die} \mid \text{have MI}) = d_2$, on the QALY gains and losses for a 70-year-old patient undergoing both CEA and CABG. 141

5.13 Sensitivity analysis: Effect of post stroke and post MI state utility values, $u_{1,3}$ and $u_{2,3}$, respectively, on the QALY gains and losses for a 70-year-old patient undergoing both CEA and CABG. 142

6.1 Snapshot net benefit each year after surgery, for a 70-year-old patient undergoing either CEBG or CEA. 160
Signed Statement

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

SIGNED: DATE:
Acknowledgements

First of all, I would like to thank my supervisors, Professor Nigel Bean and Dr. Stephen Fitzgerald; without them this thesis would not have been possible. I would like to thank Nigel in particular, for always encouraging and supporting me when I needed it. Thank you for believing that I could do this, when I didn’t believe it myself.

Thank you to my parents, Stephen and Ketut, for giving me all the educational opportunities you never had. Without you both, I would not have been able to get to where I am now. Thank you for always providing for me, and most of all, for your constant love and support.

Thank you to my friends, for making these last few years not only bearable, but enjoyable. Thank you to those who were with me at university, for your companionship and for the reminder that I was not the only one (sometimes) struggling. Thank you to the friends from outside of university, reminding me that there did exist a world outside of study. Special thanks to my friend Jessica, for her daily snapchats and cat pictures. Thank you for always keeping me entertained, and for making me smile.

Lastly, but definitely not least, thank you also to my wonderful boyfriend (now fiancé), Kane, who never complained when he had to do extra housework so that I could continue working. Thank you for adding the scores on assignments when I was inundated with marking. Thank you for all the little things, that I sometimes forget you do, but am always grateful for. Thank you for keeping me sane (even though, for the longest time, you refused to read this thesis!).
Abstract

Every day, practicing physicians make life changing decisions for patients, based on data gathered from clinical trials. Treatment benefit data is primarily based on results from trials conducted on patients in a specific controlled setting; they usually have limited health issues other than the disease for which treatment is intended. Realistically, patients for whom treatment is intended, particularly older patients, will have multiple conditions, called comorbidities, which could affect the actual benefit of treatment. In this thesis, we create a model that can predict the lifetime benefit of treatment for a patient with multiple comorbidities.

Currently, there are very few articles in the literature that focus on calculating treatment benefit in the presence of comorbidities, and no known satisfying solutions to this problem. One approach involves using Markov models to track the progression of a singular disease over time, and using a ‘comorbidity index’ to account for the effect of multiple conditions on the calculated benefit. An advantage of this method is the simplicity in which it captures comorbidity in the calculation. However, it could be difficult to quantify the level of comorbidity in a patient using this scale, still leading to an inaccurate predicted benefit. Furthermore, using this method, the specific comorbidities are not modelled; instead, the index is used only to increase the rate of death for these patients.

Another approach in the literature considers each patient individually, taking note of all of their comorbidities and the ‘snapshot’ benefit values assigned to each one. Under the assumption of independence between conditions, these values are analysed to find a more accurate benefit value for treating one of more of the diseases
at once. However, this only allows us to calculate the benefit at a single point in time, rather than a lifetime benefit that Markov model approaches allow. Since benefits can change over time, a lifetime measure allows us to find a better approximation of the true benefit of treatment. Both of these methods demonstrate that when multiple comorbidities are taken into account, the reported benefit of treatment decreases.

We consider a combination of both of these approaches to calculate a more accurate benefit of individual treatment in the presence of multiple comorbidities, and also the benefit of multiple treatments simultaneously. In this method, we use Markov chains to model the progression of individual episodic diseases over time. We then combine the individual models to create a Markov model that can track multiple comorbidities simultaneously.

For two specific treatments (carotid endarterectomy for carotid artery stenosis, and coronary artery bypass graft surgery for coronary artery disease), we use this model to demonstrate that the benefit of treatment measured in the presence of another disease is less than the benefit measured in isolation.

We also prove theoretically that for sensible treatments, the sum of the individual benefits measured in isolation is always greater than the benefits measured in the presence of comorbidities. We show that the same is true for the risk of treatment, where the risk is defined as the iatrogenic loss of treatment and is measured in the same units as benefit. This result is due to the effect of comorbidity on the benefit of multiple treatments. We are also able to show that, even accounting for the effect of comorbidity on the individual treatments, the sum of the individual benefits in the presence of other treatments (the withdrawal benefits) is greater than the combined benefit of treating all diseases at once. This implies that there is also an interaction between the treatments, as well as the comorbidities.

However, there are still some drawbacks with this model. For simplicity, we assume that both treatments occur simultaneously at the beginning of the chain. For surgical treatments though, this is unrealistic, since surgery can take a toll
on the patient. Thus, there is room for further refinement of the current model, and opportunity to allow for various other types of diseases to be modelled as well. Further research into the trade-off between model complexity and computation time could also be conducted in the future.