The Assessment of Bullet Wound Trauma Dynamics and the Potential Role of Anatomical Models

Nicholas Russell Maiden

Discipline of Anatomy and Pathology
School of Medical Sciences
The University of Adelaide

A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy
DEDICATION

This thesis is dedicated to my late wife Wendy without whose love, support and patience, this fascinating journey and academic milestone would not have been possible. She suffered through many lonely days and evenings as I effectively worked two jobs, as a police forensic firearms examiner and attending to my doctoral studies. Sadly cancer took her life all too early, and we never got to spend the quality time together that we had planned post thesis. However, I have kept my promise to her to complete this work after she passed on. There is still further follow up research I would like to complete on a post doctoral basis, and I know she would support the next phase of this academic journey as well.

“*The advancement of science is slow; it is affected only by virtue of hard work and perseverance. And when a result is attained, should we not in recognition connect it with the efforts of those who have preceded us, who have struggled and suffered in advance? Is it not truly a duty to recall the difficulties which they vanquished, the thoughts which guided them; and how men of different nations, ideas, positions and characters, moved solely by the love of science, have bequeathed to us the unsolved problem? Should not the last comer recall the researches of his predecessors while adding in his turn his contribution of intelligence and of labor? Here is an intellectual collaboration consecrated entirely to the search for truth, and which continues from century to century.*”

Henri Moissan (1852-1907)
TABLE OF CONTENTS

1. **The Science of Wound Ballistics** ... 25
 1.1 Introduction .. 25
 1.2 Aim .. 25
 1.3 Hypothesis .. 26
 1.4 Historical Overview of Wound Ballistics Research 27
 1.4.1 Introduction ... 27
 1.4.2 Historical Developments ... 28
 1.4.3 Explosive effects .. 28
 1.4.4 Stopping power .. 29
 1.4.5 Mechanisms .. 30
 1.4.6 Forensic Applications and Models ... 31
 1.4.7 Conclusion .. 32
 1.5 Mechanisms of Bullet Wound Trauma ... 32
 1.5.1 Introduction ... 32
 1.5.2 Physiological Responses ... 33
 1.5.3 Tissue Damage ... 34
 1.5.4 Shock Wave Injuries .. 36
 1.5.5 Bullet Design .. 37
 1.5.6 Military Rifle Bullet Design .. 38
 1.5.7 Calibre 5.56x45mmNATO .. 38
 1.5.8 Calibre 7.62x39mmSoviet .. 40
 1.5.9 Calibre 9mm Luger ... 41
 1.5.10 Conclusion ... 42
 1.6 The Use of Tissue Simulants in Wound Ballistics Research 43
 1.6.1 Introduction ... 43
 1.6.2 General Benefits and Properties of Tissue Simulants 44
 1.6.3 Cadaver Testing .. 45
 1.6.4 Animal Testing ... 46
 1.6.5 Ballistics Ordnance Gelatine ... 46
 1.6.6 New Synthetic Simulants ... 49
 1.6.7 Computational Models and Physical Surrogates 51
 1.6.8 Conclusion .. 52
1.7 Mechanical Properties of Selected Human Tissue 53
 1.7.1 Introduction.. 53
 1.7.2 Bio-mechanical Properties of Tissue.. 53
 1.7.3 High and Low Velocity Impact Characteristics 59
 1.7.4 Conclusion.. 62

1.8 Methods of Injury Assessment in Bullet Wound Trauma – A Military and Police Perspective .. 63
 1.8.1 Introduction.. 63
 1.8.2 Measures and Indices.. 64
 1.8.3 Lethality versus Incapacitation.. 64
 1.8.4 Abbreviated Injury Scale .. 65
 1.8.5 Other Injury Scoring Systems.. 67
 1.8.6 Injury Severity Score (ISS)... 68
 1.8.7 New Injury Severity Score (NISS) .. 69
 1.8.8 Trauma Injury Severity Score (TRISS) .. 69
 1.8.9 International Classification of Disease Injury Severity Score (ICISS) .. 70
 1.8.10 Trauma Registry Abbreviated Injury Scale Score (TRAIS)............. 71
 1.8.11 Anatomic Profile Score (APS).. 71
 1.8.12 Maximum Abbreviated Injury Score (MAXAIS) 72

