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ABSTRACT  

 

Objective: A key mediator of vascular endothelial cell barrier integrity, sphingosine-1-

phosphate, is derived from phosphorylation of sphingosine by the sphingosine kinases (SK-1 and 

SK-2). While previous work indicates that SK-1 can regulate endothelial cell barrier integrity, 

whether SK-2 has a similar role remains to be determined. Methods: A cell impedance assay 

was used to assess human umbilical vein endothelial cell and bone marrow endothelial cell 

barrier integrity in vitro, with application of the SK inhibitors ABC294640, PF543, SKi and MP-

A08. In vivo studies were conducted using intravital microscopy to assess endothelial cell barrier 

integrity in SK-1 (Sphk1-/-) and SK-2 (Sphk2-/-) knock-out mice. Results: Only ABC294640 and 

MP-A08, which can both inhibit SK-2, caused a decrease in endothelial cell barrier integrity in 

vitro in both cell types. Intravital microscopy revealed that Sphk1-/- mice had reduced endothelial 

cell barrier integrity compared to wild-type mice, whereas no change was evident in Sphk2-/- 

mice. Conclusions: Our data suggest that in vitro inhibition of SK-2 can compromise the 

integrity of the endothelial cell monolayer, whilst SK-1 exerts a more dominant control in vivo. 

This data may have clinical implications and could aid in the development of new treatments for 

disorders of vascular barrier function. 

 

Keywords: Sphingosine-1-phosphate, sphingosine kinase, endothelial cell barrier integrity 
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ABBREVIATIONS 

area under the curve (AUC) 

dimethyl sulfoxide (DMSO) 

endothelial cell (EC) 

fluorescein isothiocyanate (FITC) 

human umbilical vein endothelial cells (HUVEC) 

sphingosine kinase-1 (SK-1) 

sphingosine kinase-2 (SK-2) 

sphingosine-1-phosphate (S1P) 

transformed human bone marrow endothelial cells (TrHBMEC) 

vascular endothelial growth factor (VEGF) 

wild-type (WT)  

 

INTRODUCTION 

Vascular permeability characterises the capacity of the blood vessel wall to regulate the 

movement of fluid, solutes and plasma proteins out of the vasculature and into the surrounding 

tissue. This process is fundamentally controlled by the vascular endothelial cells (ECs), which 

form a continuous cellular monolayer that lines the luminal surface of blood vessels and acts as a 

size-selective, semi-permeable barrier between the blood plasma and the extracellular space [47]. 

The integrity of the vascular EC barrier is important for controlling normal physiological 

processes such as tissue fluid homeostasis but significant alterations in barrier integrity are 

associated with many inflammatory and pathological conditions, including allergic rhinitis, 

anaphylaxis, aberrant wound healing, cancer, edema, psoriasis and rheumatoid arthritis [19,51]. 

Various mediators are capable of increasing vascular permeability by generating changes 

in the adhesive properties of the inter-endothelial junctions. Compounds such as histamine, 
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bradykinin, thrombin and vascular-endothelial growth factor (VEGF) are permeability-inducing 

agents, acting through different signaling pathways to cause disruption of the EC barrier [32]. In 

contrast, mediators such as the bioactive lipid sphingosine-1-phosphate (S1P) [5], fibroblast 

growth factor [50] and angiopoietin-1 enhance the integrity of the EC barrier [59]. More 

importantly, these particular compounds play a fundamental role in regulating basal barrier 

integrity and are essential for protecting the EC barrier after exposure to injury or inflammatory 

conditions. The phospholipid S1P is a well-established pro-survival molecule and a key cell 

signaling mediator involved in a range of cellular processes, including cell trafficking, 

differentiation, angiogenesis and inflammation (as reviewed in [23,43,58,60]). S1P has a 

concentration in human plasma ranging from 200-400 nM [10,82] and is secreted primarily from 

erythrocytes and activated platelets [33] although ECs, hepatocytes, neutrophils and mast cells 

can also contribute to the release of S1P [79-81]. A family of five G-protein coupled receptors 

(S1P1-5) bind S1P to initiate functional changes in cell signaling [24,64] . By signaling through 

EC expressed S1P1, S1P is able to robustly maintain the integrity of the EC barrier and this is 

well demonstrated by numerous studies [1,5,7,11,40,46]. However, high levels of S1P can lead to 

signaling through S1P2 or S1P3, which can lead to disruption of the EC barrier [36,63]. 

 Synthesis of S1P occurs via phosphorylation of sphingosine by the intracellular 

sphingosine kinases SK-1 and SK-2 [74]. Despite their common function in catalysing the 

biosynthesis of S1P, SK-1 and SK-2 localise to both overlapping and distinct subcellular 

compartments [26,30,44,57], exhibit different developmental and adult expression patterns 

[39,48] and are recognised to have both equivalent and alternative biological functions 

[26,44,73]. Whilst the role that S1P plays in maintaining EC barrier integrity is well established, 

the relationship between the two SK isoforms and EC barrier integrity is less defined. Previous 

work by our laboratory has demonstrated that siRNA knock-down of SK-1 reduced EC barrier 

integrity in vitro, which was supported by SK-1 knock-out mice (Sphk1-/-) exhibiting higher 
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levels of vascular leakage [37]. Other studies have also reported that SK-1 activity is important 

for maintaining EC barrier integrity and for restoring barrier function following challenge with 

inflammatory agents [13,52,75]. In contrast, there is little evidence describing any link between 

SK-2 activity and EC barrier integrity. A study by Maines et al showed that administration of the 

SK-2 inhibitor ABC294640 was able to limit VEGF-induced increase in vascular permeability in 

mice [45], whilst in vivo studies in SK-2 knock-out (Sphk2-/-) mice undergoing an anaphylactic 

challenge did not support this [52]. 

