PROPERTIES OF HADRONS FROM A NON-PERTURBATIVE APPROACH

Manuel Eduardo Carrillo Serrano

Thesis submitted for the degree of
Doctor of Philosophy

Special Research Centre for the Subatomic Structure of Matter
and
Department of Physics

THE UNIVERSITY
of ADELAIDE

February 23, 2016
Statement of Originality

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due acknowledgement is made in the text. In addition I declare that no part of this work will be used in a submission for any other degree or diploma in any university or other tertiary institution without the approval of the University of Adelaide.

I give consent for this thesis to be made available for loan and photocopying after it has been examined and placed in the library, subject to the provisions of the Copyright Act 1968. I also give consent for the digital version of this thesis to be made available on the web, via the Library catalogue, the University’s digital research repository and also through web search engines, unless permission has been granted by the University of Adelaide to restrict access for a period of time.

SIGNED: DATE:
Abstract

The composition and structure of matter remains a fundamental problem in physics. The closest theory that tries to deal with this problem is the Standard Model of particle physics, which encodes the electromagnetic, weak and strong interactions. The strong interaction is the main ingredient in the description of hadronic properties such as their masses, distribution of charge and magnetisation, decay parameters, and interactions between them. These properties have the common feature that they are modelled at low four momentum transfer. At those conditions the theory of the strong interactions becomes impossible to use and the best approach is to calculate the hadronic properties using expensive numerical simulations called lattice QCD. Because lattice QCD requires a lot of computational resources, models close to the theory of strong interactions are still of great importance.

The work presented in this thesis uses different quark models (in particular the NJL model), in the calculation of the masses, electromagnetic form factors and weak decay properties of some light mass hadrons. In addition, it explores (in the context of the NJL model and others) the consequences that possible changes in fundamental constants could have for the binding energies of certain nuclei.

Throughout the whole thesis the results are compared with other models, existing experimental data, and extrapolations of the lattice QCD simulations. In general terms, the agreement in those comparisons is outstanding. In some cases the quark models give predictions for and insights into what is expected for future experiments and lattice calculations.

The main thrust of this thesis is to investigate the validity of the NJL model and the other models used here, because they can be crucial in the computation of physical properties of more complex structures such as many hadron systems or systems at very extreme conditions. Lattice QCD in those cases will still require a lot of work, time and computational resources. So far, it is fair to say that the models used here are to a very good extent, a good approximation to first principle calculations in the properties that were calculated in this thesis.
La composición y la estructura de la materia aún son considerados un problema fundamental de la Física. La teoría más cercana para resolver este problema es el Modelo Estandar de partículas, que agrupa el electromagnetismo y las interacciones fuerte y débil. En particular la interacción fuerte es el ingrediente principal en la descripción de las propiedades de los hadrones tales como sus masas, distribuciones de carga y magnetización, parámetros de decaimiento, e interacciones entre ellos. Estas propiedades tienen como común denominador que son modeladas a bajo cuadri-momento transferido. En esas condiciones la teoría de la interacción fuerte se vuelve prácticamente imposible de usar, por esta razón el mejor enfoque es calcular las propiedades de los hadrones usando simulaciones numéricas, llamadas lattice QCD, que requieren un alto costo de generación. El hecho de que lattice QCD requiera altos recursos computacionales, hace que los modelos que se aproximan a la teoría de la interacción fuerte sigan siendo de gran importancia.

El trabajo presentado en esta tesis usa en particular un modelo de quark constituyente, el modelo NJL, en el cálculo de las masas de los hadrones, sus factores de forma electromagnéticos y sus parámetros de decaimiento. Además explora (con la ayuda de otros modelos aparte del NJL), las posibles consecuencias en las energías de acoplamiento de algunos nucleos, por cambios en constantes fundamentales.

A través de toda la tesis los resultados son comparados con otros modelos, datos experimentales existentes y extrapolaciones de las simulaciones de lattice QCD. En términos generales, la concordancia con los otros métodos es excepcional. En algunos casos los modelos de quark predicen y generan hipótesis de lo que se puede esperar en futuros experimentos o simulaciones con lattice QCD.

El resultado principal de esta tesis es mostrar el nivel de validez del modelo NJL y de los otros modelos usados en el presente trabajo. Estos modelos pueden ser cruciales en el cálculo de propiedades físicas de estructuras mas complejas como son sistemas de muchos hadrones o sistemas en condiciones extremas. Las simulaciones con lattice QCD en éstos casos aún requerirán de una gran cantidad de trabajo, tiempo y recursos computacionales. Hasta el momento se puede decir que a través de los resultados de esta tesis, el modelo NJL y demás modelos de quark son hasta
cierto punto una buena aproximación a los cálculos esperados mediante primeros principios de las propiedades descritas acá.
Acknowledgements

My work throughout these years as a PhD student received a lot of support from many people whom I would like to thank.

To my principal supervisor Prof. Tony Thomas I am deeply thankful for his guidance and patience. His example as an outstanding professional and leader but even more as a human being, are the best gifts I can take for the future. To Dr. Ian Cloët for all his help and taking time for me despite of his busy schedule. I would also like to thank A/Professor Ross Young for being constantly willing to answer my questions and reading this thesis.

I would like to acknowledge the support of my collaborators Prof. Kazuo Tsushima, Prof. Iraj Afran, Dr. Zhan-Wei Liu, Daniel Whittenbury, and Prof. Wolfgang Bentz. In particular to Kazuo for being always kind and for offering me his unconditional friendship.