1.9 Previous Wound Trauma Models .. 73
 1.9.1 Kinetic Energy Models .. 73
 1.9.2 Stopping Power Model... 74
 1.9.3 Relative Incapacitation Index (RII) ... 76
 1.9.4 Federal Bureau of Investigation (FBI) Test Program 77
 1.9.5 The Verwundungsmodell Schütze (VeMo-S) 77
 1.9.6 Knock Down Power ... 77
 1.9.7 Mathematical models... 78
 1.9.8 Combat and Street Shooting Data Modelling 78
 1.9.9 Conclusion.. 79

2. Materials and Methods ... 81
 2.1 Human and Animal Ethics .. 81

2.2 Data Collection and Experimental Procedures 81
 2.2.1 An Analysis of the Characteristics of Thoracic and Abdominal Injuries and Ballistic Data in Gunshot Homicides in Israel 81
2.2.2 Tensile Strength Biomechanics of Thawed Cadavers and the Implications for Wound Ballistics Research 82

2.2.3 Pig Organ Energy Loss Comparison Experiments Using BB Rifle Pellets .. 83

2.2.4 Statistical Analysis ... 89

2.2.5 Ballistics Ordnance Gelatine – How Different Concentrations, Temperatures and Curing Times Affect Calibration Results 90

2.2.6 Statistical Analysis ... 91

2.2.7 Anatomical Model Pilot Study .. 91

3. An Analysis of the Characteristics of Thoracic and Abdominal Injuries and Ballistic Data in Gunshot Homicides in Israel 98

3.1 Introduction ... 98

3.2 Data Collection Study .. 98

3.3 Results ... 98

3.4 Discussion ... 105

3.5 Conclusion ... 109

4. Tensile Strength Biomechanics of Thawed Cadavers and the Implications for Wound Ballistics Research ... 111

4.1 Introduction ... 111

4.2 Experimental Design .. 111

4.3 Results ... 111

4.4 Discussion ... 113

4.5 Conclusion ... 116

5. Pig Organ Energy Loss Comparison Experiments Using BB Rifle Pellets .. 118

5.1 Introduction ... 118

5.2 Experimental Design .. 118

5.3 Results ... 119

5.3.1 Energy Loss – Ordnance Gelatine Formulations and Simulant ‘A’ ... 119

5.3.2 Energy Loss – Organs/Tissues at Room Temperature 119

5.3.3 Energy Loss – Organs/Tissues at 37°C 119

5.3.4 Energy Loss – Organs/Tissues at 4°C 120

5.4 Sample Decomposition ... 120

5.5 Energy Grouping Results Summary .. 120
5.6 Discussion .. 129
5.7 Limitations of Study .. 134
5.8 Conclusion .. 134

6. Ballistics Ordnance Gelatine – How Different Concentrations,
Temperatures and Curing Times Affect Calibration Results 137
6.1 Introduction ... 137
6.2 Experimental Design .. 137
6.3 Results .. 137
6.3.1 10% Ordnance Gelatine at 4°C 250 Bloom (FBI Standard).......... 137
 (a) 21 Hours Curing Time .. 137
 (b) 100 Hours Curing Time ... 138
 (c) 3 Weeks Curing Time .. 138
6.3.2 20% Ordnance Gelatine at 10°C 250 Bloom (NATO Standard).... 138
 (a) 21 Hours Curing Time .. 138
 (b) 100 Hours Curing Time ... 138
6.3.3 20% Ordnance Gelatine at 10°C using 285 Bloom 138
 (a) 21 Hours Curing Time .. 138
6.3.4 20% Ordnance Gelatine at 20°C using 285 Bloom 139
 (a) 100 Hours Curing Time ... 139
6.4 Discussion .. 142
6.5 Conclusion .. 146