In the current study, we specifically investigated the role of SK-2 in regulating EC barrier 

integrity and how it may complement SK-1. A high throughput in vitro cell impedance based 

assay was employed in combination with a range of pharmacological inhibitors to SK-1 and SK-

2. Data from the in vitro assay suggested that inhibition of SK-2 activity was more detrimental to 

EC barrier integrity than inhibition of SK-1. In addition to the in vitro studies, we used an in vivo 

model of  intravital microscopy to compare EC barrier integrity in the ear microvasculature of 

wild-type (WT), Sphk1-/- and Sphk2-/- mice. Measurement of a fluorescent tracer revealed that 

Sphk1-/- mice have a compromised EC barrier, whilst the Sphk2 -/- mice exhibited no difference in 

barrier integrity when compared to the WT mice. The novelty of these findings lies in the 

investigation of SK-2 functionality in the maintenance of basal EC barrier integrity, which was 

interrogated using both in vivo and in vitro methods. With our work also confirming a role for 

SK-1, these findings provide evidence to suggest that both SK isoforms could be potential 

therapeutic targets for conditions that exhibit aberrant vascular barrier function. Given the 

prevalence of conditions such as allergy, cancer and rheumatoid arthritis, wherein vascular 

integrity is compromised, such treatments could be of significant clinical relevance. 
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METHODS 

Reagents 

Reagents were purchased from the following suppliers: histamine, histamine-1-receptor inhibitor 

chlorpheniramine, histamine-2-receptor inhibitor cimetidine and fluorescein isothiocyanate 

(FITC) conjugated to dextran (Sigma-Aldrich, St. Louis, MO, USA); ketamine and xylazine 

(Lyppard, Keysborough, VIC, AUS); Lipofectamine RNAiMAXTM (Life Technologies, Thermo 

Fisher, Carlsbad, CA, USA); SKi (also known as SKI-II, Cayman Chemical Co. Ann Arbor, MI, 

USA);PF543 (Tocris Bioscience, Bristol, UK). ABC294640 and MP-A08 have been described 

previously [17,56].  

 

Animals 

WT, Sphk1-/- and Sphk2-/- mice were on a C57Bl/6 background were generously provided by 

Prof. Richard Proia (NIH) and have been described previously [6,49]. Mice were housed under 

pathogen-free conditions at SA Pathology Animal Care Facility (South Australia, Australia). 

Both male and female mice were used for the intravital microscopy and were aged between 8-12 

weeks of age. All experimental procedures were approved by the Animal Ethics Committee of 

SA Pathology and conform to the guidelines established by the ‘Australian Code of Practice for 

the Care and Use of Animals for Scientific Purposes’. 

 

Cell culture 

The collection of human umbilical cords for use in this study was given ethical clearance from 

the Human Research Ethics Committee of the Children, Youth and Women’s Health Service, 

North Adelaide, South Australia and informed written consent was obtained from all subjects in 

accordance with the Declaration of Helsinki. Human umbilical vein ECs (HUVEC) were isolated 
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as previously described [38]. Briefly, HUVEC were cultured in M199 medium (Sigma-Aldrich) 

containing 20% fetal bovine serum (Life Technologies), 20 mM Hepes, 2 mM glutamine, 1 mM 

sodium pyruvate, 1% nonessential amino acids (Cytosystems), 0.225% sodium bicarbonate, 100 

U/ml penicillin and 100 μg/ml streptomycin (Gibco BRL, Paisley, Scotland). HUVEC were used 

at passage 2 or less for subsequent assays and were cultured in charcoal stripped fetal bovine 

serum, which depletes approximately 95% of the serum S1P [9]. Transformed human bone 

marrow ECs (TrHBMEC) were kindly supplied by Prof. Andrew Zannettino (SAHMRI, 

Adelaide, Australia) and have described previously [66]. The cells were cultured under the same 

conditions as described above for HUVEC, with the exception that the media was supplemented 

with heparin (Sigma-Aldrich) and endothelial growth factor (Corning, New York, USA) at 15 

ng/µl. 

 

In vitro EC barrier integrity assay 

To assess HUVEC and TrHBMEC barrier integrity in vitro, we employed the xCELLigence 

RTCA DP Analyzer (ACEA Biosciences, San Diego, USA), which measures fluctuations in 

electrical impedance when a population of cells is grown in a specialised plate (E-Plate 16)[72]. 

The well bottom of an E-Plate 16 (5.0 mm diameter) contains a planar gold array of electrodes 

which cover 80% of the surface area and permit cell attachment with or without matrices where 

the sensor impedance of the plate prior to cell seeding is 17 Ω ± 5 Ω at a frequency of 10 kHz. 

Twenty four hours after initial seeding, the wells were randomly assigned to control or treatment 

groups with the administration of histamine or the SK inhibitor (ABC294640, MP-A08, PF543, 

SKi) and the relevant vehicle (final concentration in parentheses): PF543 (≤ 0.001% DMSO), 

SKi and MP-A08 (≤ 0.1% DMSO); ABC294640 (≤ 0.4% methanol); Histamine (H2O). For 

treatment with the histamine receptor antagonists chlorpheniramine and cimetidine, both 

inhibitors (at a concentration of 10 µM) were added 40 minutes prior to histamine treatment. 
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Changes in barrier integrity were then monitored for a further 24 hours following the addition of 

the inhibitor, with no change in culture media occurring during this period. Each treatment was 

performed in duplicate and the experiment replicated three times. For HUVEC, all replicates 

were performed on biologically different donor cultures with the gender of these cells unknown 

as the donors were de-identified.  

 

Intravital microscopy 

Intravital microscopy to measure in vivo barrier integrity of the mouse ear vasculature was 

performed as described previously [14]. Mice were sedated using an intra-peritoneal injection of 

a 10 mg/ml ketamine/xylazine mixture at a dosage of 1 μl per gram. The mouse ear was then 

placed over a raised platform and mounted under a glass coverslip in preparation for imaging. 