Thanks to the staff at CSSM, specially Bronwyn, Silvana and Sharon for having a smile and being so proactive every time I asked them for help.

I would like to thank the University of Adelaide and the CSSM for which I received postgraduate scholarships.

To our futsal team “Colour Singlets” for giving me the opportunity to relax and have fun outside academia.

To Nathan Hall, Muddassar Naeem, Ryan Coad, Taylor Haar, Fabien Voisin, Erwin Torres and Filip Rajec for their friendship and for being patient with my sometimes awkward and inappropriate jokes.

I would like to thank my family in Australia, the US and Colombia who have been very supportive all over these years regardless of the distance. To my five siblings: Mauricio, Cesar, Sonia, Liliana and Adriana I would always be thankful for their help and encouragement to come to Australia to follow my dreams. To my nephews and nieces for being wonderful human beings, and for making me part of their lives even for some of them who do not know me in person.

To Diana for being the most amazing partner in every aspect, her company has made my life even more beautiful and my PhD a joyful experience. Thanks to her for having a positive attitude towards life and teaching me about the fascinating world of psychology, even though sometimes I could be a stubborn physicist.

In particular, I would like to dedicate this work to my parents Manuel and
Elizabeth who throughout all these years reinforced the idea that education needed to be a very important part in my life. I would like to tell them that I appreciate with all my hearth their love and the hard work they have done to raise me.
Agradecimientos
(Acknowledgements in Spanish)

El trabajo que he realizado durante estos años como estudiante de doctorado recibió un gran apoyo por parte de muchas personas a quienes quisiera agradecer.

A mi supervisor principal Prof. Tony Thomas le estoy profundamente agradecido por sus enseñanzas y paciencia. Su ejemplo como profesional y líder excepcional pero más aún como ser humano, son los mejores regalos que puedo recibir para mi futuro.

Al Dr. Ian Cloët por toda su ayuda y por dedicarme parte de su tiempo a pesar de su apretada agenda. Me gustaría agradecer además al A/Prof. Ross Young por estar siempre disponible para responder mis preguntas y por leer esta tesis.

Quiero agradecer a mis colaboradores Prof. Kazuo Tsushima, Prof. Iraj Afnan, Dr. Zhan-Wei Liu, Daniel Whittenbury y Prof. Wolfgang Bentz. En particular a Kazuo por ser siempre tan amable conmigo y por ofrecerme su amistad incondicional.

Le agradezco a los miembros del CSSM especialmente a Bronwyn, Silvana y Sharon por tener siempre una sonrisa y ser tan proactivas en cada momento que necesitaba su ayuda.

Quiero dar las gracias a la University of Adelaide y al CSSM de quienes recibí becas de postgrado.

A nuestro equipo de fútbol de salón “Colour Singlets” por darme la oportunidad de relajarme y disfrutar por fuera del espacio académico.

A Nathan Hall, Muddassar Naeem, Ryan Coad, Taylor Haar, Fabien Voisin, Erwin Torres y Filip Rajec por su amistad y por ser pacientes con mis extrañas y algunas veces incómodas bromas.

Me gustaría agradecer a mi familia en Australia, Estados Unidos y Colombia quienes me han apoyado durante todos estos años sin importar la distancia. A mis cinco hermanos: Mauricio, Cesar, Sonia, Liliana y Adriana siempre les estaré agradecido por ayudarme y motivarme a venir a Australia en búsqueda de mis sueños. A mis sobrinos por ser maravillosos seres humanos y siempre tenerme en cuenta así algunos no me conozcan personalmente.

A Diana por ser una extraordinaria compañera en todo aspecto, su compañía ha hecho mi vida aún más hermosa. Le agradezco a ella por tener una actitud tan positiva hacia la vida y por enseñarme sobre el fascinante mundo de la psicología,
inclusive cuando algunas veces yo pueda ser un físico obstinado.

En particular, quiero dedicarle este trabajo a mis padres Manuel y Elizabeth quienes a través de todos estos años me han reforzado la idea de que la educación tiene que ser una parte importante en mi vida. Quisiera decirles que aprecio con todo mi corazón su amor y dedicación en mi continua crianza.
Contents

Statement of Originality iii
Abstract v
Resumen (Abstract in Spanish) vii
Acknowledgements ix
Agradecimientos (Acknowledgements in Spanish) xi

1 Introduction 3

2 QCD and the NJL model 7
2.1 QCD 7
2.1.1 Motivation for QCD 7
2.1.2 Baryon and Meson Multiplets 10
2.1.3 QCD Formalism 13
2.1.4 Asymptotic Freedom and Confinement 14
2.1.5 Chiral Symmetry Breaking 18
2.2 The NJL Model 22
2.2.1 SU(2)$_F$ and SU(3)$_F$ NJL Lagrangians 23
2.2.2 Mean-Field Approximation 25
2.2.3 Regularisation Methods 26
2.2.4 Meson Masses and Effective Couplings 29
2.2.5 Parameter Determination 32

3 Changes of Fundamental Constants and Nuclear Binding 35
3.1 Evidence of the Variation of Fundamental Constants 35
3.2 Nucleon-Nucleon Interaction 39
3.3 Light Hadron Masses in Different Quark Models 42
3.4 Nuclear Binding 49
3.5 Consequences For the Relative Abundance of 7Li 54
Bibliography 173
List of Publications 184