7. Anatomical Model Pilot Study ... 148
7.1 Introduction ... 148
7.2 Experimental Design .. 148
7.3 Results .. 149
7.3.1 Test 1 (Bare gelatine control block) .. 149
7.3.2 Test 1A (Repeat - bare gelatine control block) 149
7.3.3 Test 2 (Bare gelatine plate with air gap and gelatine block) 152
7.3.4 Test 3 (Repeat - bare gelatine plate with air gap and gelatine witness block) .. 153
7.3.5 Test 4 (Skin simulant attached to gelatine witness block) 154
7.3.6 Test 5 (Gelatine plate with skin and bone composite, air gap and gelatine block) ... 155
7.3.7 Test 6 (Gelatine plate with skin and bone composite, bubble wrap, air gap, bubble wrap and a gelatine block) 158
7.3.8 Test 7 (Gelatine plate with skin and bone composite, bubble wrap, air gap, bubble wrap, followed by a second gelatine plate with skin and bone composite, and a gelatine block)........ 161

7.4 Discussion.. 171

7.5 Conclusion ... 175

8. Conclusions .. 178

8.1 An Analysis of the Characteristics of Thoracic and Abdominal Injuries and Ballistic Data in Gunshot Homicides in Israel....................... 178

8.2 Unpredictable Tensile Strength Biomechanics May Limit Thawed Cadaver Use in Wound Ballistics Research... 178

8.3 Porcine Organ Energy Loss Comparison Experiments Using BB Rifle Pellets ... 179

8.4 Ballistics Ordnance Gelatine – How Different Concentrations, Temperatures and Curing Times Affect Calibration Results 180

8.5 Anatomical Model Pilot Study... 180

8.6 Thesis Hypothesis Conclusion .. 181

8.7 Future Directions ... 182

8.7.1 Anthropometric Data... 182

8.7.2 High Velocity and Energy Retardation Tests.. 183

8.7.3 Develop Candidate Simulants.. 183

8.7.4 Model Validation ... 184

8.7.5 Scoring System ... 184

8.7.6 Finite Element Analysis Model.. 184

References
ABSTRACT

Background

It is hypothesised that an anatomical simulant model, that replicates the heterogeneous nature of human organs and tissues, will provide a more reliable and accurate method of evaluating the pathological features and incapacitation potential of ammunition in a weapons system than homogeneous bare ordnance gelatine alone. The use of frozen and thawed cadavers for simulant development was also examined. To develop a model, the most critical organs and tissues that sustain bullet wound trauma within the thorax and abdomen must be determined. Next a suitable method for establishing and matching the relevant biomechanical properties with candidate simulant materials must be developed, and an appropriate scoring system adopted.

Method

De-identified wound trauma data from 197 homicidal gunshot post mortem examinations in Israel were obtained between 2000-2001 and 2004-2008. The corresponding forensic ballistics data was only available for the cases between 2004 and 2008. The major organs involved, type of wounds, cause of death (COD), most common bullet paths, distances involved, firearm calibres and bullet types were established.

Tensile strength tests were undertaken on selected tissue samples from an unembalmed cadaver that had been frozen and thawed five times, which maximised the effects of repeated cycles. The universal test equipment Hounsfield H50KM machine was used to apply uniaxial tension until tissue failure occurred. The maximum tensile strength results in g/mm² were compared against corresponding data from the literature.

Energy loss tests were conducted on fresh porcine organs/tissues using steel 4.5mm BB pellets fired from a Daisy® brand air rifle. Each organ/tissue was tested at room temperature and 37°C (body temperature). They were compared to Federal Bureau of Investigation (FBI) and North Atlantic Treaty Organisation (NATO) specification ordnance gelatine, as well as a candidate simulant material. A limited number of tests were also conducted at 4°C for further comparison purposes. Two chronographs
measured BB pellet velocity before and after each test material was perforated and the
difference was established in m/s. The resulting energy loss was established using the
formula KE = ½ mv².