Prior to imaging, the mouse was allowed to rest for 30 minutes to reduce any potential 

inflammation that may have resulted from the manual handling. To visualise the vasculature, 100 

μl of 10 mg/ml FITC-dextran (150, 70 or 40 kDa) was injected intravenously via an intra-orbital 

injection.   The mouse ear was then positioned under a 20x objective within a heated chamber of 

an LSM 710 two-photon microscope (Carl Zeiss, Jena, Germany).  The FITC-Dextran was 

excited using a tuneable Mai Tai Ti:Sapphire multiphoton laser (Spectra-Physics, Santa Clara, 

USA) and external non-descanned detectors were used to capture the fluorescence signal. A stack 

of 3 images over a range of 10 μm was then acquired every 5 minutes over the course of 15 

minutes. Image analysis was undertaken using a macro written for use within Image J [61]. As all 

images were in color, the green channel was split out and then a median filter with a radius of 2.0 

pixels was employed to reduce noise. A fluorescence threshold was then manually applied by the 

user to the time zero image, with subsequent images in the series then using the threshold values 

from the time zero image. Image analysis then determined the percentage area covered by the 

threshold region. For analysis of average vessel diameter, measurements were taken from the 
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time zero image of each mouse using Image J. Vessels were defined as small (less than 8 µm 

diameter), medium (8-13 µm diameter) or large (> 13 µm diameter). The number of vessels 

within each group was then counted and calculated as a proportion of the total number of vessels 

in that image. 

 

Statistical analysis  

Immediately prior to each independent EC barrier integrity assay experiment being conducted we 

confirmed that the ‘cell index’ values between wells was statistically similar.  In addition, at the 

time of reagent administration, cell index values were normalised to a value of ‘1’ to overcome 

the 0.005±0.005 variances in cell index readings that was observed between wells to better 

provide direct comparison  across treatment groups. An area under the curve (AUC) analysis was 

undertaken to compare the cell index values of the treatments and the vehicle. AUC values were 

then compared using a two-tailed Student’s t-test, with p < 0.05 being accepted as statistically 

significant. 

 For the intravital analysis, the percentage fluorescent area from each image within a 

series was normalised back to the time zero image, with the normalised fluorescent area then 

plotted against time. A two-way repeated measures ANOVA was performed to compare the rate 

of leakage of the fluorescent dye in the WT, Sphk1-/- and Sphk2-/- mice. To compare the 

proportion of vessels within each size range across different mouse genotypes, a Kruskal-Wallis 

test was utilised. Statistical significance was accepted as p < 0.05.
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RESULTS 

Histamine rapidly induces a decrease in HUVEC barrier integrity 

The role of histamine in inducing EC permeability is well-established and as a consequence it 

was used in this study to establish the validity of measuring EC barrier integrity in vitro using the 

xCELLigence RTCA DP Analyzer.  In the first instance, HUVEC were seeded into the gelatin-

coated E-Plate 16 at concentrations of 0.5, 1.0, 2.5 and 5x104 cells per well to determine optimal 

seeding densities. As shown in Figure 1A, within 6 hours of seeding, the ≥1 x 104 cell containing 

wells formed a stable, and likely confluent, monolayer as indicated by a plateau of the impedance 

profile; quantitatively calculated and expressed by the xCELLigence software as the ‘cell index’ 

(a dimensionless parameter derived as a relative change in measured electrical impedance to 

represent cell status[72]). Also established in these experiments, was that the impedance readings 

of ‘cell free’ wells remained significantly lower (Figure 1A). In subsequent experiments (wherein 

2.5x104 cells seeded each well) we confirmed that no differences in basal cell layer resistance 

existed across the wells prior to proceeding with each cell containing well maintaining a 

comparable and constant cell index for the two hours prior to testing. In fact, we repeatedly 

observed that the cell containing wells varied by approximately 0.005±0.005 cell index units at 

time of treatment. Following establishment of the HUVEC monolayer, we used published 

methods [73] to reveal that cells treated with 12.5 μM histamine undergo a rapid and significant 

decrease in barrier integrity when compared to the vehicle control (Figure 1B). This loss in 

barrier integrity equated to a peak fall in cell index of 47 ± 1.4% after only 2.5 minutes. After 

approximately 20 minutes, the cell index of the histamine-treated cells had recovered to the 

baseline level exhibited by the vehicle treated cells (Figure 1B), highlighting the transient nature 

of this effect and demonstrating that the treatment was not cytotoxic. To confirm specificity, 

HUVEC were pre-treated with the known histamine-1-receptor inhibitor chlorpheniramine (10 
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μM) [70] 40 minutes prior to treatment with 12.5 μM histamine (Figure 1C). Pre-treatment with 

chlorpheniramine was able to completely abolish the fall in barrier integrity seen with histamine 

treatment alone. In addition, HUVEC were also pre-treated with the known histamine-2-receptor 

inhibitor cimetidine (10 μM) [70], this had no effect on reducing histamine-induced loss of 

barrier integrity (Figure 1D). Quantified data from independent experiments using three different 

biological HUVEC donors showed via area under the curve (AUC) calculations that pre-

treatment with the H1R inhibitor (chlorpheniramine) significantly inhibited histamine-induced 

loss of barrier integrity (Figure 1E). 

 

The SK-1 inhibitor PF543 has a modest effect on HUVEC barrier integrity  

To investigate whether inhibition of SK-1 could disrupt basal EC barrier integrity in vitro, the 

commercially available SK-1-selective inhibitor PF543 was administered to HUVEC 

monolayers. PF543 was administered at concentrations of 10 nM, 25 nM, 50 nM and 100 nM 

(Figure 2A-E), which was based on a Ki of 3.6 nM [65]. At all concentrations, PF543 was able to 

induce a modest but significant decrease in HUVEC barrier integrity. A concentration-related 

response was evident, with the largest decrease in barrier integrity occurring with the 100 nM 

treatment with a 20 ± 5% fall in the cell index after approximately 25 minutes. To note, at all 

concentrations of PF543, the cell index of the treated cells returned to baseline levels over the 

course of a few hours, suggesting that the effect was transient and not cytotoxic (Supplementary 

Figure 1).  

 

The SK-2 inhibitor ABC294640 decreased HUVEC barrier integrity  

Next we utilised a commercially available SK-2-selective inhibitor, ABC294640, in the in vitro 

HUVEC barrier integrity assay. Given that the Ki for ABC294640 is 9.8 µM [17], we 

administered the inhibitor at concentrations ranging from 5 μM to 40 μM. Whilst no effect was 
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evident at 5 µM and 10 µM, the higher concentrations of 20 µM and 40 µM were able to induce 

a significant decrease in HUVEC barrier integrity (Figure 3). Notably, treatment with 40 µM of 

ABC294640 resulted in a 73 ± 16% decrease in cell index readings within 15 minutes, which was 

the largest reduction seen with any of the inhibitors used in this study. However, it is possible 

that at a concentration of 40 µM, ABC294640 is slightly cytotoxic, as cell index readings do not 

return to baseline levels after 12 hours in culture (Supplementary Figure 2). This effect may be 

attributed to the 0.4% methanol vehicle used for this compound as cytotoxicity was not evident at 

the lower concentrations of ABC294640 (Supplementary Figure 2). 

 

Combination of PF543 and ABC294640 enhances the decrease in HUVEC barrier integrity  

In order to further establish whether simultaneous inhibition of both SK-1 and SK-2 can have a 

more potent impact on EC barrier integrity, a combination treatment of PF543 and ABC294640 

was employed. Both inhibitors were used at their optimal concentration as derived from the 

previous experiments, with PF543 at 100 nM and ABC294640 at 20 µM. The ABC294640 

concentration was chosen as it did not exhibit any cytotoxic effects as opposed to 40 µM. As 

shown in Figure 4, treatments with PF543 and ABC294640 alone were 20 ± 9% and 12 ± 7%, 

respectively. In contrast, the combined treatment with PF543 and ABC294640 resulted in a 32 ± 

6% decrease in cell index, demonstrating an additive effect. There was no evidence that any of 

these treatments exhibited any long-term cytotoxicity (Supplementary Figure 3).     

 

SK-1/2 inhibitors have varying effects on HUVEC barrier integrity  

Whilst initially considered to be an exclusive inhibitor of SK-1, SKi has recently been 

demonstrated to inhibit both SK-1 and SK-2, with a Ki of 16 µM and 7.9 µM respectively [18]. In 

contrast to both PF543 and ABC294640, SKi was unable to elicit a significant change in 

HUVEC barrier integrity at concentrations ranging from 5 μM to 40 μM (Figure 5). There was 
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no evidence of long-term cell toxicity following administration of SKi (Supplementary Figure 4). 

In addition to SKi, another SK-1/2 inhibitor, MP-A08, was also investigated in the in vitro 

HUVEC barrier integrity assay. MP-A08 exhibits a higher affinity for SK-2 than SK-1, with Ki 

values of 6.9 µM and 27 µM respectively [56]. We administered MP-A08 at concentrations 

ranging from 5 μM to 40 μM, with the higher concentrations of 20 µM and 40 µM inducing a 

significant decrease in HUVEC barrier integrity (Figure 6). Treatment with 40 µM of MP-A08 

resulted in a 30 ± 7% decrease in cell index readings after approximately 15 minutes, which was 

the second most potent response from any of the inhibitors used in this study. As with both 

PF543 and ABC294640, the cell index readings of the HUVEC treated with MP-A08 returned to 

baseline levels over the course of a few hours, suggesting that the effect of the inhibitor is 

transient and that there are no cytotoxic effects (Supplementary Figure 5). To note, at a 

concentration of 40 µM, both the SKi and MP-A08 treatments contain a final DMSO 

concentration of ~0.1%, which could have transient effects of EC barrier integrity as seen in the 

vehicle only treatments (Figure 5D and 6D).   

 

The SK inhibitors have varying effects on TrHBMEC barrier integrity  

As variation is known to exist between ECs which are isolated from different vascular beds [3,4], 

we tested the response of the human bone marrow derived microvascular TrHBMEC cell line to 

the SK inhibitors. All inhibitors were examined at the optimal concentration as determined from 

the aforementioned HUVEC data: PF543 at 100 nM; ABC294640 at 20 µM; SKi at 40 µM; MP-

A08 at 40 µM. Figure 7 shows that there was no evidence for changes in barrier integrity in 

response to treatment with either PF543 or SKi. In contrast, with ABC294640, a significant 

decrease in barrier integrity was observed, with a peak fall in cell index of 20 ± 5% (Figure 7). 

An even more pronounced effect on barrier integrity was observed with MP-A08, which caused a 

39 ± 4% fall in cell index. Prolonged incubation of the TrHBMEC with the inhibitors suggested 
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that only SKi had cytotoxic effects on the cells after approximately 6 hours in culture 

(Supplementary Figure 6).  

 

Sphk1-/- but not Sphk2-/- mice have compromised microvascular barrier integrity  

Intravital microscopy was used to compare the barrier integrity of the ear microvasculature of 

Sphk1-/-, Sphk2-/- mice and their WT counterparts in vivo. To note, our previous findings 

demonstrated that Sphk1-/- mice have reduced microvascular barrier integrity in the back skin 

when using the Miles assay, which utilises Evans blue dye [37] but here we employed the much 

more sensitive approach of intravital microscopy. This technique allowed us to examine changes 

in permeability over time within live (anesthetised) mice using three different sizes of a FITC-

Dextran tracer [14]. The largest molecule administered was a 150 kDa FITC-Dextran, which 

under basal conditions is reportedly too large to pass through the EC barrier [14]. Similarly, the 

70 kDa FITC-Dextran is too large to pass through the vasculature under basal conditions, 

although some slight movement of the molecule into the interstitial space can be expected [14]. 

The 40 kDa FITC-Dextran is small enough to move through the EC barrier under basal 

conditions and it is predicted to undergo a mild but sustained leakage over the course of the 15 

minute imaging window [14].  