FBI and NATO specified ordnance gelatine of 250 and 285 Bloom strengths were
manufactured using tap water, reverse osmosis (RO) water and de-ionized water. They
were allowed to cure for 21 hours, 100 hours and 3 weeks. The FBI calibration
standard was used for all formulations as there is no separate standard for the NATO
formulation in the literature.

An Australian Defence Force (ADF) AUSTEYR model F88 ICW (individual combat
weapon) in calibre 5.56x45mmNATO was used with standard issue ASF1 ball
ammunition. Large FBI specification ordnance gelatine blocks were manufactured and
thin gelatine/composite plates were used to simulate subcutaneous tissue and fat, as
well as to provide a platform for the attachment of a skin simulant and to embed
bone/rib composite within. A 250mm air gap and bubble wrap was used to simulate an
expanded lung. The gelatine/composite plates were secured to a wooden cradle and
the gelatine blocks were positioned behind it. The F88 ICW was fixed in a remote firing
device 50m from the target and a chronograph 3m in front of the rifle measured bullet
velocity. Test results were recorded using two high speed ‘Photron Fastcam’ digital
cameras. Maximum three dimensional permanent cavity dimensions were obtained
using a vernier gauge, and temporary cavity measurements were taken from high
speed video images.

Results

The homicide study established that males represent 91% of gunshot victims. Of the
999 bullet wounds recorded, males were struck in the body an average of 5.2
occasions, with 2.2 of these bullets striking the thorax and/or abdomen. A contributing
factor to the frequency of bullet strikes was the type of firearms involved, namely semi
automatic pistols in the predominant calibre 9mm Luger, and assault rifles in calibre
5.56x45mm and calibre 7.62x39mmSoviet. Full metal jacket bullets were used in most
instances and the majority of shootings (N=124) occurred at ranges estimated at 1m or
greater. The most common bullet path was front to back in 66% of cases, followed by
back to front in 27% of cases. Entry wounds occurred more often on the left side of the
thorax, abdomen and back (N=253) compared to the right (N=172). The most common
critical organs/tissues to sustain bullet trauma in descending order were; heart, lungs, liver, aorta, spleen, kidneys and vena cava. Ribs were struck by most bullets that entered the thorax. Multiple organ injury was listed in 146 of the 192 cases where a specific COD was determined by the pathologist.

The following tensile strength results were achieved from the cadaver study: heart 3.56g/mm², kidney 10.27g/mm², oesophagus 22.08g/mm², skeletal muscle 29.46g/mm², ascending aorta 59.98g/mm², trachea 155.40g/mm², spleen 4.65g/mm², liver 10.83g/mm², pancreas 15.18g/mm², lung 29.94g/mm², pericardium 136.84g/mm², skin (abdomen) 355.26 g/mm² and skin (thorax) 407.88g/mm². These data were compared to published results obtained from non-frozen tissues from elderly persons, recognising that tensile strength values were only available for the following organs and tissues at the 95% degree of confidence: heart 9.2±0.95g/mm²; kidney 4±0.20g/mm², oesophagus 51±1.1g/mm², skeletal muscle 9±0.30g/mm², ascending aorta 68±2.4g/mm², trachea 150±6.5g/mm². It can be seen that some results from the test cadaver were higher and some lower than the published results, with trachea recording the only similar result. This indicates that the freezing and thawing process may change the tensile strength of tissues in unpredictable ways. Therefore, biomechanical research should avoid the use of frozen/thawed tissues and organs.

The major agreement between the porcine energy loss tests were: FBI specification gelatine was similar (p>0.05) to heart and lung at room temperature and 37°C; spleen was similar to NATO specification gelatine at room temperature and 37°C; candidate Simulant ‘A’ was similar to hindquarter muscle at room temperature and 37°C and hindquarter muscle, kidney and spleen were similar to each other at room temperature and 37°C. Liver and kidney, and liver and fat were similar to each other at 4°C.