As shown in Figure 8, with administration of the 150 kDa FITC-Dextran, the tracer is 

confined within the vasculature in the WT, Sphk1-/- and Sphk2-/- mice and undergoes little or no 

leakage into the interstitial space over the course of 15 minutes. There was no significant 

difference in the rate of leakage between these mice, which was assessed by determining the 

normalised total fluorescence area of each image at every time point (Figure 8D). Similarly, 

minimal leakage was observed following injection of the 70 kDa FITC Dextran in the WT and 

Sphk2-/- mice (Figure 9). In stark contrast, substantial leakage of the 70 kDa FITC Dextran into 

the interstitial space was observed in the Sphk1-/- group over the course of the 15 minutes (Figure 
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9). Shown in Figure 9E, the differences in leakage of the 70 kDa FITC-Dextran tracers in the WT 

and Sphk1-/- mice was not based on gender variation. A similar result was observed with the 40 

kDa FITC-Dextran tracer, with the Sphk1-/- mice exhibiting a significantly increased rate of 

leakage (Figure 10). As anticipated, the 40 kDa FITC-Dextran tracer was still able to move into 

the interstitial space in the WT and Sphk2-/- mice, although at a reduced rate compared to that 

observed in the Sphk1-/- mice (Figure 10). To note, we observed no differences in the proportion 

of small, medium or large diameter vessels across the different mouse strains for all sizes of 

FITC-Dextran examined (Supplementary Figure 7). The only exception was within the small 

proportion of large vessels in the 70 kDa FITC-Dextran group, where a slight reduction in Sphk2-

/- numbers was detected (Supplementary Figure 7B). However, this may be an artefact generated 

by the small sample size in this experiment. 

 

DISCUSSION 

The regulated passage of blood stream components into the interstitial space is a fundamental 

physiological function that is facilitated by the ECs that line the vasculature. Under both basal 

and inducible conditions, vascular EC barrier integrity is tightly controlled and can be regulated 

by a range of mediators. Despite increasing knowledge of the pathways involved in controlling 

EC barrier integrity, much remains unknown about this essential feature of the vascular system. 

This study aimed to investigate what role the two SK isoforms play in the maintenance of basal 

vascular EC barrier integrity, which was interrogated through the novel in vitro use of inhibitors 

to SK-1 and SK-2 and by applying state-of-the art intravital microscopy in vivo. For the first 

time, we were able to demonstrate, through the use of pharmacological inhibitors, that SK-2 

activity is important for sustaining HUVEC and TrHBMEC barrier integrity in vitro. However, 

experiments conducted on Sphk2-/- mice using intravital microscopy demonstrated that ablation of 
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this gene had no effect on EC barrier integrity while our data supported previous documentation 

of Sphk1-/- mice having a compromised EC barrier [13,37,52,75].  

 The in vitro measurement of EC barrier integrity in this study was undertaken using an 

xCELLigence RTCA DP Analyzer, which employs electrical impedance-based technology to 

assess a range of cellular parameters. This technique was first described by Giaever and Keese 

[20,21], with the technology subsequently adapted for the xCELLigence platform [72]. The use 

of this methodology to assess changes in EC barrier integrity has been well-described and offers 

several advantages over the alternative transwell assay, including the ability to monitor changes 

in barrier integrity in real-time and without the use of a label [12,31,34,35,69,76]. In order to 

establish whether this assay would be applicable to assessing the barrier integrity of our EC 

cultures, HUVEC were treated with the inflammatory mediator histamine, which is known to 

induce disruption of the EC barrier [41]. Our data indicated that histamine caused a rapid but 

transient decrease in HUVEC barrier integrity and that this effect was mediated by signaling 

through the histamine-1-receptor, which has been reported previously [62]. These findings 

validated the use of our HUVEC donor cultures and the xCELLigence RTCA DP Analyzer to 

assess EC barrier integrity in vitro. 

 To assess if SK-1 and SK-2 activity is important for the maintenance of EC barrier 

integrity in vitro, experiments using pharmacological inhibitors were undertaken. To inhibit SK-1 

alone, PF543 was utilised, which is a sphingosine-competitive inhibitor that is 100-fold more 

selective for SK-1 than SK-2 and is described as the most potent inhibitor of SK-1 currently 

available [65]. We observed that PF543 caused a relatively small but significant decrease in 

barrier integrity at concentrations ranging from 10 nM to 100 nM. To-date, this is the only 

description of PF543 being used in this capacity. Inhibition of SK-2 was undertaken using the 

compound ABC294640, which acts as a competitive inhibitor with respect to sphingosine and 

exhibits strong selectivity towards SK-2 [17]. Our data indicated that treatment with ABC294640 
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caused a significant, but transient, reduction in HUVEC barrier integrity that was quantitatively 

larger than that seen with the SK-1 inhibitor PF-543. When both these inhibitors were combined, 

there was compelling evidence of an additive effect, further illustrating how both SK isoforms 

play an important role in the maintenance of EC barrier integrity.   

 In addition to PF543 and ABC294640, which preferentially inhibit specific SK isoforms, 

we utilised two compounds that have activity against both SK-1 and SK-2. SKi (also referred to 

as SKI-II), is a sphingosine-competitive inhibitor of both SK-1 and SK2 [15,18]. There was no 

evidence from our data that SKi (5-40 µM) had any effect on EC barrier integrity, which is 

supported by Itagaki et al, who observed that SKi did not alter basal HUVEC barrier integrity in 

vitro using a transwell assay [27]. Along with SKi, we also utilised MP-A08, a recently 

developed inhibitor of both SK-1 and SK-2 [56]. As with ABC294640, the significant reduction 

in EC barrier integrity seen with MP-A08 treatment at 40 µM was larger than that observed with 

PF543. Given that MP-A08 preferentially targets SK-2 [56], this supports our findings that 

pharmacological inhibition of SK-2 causes a disruption of EC barrier integrity in vitro. 

Importantly, our previous data demonstrating that HUVEC possess comparable levels of SK-1 

and SK-2 activity [73], suggest that the observed preferential role for SK-2 is not simply a result 

of predominance of this isoform in these cells.  