The use of different water types had no effect upon ordnance gelatine calibration results. However, different temperatures, concentrations and curing times did have a significant effect. Neither of the two NATO 20% formulations met the same calibration standard as the FBI 10% formulation. The penetration depths achieved for the FBI formulations at both 3°C and 4°C were closest to the recommended calibration standard after 3 weeks curing time. A 20% concentration of 285 Bloom at 20°C met the same FBI calibration standard after 100 hours of curing and can be considered comparable.
The anatomical model pilot tests demonstrated the benefit of using simulants that are more representative of the heterogeneous nature of human organs/tissues. It was found that by combining skin, bone and other simulant materials with ordnance gelatine, the behaviour of a military full metal jacket (FMJ) rifle bullet changes with regard to the earlier onset of temporary cavitation, reduced penetration depth and a higher degree of bullet yaw compared to simulations using only bare FBI specification ordnance gelatine. This occurs because more energy is consumed negotiating the various anatomical simulants, which means wounding is likely to occur much earlier, and organs that are deeper within the body may not be affected to the same degree. These factors will impact significantly upon injury severity in real tactical scenarios.

Conclusion
The experimental studies provide the framework for the development of a heterogeneous model for bullet trauma simulations of the thorax and abdomen. This model would be more representative of actual wound trauma than bare ordnance gelatine alone. This conclusion was arrived at by identifying the most critical organs/tissues for modelling purposes. Their energy loss values (J/m) were established and the method adopted allows for comparable simulants to be developed. Porcine energy loss tests showed that FBI specification gelatine is similar to heart and lung, but different to hind quarter muscle and most of the other 'critical' organs and tissues within the thorax and abdomen. NATO specification gelatine is a suitable simulant for spleen, and test Simulant ‘A’ is a suitable simulant for both hindquarter muscle and kidney. A separate simulant would be required for liver, fat and aorta.

Frozen and thawed cadaveric tissue was shown to produce unpredictable tensile strength data and is therefore unsuitable for simulant development. The limitations of using FBI and NATO specification ordnance gelatine was highlighted when changes to bloom number, temperature and curing times altered calibration results. Therefore, temperature stable synthetic simulants such as Simulant ‘A’ are preferable.

The anatomical model pilot tests clearly demonstrated that the addition of simulant materials directly affects wound severity simulations compared with bare ordnance gelatine alone. This in turn affects interpretation of real life situations. The AIS 2005/2008 and MAXISS scoring systems are deemed appropriate to grade the lethality potential of model simulations. Therefore, the original hypothesis has been validated.
DECLARATION

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed ...

Nicholas Russell Maiden

On this day theof 2014
PAPERS AND GRANTS DURING PERIOD OF CANDIDATURE

Portions of the work contained in this thesis have been published in the literature or submitted for publication.

Published

Submitted

Awaiting Submission

Maiden N, Fisk W, Byard RW. How porcine organs compare to FBI and NATO ordnance gelatine formulations using energy loss experiments.

Other papers published during period of candidature

Development of National Training Program for Forensic Firearm Examiners

Research Grants Awarded

Australia-Israel Scientific Foundation $5,000 travel grant, 2010.
ACKNOWLEDGEMENTS

Wound ballistics is a subject that has fascinated me for many years. This project has provided the opportunity to explore this subject and related areas in greater detail and potentially contribute to the science. I would never have thought this possible a relatively short time ago.

Commitment is important in achieving the aims of the project, but commitment alone is unlikely to succeed without the support of key individuals and the organisations they represent. I would therefore like to recognise the following:

This work is supported in part by the Defence Science and Technology Organisation (DSTO). I would like to express my sincere gratitude to the DSTO and in particular my co-supervisor Mr. Christian Wachsberger and his team from the Weapons Systems Division. From the very beginning Chris supported my research and provided invaluable guidance and assistance. He provided materials, the ballistic range, high speed photography, Doppler radar and personnel necessary to conduct ordnance gelatine and other simulant tests. Without this support, the project could not be undertaken.