 Given the significant phenotypic heterogeneity that exists between different EC types 

isolated from different vascular beds [3,4], we also evaluated the response of the microvascular 

TrHBMEC line to the SK inhibitors. Characterization of the TrHBMEC demonstrates that they 

exhibit the classical hallmarks of ECs, including expression of von Willebrand factor, P-selectin 

and CD31 and up-take of acetylated low-density lipoprotein [66]. Both ABC294640 and MP-

A08 induced a significant reduction in barrier integrity that was reminiscent of the data obtained 

from the HUVEC. Furthermore, SKi did not have any impact on barrier integrity, which was also 

in accordance with what was observed in HUVEC. In contrast to the HUVEC results however, 
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PF543 was not able to elicit a reduction in TrHBMEC barrier integrity. As the inhibitors behaved 

in a largely similar manner in disrupting the barrier integrity of large vessel ECs (represented by 

our primary HUVEC) and microvascular ECs (represented by the TrHBMEC cell line), the data 

from ABC294640 and MP-A08 suggest that SK-2 may play a more prominent role than SK-1 in 

the maintenance of EC barrier integrity across a range of vascular beds. This advances our 

current knowledge as we reveal an immediate response of the basal EC barrier integrity to SK 

inhibitors. This differs from other documented manipulation of SK in vitro wherein ECs (derived 

from large and/or small vessels) were treated with SK inhibitors (e.g. DMS and SKi) prior to 

stimulation with pro-inflammatory mediators, prevented (i) the disruption of barrier integrity by 

thrombin [28] and (ii) the increased barrier integrity by angiopoietin-1 [37]. Whether the SK 

inhibitors had an effect independent of thrombin or angiopoietin-1 in these experiments was not 

shown. Taken together, there is increasing evidence for an important and complex role for SK in 

the integrity of the vasculature that is yet to be clearly defined.  

In recent years, there has been widespread interest in the use of SK inhibitors as 

therapeutics for a variety of conditions, most notably cancer (reviewed in [55]). Many inhibitors 

are currently being evaluated in pre-clinical or clinical trials, with the structural sphingosine 

analogue FTY720 (also known as fingolimod and GilenyaTM) approved for use as a treatment for 

multiple sclerosis [70]. Of the inhibitors used in this study, ABC294640 is currently undergoing 

a phase I/IIa clinical trial for the treatment of patients with diffuse large B cell lymphoma and has 

also shown potential as a therapeutic for prostate cancer [78], whilst SKi and MP-A08 have 

documented anti-cancer properties [16,56]. Interestingly, a relatively new class of anti-cancer 

drugs termed vascular-disrupting agents act by inducing increased vascular permeability within a 

tumor, thus restricting blood flow and the delivery of nutrients [77]. Given the permeability-

inducing properties of the SK inhibitors investigated here, it is possible that this mode-of-action 

might improve the efficacy of these agents as anti-tumor compounds. However, as tumor 
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vasculature is notoriously tortuous and leaky whether these agents further influence EC barrier 

integrity in this context remains to be determined. In addition, any possible side-effects that 

could result from increased vascular permeability must also be considered, including the 

potential for complications associated with edema [2]. 

 Previous studies have demonstrated that SK-1 activity is important for EC barrier 

integrity in vivo, with Sphk1-/-  mice exhibiting a higher propensity for microvascular leakage 

under both basal and inflammatory states [13,37,52,75]. However, in contrast to the work 

undertaken here, none of these studies employed fluorescence-based intravital microscopy to 

assess microvascular integrity. The use of two-photon intravital microscopy to assess 

microvascular leakage offers real-time, high resolution imaging of fluorescent molecules in 

living tissues with little or no tissue damage [83]. This affords significant advantages over other 

techniques to assess microvascular permeability in vivo, such as the Miles assay, which is not 

suited to assessing permeability of various protein sizes over time under basal conditions within 

the same mice [14]. By employing Sphk1-/- mice, we were able to verify the use of this 

methodology within our laboratory by offering a comparison to known data. To examine whether 

SK-2 also contributes to EC barrier integrity in vivo, we utilised a Sphk2-/- strain that does not 

show any overt phenotype, with these mice being fertile and viable to at least 12 months of age 

[6,49]. Our study demonstrates that for the 150 kDa, 70 kDa and 40 kDa FITC-Dextran tracers 

however, there was no difference in the rate of basal leakage between the WT and Sphk2-/- mice. 

In contrast, we did observe a significant loss of EC barrier integrity in the Sphk1-/- mice when 

both the 70 kDa and 40 kDa FITC-Dextran were administered. Our results support previous 

findings of reduced blood vessel integrity in the Sphk1-/- mice [13,37,52,75] and demonstrate for 

the first time that Sphk2-/- mice have normal microvascular barrier integrity. This data verifies the 

earlier work of Olivera et al, who failed to find any evidence of increased microvascular 

permeability in the lungs of Sphk2-/- mice undergoing an anaphylaxis challenge [52]. It is 
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important to note that Sphk1-/- mice have approximately half the level of plasma S1P when 

compared to WT mice [6,29,53], whilst Sphk2-/- mice have a significantly higher level of plasma 

S1P than their WT counterparts [29,53,67]. Evidence from Sensken et al suggests that impaired 

transport of S1P out of the bloodstream and into the lymph circulation in Sphk2-/- mice is 

responsible for the elevated plasma S1P [67], although increases in SK-1 activity or decreases in 

S1P lyase or lipid phosphate phosphatase activity could also play a role. Given that S1P is a key 

mediator of EC barrier integrity [5,7,11,40,46], it is likely that the reduced levels of S1P in the 

Sphk1-/-  mice are responsible for the increased leakage of the FITC-Dextran tracer seen in these 

animals. The elevated plasma S1P found in Sphk2-/- mice would also explain the normal EC 

barrier integrity we found in this study. Despite increases in S1P having been shown to mediate 

higher VEGF expression in ECs in vitro [25], the subsequent increase in microvascular 

permeability that would result from VEGF secretion was not observed here. 