I would like to express my deep appreciation and gratitude to my supervisor Professor Roger Byard from the Discipline of Anatomy and Pathology, who is also internationally recognised for his work as a forensic pathologist. Despite a punishing workload, he encouraged me to pursue my academic dreams and acknowledged the value of my background experience and other qualifications. He was enthusiastic about the subject matter of this thesis and keen to assist my progress. He also introduced me to the world of academic publishing. In addition, he accompanied me to Israel to conduct the gunshot homicide study. This was one of the most fascinating and rewarding overseas trips I have ever undertaken. His expertise, support, advice and encouragement have been invaluable throughout this project.

I would also like to express my deep appreciation to Professor Robert Vink, my principal supervisor and Head of the School of Medical Sciences. His oversight role, experience, direction and encouragement during challenging periods of my candidature were instrumental in achieving my ultimate goal.
To Mr. Wesley Fisk, Manager of the Ray Last Anatomy Laboratory, I wish to express my deep appreciation and gratitude for his friendship, support and the many hours spent assisting me to conduct various gelatine and tissue related tests. I would also like to thank the other members of the laboratory, (past and present) namely Michael Hodges, Stelios Michas and Corey Loyd for assisting me throughout my studies.

I would like to sincerely thank Dr. Ian Musgrave, Discipline of Pharmacology, for his assistance and guidance with the statistical aspects of this thesis.

I would like to pass on a special thank you to Dr. Andrew Buchanan, Discipline of Anatomy and Pathology, whose patience, keen sense of humour and unique style of teaching human anatomy and dissection, was pivotal to achieving the underpinning knowledge I required in this area.

I would also like to thank the Australia-Israel Scientific foundation for the grant I was awarded to travel to Israel to collect pathology and forensic ballistics data from the National Centre of Forensic Medicine and the Israel Police Division of Identification and Forensic Science. This grant allowed me the opportunity to meet and work with many dedicated and skilled people, who were incredibly helpful and hospitable.

To the staff and post graduate students within the Discipline of Anatomy and Pathology, I wish to say thank you for having made me feel so welcome within what is a truly fascinating and diverse area of the university.

Last, but by no means least, I wish to express my sincere gratitude to all my family and in particular my late and beautiful wife Wendy. Without her love and support, understanding and patience, I would not have been able to embark on this journey and pursue my academic goals.
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF</td>
<td>australian defence force</td>
</tr>
<tr>
<td>AIS</td>
<td>abbreviated injury score</td>
</tr>
<tr>
<td>AP</td>
<td>anatomic profile</td>
</tr>
<tr>
<td>APS</td>
<td>anatomic profile score</td>
</tr>
<tr>
<td>BB</td>
<td>4.5 mm steel pellet fired from compressed air operated BB rifle</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>COD</td>
<td>cause of death</td>
</tr>
<tr>
<td>CQB</td>
<td>close quarter battle</td>
</tr>
<tr>
<td>CT</td>
<td>computed tomography</td>
</tr>
<tr>
<td>DSTO</td>
<td>defence science & technology organisation</td>
</tr>
<tr>
<td>DTO</td>
<td>dithiooxamide</td>
</tr>
<tr>
<td>FBI</td>
<td>federal bureau of investigation</td>
</tr>
<tr>
<td>FEA</td>
<td>finite element analysis</td>
</tr>
<tr>
<td>FMJ</td>
<td>full metal jacket</td>
</tr>
<tr>
<td>fps</td>
<td>feet per second</td>
</tr>
<tr>
<td>f-lb</td>
<td>foot pound of energy</td>
</tr>
<tr>
<td>FSL</td>
<td>frangible surrogate leg</td>
</tr>
<tr>
<td>GCS</td>
<td>glasgow coma scale</td>
</tr>
<tr>
<td>g/mL</td>
<td>grams per millilitre</td>
</tr>
<tr>
<td>gr</td>
<td>grains</td>
</tr>
<tr>
<td>GSR</td>
<td>gunshot residue</td>
</tr>
<tr>
<td>HSHM</td>
<td>human surrogate head model</td>
</tr>
<tr>
<td>HTSM</td>
<td>human torso surrogate model</td>
</tr>
<tr>
<td>ICD-9</td>
<td>international classification of disease-9</td>
</tr>
<tr>
<td>ICISS</td>
<td>international classification of disease injury severity score</td>
</tr>
<tr>
<td>ICW</td>
<td>individual combat weapon</td>
</tr>
<tr>
<td>IDF</td>
<td>Israel defence force</td>
</tr>
<tr>
<td>IECC</td>
<td>international early conflict care (database)</td>
</tr>
<tr>
<td>IED</td>
<td>improvised explosive device</td>
</tr>
<tr>
<td>ISS</td>
<td>injury severity score</td>
</tr>
<tr>
<td>J</td>
<td>joules of energy</td>
</tr>
<tr>
<td>JHP</td>
<td>jacketed hollow point</td>
</tr>
<tr>
<td>KE</td>
<td>kinetic energy</td>
</tr>
<tr>
<td>KE = ½</td>
<td>formula for kinetic energy equals half mass</td>
</tr>
<tr>
<td>MV²</td>
<td>(M) multiplied by velocity (V) squared</td>
</tr>
<tr>
<td>kg/m³</td>
<td>kilogram per metre cubed</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>KmVAB</td>
<td>formula for ‘relative stopping power’ equals scaling constant ((K)) multiplied by bullet mass ((m)) multiplied by bullet velocity ((V)) multiplied by bullet cross sectional area ((A)) multiplied by bullet shape (form) factor ((B))</td>
</tr>
<tr>
<td>MAXAIS</td>
<td>maximum abbreviated injury score</td>
</tr>
<tr>
<td>MGT</td>
<td>modified griess test</td>
</tr>
<tr>
<td>m/s</td>
<td>metres per second</td>
</tr>
<tr>
<td>ME</td>
<td>muzzle energy</td>
</tr>
<tr>
<td>m²/kg</td>
<td>metre squared per kilogram</td>
</tr>
<tr>
<td>MV</td>
<td>muzzle velocity</td>
</tr>
<tr>
<td>N</td>
<td>Newton</td>
</tr>
<tr>
<td>N></td>
<td>Number greater than</td>
</tr>
<tr>
<td>NATO</td>
<td>north atlantic treaty organisation</td>
</tr>
<tr>
<td>NIJ</td>
<td>national institute of justice</td>
</tr>
<tr>
<td>N/m²</td>
<td>newton metres squared</td>
</tr>
<tr>
<td>NISS</td>
<td>new injury severity score</td>
</tr>
<tr>
<td>N/S</td>
<td>not specified</td>
</tr>
<tr>
<td>PAG</td>
<td>physical associating gels</td>
</tr>
<tr>
<td>PI</td>
<td>polyisoprene</td>
</tr>
<tr>
<td>PS</td>
<td>polystyrene</td>
</tr>
<tr>
<td>Ps</td>
<td>probability of survival</td>
</tr>
<tr>
<td>PS-PS</td>
<td>diblock</td>
</tr>
<tr>
<td>RII</td>
<td>relative incapacitation index</td>
</tr>
<tr>
<td>RO</td>
<td>reverse osmosis water</td>
</tr>
<tr>
<td>RR</td>
<td>respiratory rate</td>
</tr>
<tr>
<td>RSP</td>
<td>relative stopping power</td>
</tr>
<tr>
<td>RTS</td>
<td>revised trauma score</td>
</tr>
<tr>
<td>SBP</td>
<td>systemic blood pressure</td>
</tr>
<tr>
<td>Spitzer</td>
<td>pointed rifle shaped bullets</td>
</tr>
<tr>
<td>SRRs</td>
<td>survival risk ratios</td>
</tr>
<tr>
<td>SRT</td>
<td>sodium rhodizonate test</td>
</tr>
<tr>
<td>STANAG</td>
<td>NATO standardization agreement</td>
</tr>
<tr>
<td>TBI</td>
<td>traumatic brain injury</td>
</tr>
<tr>
<td>TRAIS</td>
<td>trauma registry abbreviated injury scale</td>
</tr>
<tr>
<td>TRISS</td>
<td>trauma injury severity score</td>
</tr>
<tr>
<td>WB2D</td>
<td>two dimensional mathematical wound ballistics computer program developed by Crucq</td>
</tr>
<tr>
<td>WDMET</td>
<td>Wound data and munitions effectiveness team</td>
</tr>
<tr>
<td>w/w</td>
<td>Weight to weight</td>
</tr>
</tbody>
</table>
TABLE OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Main features of the Spitzer shaped ASF1 ball bullet.</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Anterior view of the thorax and abdomen showing some of the major organs within the ‘centre of mass.’</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Overall view of pig organ and simulant velocity testing equipment and set-up.</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Closer view of velocity testing equipment (chronographs) and tissue/organ/simulant apparatus.</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Side view of the test rig set up within the DSTO ballistic range.</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Sample of the skin simulant.</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Sample of the bone composite embedded within a thin gelatine plate.</td>
</tr>
<tr>
<td>Figure 8</td>
<td>An overhead view of the simulant test rig.</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Number of bullet entry impacts into regions of the thorax and abdomen.</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Number of bullet impacts into major organs/tissues within the thorax and abdomen.</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Comparison of tissue and organ tensile strength values (g/mm²) from the frozen and thawed elderly test cadaver, to published standards for non frozen elderly cadavers.</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Tensile strength values (g/mm²) from other tissues and organs obtained from the elderly frozen and thawed test cadavers that are not mentioned in published literature.</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Aging rates for adult human respiratory and digestive organs and Tissues</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Energy loss comparison between FBI and NATO gelatine formulations, Simulant ‘A’ and pig organs/tissues at room temperature.</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Energy loss comparison between FBI and NATO gelatine formulations, Simulant ‘A’ and pig organs/tissues at 37°C.</td>
</tr>
</tbody>
</table>
Figure 16 Energy loss comparison between FBI and NATO gelatine formulations, Simulant ‘A’ and pig organs/tissues at 4°C.