 It is evident from our data that a discrepancy exists between the SK-2 results from the in 

vitro and in vivo experiments. It is conceivable that the in vitro inhibitor data represents an 

intracellular mechanism of SK-1 and SK-2 action or the S1P they generate, as the effects of 

inhibitor addition are immediate (i.e. within seconds). With respect to SK-2, treatment of 

HUVEC with ABC294640 and MP-A08 could potentially reduce the level of secreted S1P, 

which would in turn decrease signaling through S1P1. However, it is possible that this 

mechanism does not account for all the changes in EC barrier integrity observed within our 

study. Intracellular targets of S1P have been identified and include histone deacetylases [22], 

tumor necrosis factor receptor-associated factor 2 [8], prohibitin-2 [71], peroxisome proliferator 

activated receptor-γ [54] and possibly p-21 activated kinase 1 [42]. If S1P directly interacts with 

an intracellular pathway that regulates adhesion molecule interactions, then disruption of this 

pathway via inhibition of SK-2 could potentially weaken cell-cell contacts. In addition, given that 

SK-2 localises to organelles independently of SK-1, such as the nucleus, mitochondria and 
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endoplasmic reticulum, S1P produced at these sites is likely to act on targets in close proximity 

and not be secreted from the cell [68]. In contrast to this proposed intracellular mode of action, 

findings from the Sphk2-/- mouse are likely the result of elevated levels of S1P-induced S1P1 

mediated signaling [5,7,11,39], the effects of which may override any deficit in intracellular SK-

2. It is also conceivable that some of the disparity seen between the in vitro and in vivo data 

could represent species differences in the regulation of EC barrier integrity by the sphingolipid 

pathway, although this would require further investigation. 

In summary, our findings reveal a role for SK-2, via pharmacological manipulation, in the 

regulation of EC barrier integrity. Through use of the inhibitors ABC294640 and MP-A08, we 

were able to present for the first time in vitro data showing a potential link between SK-2 activity 

and HUVEC and TrHBMEC barrier integrity. In addition, our study was able to confirm a role 

for SK-1 in the regulation of EC barrier integrity, through the novel in vitro use of inhibitors 

PF543 and MP-A08 and by employing intravital microscopy on Sphk1-/- mice. An improved 

understanding of the molecular pathways that regulate the EC barrier is of great importance, as 

dysfunctional control of this facet of the vascular system can contribute to the onset or 

progression of many pathological states. Increases in vascular permeability are associated with 

many clinically relevant conditions including allergy, anaphylaxis, cancer, edema and several 

auto-immune diseases. There is an urgent requirement for improved treatments for many of these 

disorders and inducing changes in vascular permeability may offer an attractive therapeutic 

strategy. To this end, pharmacologically targeting SK-1 and/or SK-2 to alter their activity may 

prove to be a viable approach to generating clinically beneficial changes in the EC barrier.   
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PERSPECTIVES  

David Dimasi: Our knowledge of the mechanisms that control vascular EC barrier integrity is 

incomplete. The study provides evidence that SK-2 may be a novel regulator of EC barrier 

integrity, although further work is required. This finding could have important clinical 

applications, particularly in the treatment of conditions such as allergy, anaphylaxis, cancer and 

edema. 

 

Stuart Pitson: SK-2 is an enigmatic enzyme, with many of its true roles in mammalian biology 

yet to be clearly determined. In this study we provide in vitro evidence for a potential role for 

SK-2 in the control of vascular integrity. This, however, was not recapitulated in knockout mouse 

studies, highlighting the complex nature of this enzyme and its interplay with SK-1 and control 

of circulating S1P.   

 

Claudine Bonder: Increasing vascular permeability is a fundamental feature of inflammation 

and contributes to tumor metastasis. The SK/S1P/receptor axis is central to controlling EC barrier 

integrity and whilst immediate responses to pharmacological compounds by EC monolayers in 

vitro support a unified role for SK-1 and SK-2, the redundancy observed in vivo supports the 

complex nature of this system which is not singularly overcome.  
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FIGURE LEGENDS 

Figure 1. Histamine rapidly decreases HUVEC barrier integrity via histamine receptor 1. 

(A) HUVEC were seeded into the E-Plate 16 wells at various concentrations (0.5, 1.0, 2.5 and 5 

x 104 cells/well) and cell index readings were monitored for 20 hours.  (B) HUVEC were treated 

with 12.5 μM histamine or equivalent vehicle control. Cell index readings were monitored for 25 

minutes following treatment. (C) HUVEC were treated with or without 10 μM of the histamine 

receptor 1 (H1R) inhibitor chlorpheniramine prior to the addition of 12.5 μM histamine. (D) 

HUVEC were treated with or without 10 μM of the histamine receptor 2 inhibitor (H2R) 

cimetidine prior to the addition of 12.5 μM histamine. (E) Changes in barrier integrity were 

quantified using an area under the curve analysis (cell index x minutes). Each treatment was 

performed in duplicate on three biologically different HUVEC donors. Error bars represent 

standard error of the mean. * p < 0.05     

 

Figure 2. The SK-1 inhibitor PF543 causes a significant decrease in HUVEC barrier 

integrity. HUVEC were treated with PF543 at (A) 10 nM, (B) 25 nM, (C) 50 nM and (D) 100 

nM and the equivalent concentration of the vehicle. (E) Changes in barrier integrity were 

quantified using an area under the curve analysis (cell index x minutes). Each treatment was 

performed in duplicate on three HUVEC donors. Error bars represent standard error of the mean. 

* p < 0.05  
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Figure 3. The SK-2 inhibitor ABC294640 causes a significant decrease in HUVEC barrier 

integrity. HUVEC were treated with ABC294640 at (A) 5 μM, (B) 10 μM, (C) 20 μM and (D) 

40 μM and the equivalent concentration of the vehicle. (E) Changes in barrier integrity were 

quantified using an area under the curve analysis (cell index x minutes). Each treatment was 

performed in duplicate on three HUVEC donors. Error bars represent standard error of the mean. 

* p < 0.05  

 

Figure 4. Combination of PF543 and ABC294640 enhances the decrease in HUVEC barrier 

integrity. HUVEC were treated with (A) PF543 at 100 nM, (B) ABC294640 at 20 µM or (C) a 

combination of both these inhibitors at the same concentrations. The equivalent concentration of 

each vehicle was also included. (E) Changes in barrier integrity were quantified using an area 

under the curve analysis (cell index x minutes). Each treatment was performed in duplicate on 

three HUVEC donors. Error bars represent standard error of the mean. * p < 0.05  

 

Figure 5. The SK-1/2 inhibitor SKi has no effect on HUVEC barrier integrity. HUVEC 

treated with SKi at (A) 5 μM, (B) 10 μM, (C) 20 μM and (D) 40 μM and the equivalent 

concentration of the vehicle. (E) Changes in barrier integrity were quantified using an area under 

the curve analysis (cell index x minutes). Each treatment was performed in duplicate on three 

HUVEC donors. Error bars represent standard error of the mean.  

 

Figure 6. The SK-1/2 inhibitor MP-A08 causes a significant decrease in HUVEC barrier 

integrity. HUVEC were treated with MP-A08 at (A) 5 μM, (B) 10 μM, (C) 20 μM and (D) 40 

μM and the equivalent concentration of the vehicle. (E) Changes in barrier integrity were 

quantified using an area under the curve analysis (cell index x minutes). Each treatment was 
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performed in duplicate on three HUVEC donors. Error bars represent standard error of the mean. 

* p < 0.05  

 

Figure 7. The SK inhibitors have varying effects on BMEC barrier integrity. BMEC were 

treated with (A) PF543 at 100 nM, (B) ABC294640 at 20 µM, (C) SKi at 40 µM and (D) MP-

A08 at 40 µM and the equivalent concentration of each vehicle. (E) Changes in barrier integrity 

were quantified using an area under the curve analysis (cell index x minutes). Each treatment was 

performed in duplicate on three independent experiments. Error bars represent standard error of 

the mean. * p < 0.05  

 

Figure 8. Sphk1-/- and Sphk2-/- mice do not exhibit increased microvascular leakage of 150 

kDa FITC-Dextran. WT, Sphk1-/- and Sphk2-/- mice were injected with 150 kDa FITC-Dextran 

and fluorescent images of the ear vasculature were taken over time. Representative images from 

a (A) WT, (B) Sphk1-/- and (C) Sphk2-/- mouse are shown, with only the 0 minute, 5 minute and 

15 minutes time points represented (scale bars indicate 100 µm). (D) Data are shown as the mean 

normalised fluorescence area ± standard error of the mean (n = 4).  

 

Figure 9. Sphk1-/- but not Sphk2-/- mice exhibit increased microvascular leakage of 70 kDa 

FITC-Dextran. WT, Sphk1-/- and Sphk2-/- mice were injected with 70 kDa FITC-Dextran and 

fluorescent images of the ear vasculature were taken over time. Representative images from a (A) 

WT, (B) Sphk1-/- and (C) Sphk2-/- mouse are shown, with only the 0 minute, 5 minute and 15 

minutes time points represented (scale bars indicate 100 µm). (D) Data are shown as the mean 

normalised fluorescence area ± standard error of the mean (n = 4-6). **p < 0.001. (E) Data are 

shown at the 10 min time point for normalised fluorescence area for each male and female mouse 

in the WT and Sphk1-/- group.   
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Figure 10. Sphk1-/- but not Sphk2-/- mice exhibit increased microvascular leakage of 40 kDa 

FITC-Dextran. WT, Sphk1-/- and Sphk2-/- mice were injected with 40 kDa FITC-Dextran and 

fluorescent images of the ear vasculature were taken over time. Representative images from a (A) 

WT, (B) Sphk1-/- and (C) Sphk2-/- mouse are shown, with only the 0 minute, 5 minute and 15 

minutes time points represented (scale bars indicate 100 µm). (D) Data are shown as the mean 

normalised fluorescence area ± standard error of the mean (n = 5). *p < 0.05 

 

Supplementary Figure 1. HUVEC treated with SK-1 inhibitor PF543 exhibit no sign of 

long-term cell toxicity.  HUVEC were treated with PF543 at (A) 10 nM, (B) 25 nM, (C) 50 nM, 

(D) 100 nM and the equivalent concentration of the vehicle. Cell index readings were monitored 

for 12 hours following treatment, (n = 3) 

 

Supplementary Figure 2. HUVEC treated with SK-2 inhibitor ABC294640 exhibit no sign 

of long-term cell toxicity.  HUVEC were treated with ABC294640 at (A) 5 µM, (B) 10 µM, (C) 

20 µM, (D) 40 µM and the equivalent concentration of the vehicle. Cell index readings were 

monitored for 12 hours following treatment, (n = 3). 

 

Supplementary Figure 3. HUVEC treated with a combination of PF543 and ABC294640 

exhibit no sign of long-term cell toxicity. HUVEC were treated with (A) PF543 at 100 nM, (B) 

ABC294640 at 20 µM, (C) a combination of both inhibitors at the same concentration and the 

equivalent concentration of each vehicle. Cell index readings were monitored for 12 hours 

following treatment, (n = 3). 

 

Supplementary Figure 4. HUVEC treated with SK-1/2 inhibitor SKi exhibit no sign of long-

term cell toxicity. HUVEC were treated with SKi at (A) 5 µM, (B) 10 µM, (C) 20 µM, (D) 40 
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µM and the equivalent concentration of the vehicle. Cell index readings were monitored for 12 

hours following treatment, (n = 3). 

 

Supplementary Figure 5. HUVEC treated with SK-1/2 inhibitor MP-A08 exhibit no sign of 

long-term cell toxicity. HUVEC were treated with MP-A08 at (A) 5 µM, (B) 10 µM, (C) 20 

µM, (D) 40 µM and the equivalent concentration of the vehicle. Cell index readings were 

monitored for 12 hours following treatment, (n = 3). 

 

Supplementary Figure 6. BMEC only exhibit signs of long-term cell toxicity to the inhibitor 

SKi. BMEC were treated with (A) PF543 at 100 nM, (B) ABC294640 at 20 µM, (C) SKi at 40 

µM, (D) MP-A08 at 40 µM and the equivalent concentration of the vehicle. Cell index readings 

were monitored for 12 hours following treatment, (n = 3). 

 

Supplementary Figure 7. Blood vessel composition was similar in mice assessed for 

intravital microscopy assay. The proportion of small, medium or large vessels per mouse was 

calculated for each size of FITC-Dextran and for each genotype. Error bars represent standard 

error of the mean. n = 4 (150 kDa and 70 kDa) and n = 5 (40 kDa), *p < 0.05. 
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