Figure 17 Energy loss comparison between FBI and NATO gelatine formulations, Simulant ‘A’ and pig organs/tissues at room temperature, 37°C and 4°C.

Figure 18 Energy loss comparison for pig fat at 4°C, room temperature and 37°C, showing its anti-thixotropic nature.

Figure 19 Comparison of mean BB pellet penetration depths for 10% ordnance gelatine at 4°C 250 Bloom using three different water types and curing times. In addition, the same formulation at 3°C was tested to compare results.

Figure 20 Comparison of mean BB pellet penetration depths for 20% ordnance gelatine at 10°C 250 Bloom using three different water types and two different curing times.

Figure 21 Comparison of mean BB pellet penetration depths for 20% ordnance gelatine at 10°C 250 Bloom and 20% ordnance gelatine at 20°C 285 Bloom, using two different water types and a different curing time.

Figure 22 Overall comparison of mean BB pellet penetration depths for 10% ordnance gelatine at 3° and 4°C 250 Bloom, 20 ordnance gelatine at 10°C 250 Bloom, 20% ordnance gelatine at 10°C 285 Bloom, and 20% ordnance gelatine at 20°C 285 Bloom, using a combination of three different water types and three different curing times.

Figure 23 Test 1A. The ASF1 ball bullet in flight and about to penetrate the bare gelatine block. In this position the bullet has no significant yaw angle.

Figure 24 Test 1A. The ASF1 ball bullet penetrated 70mm into the bare gelatine block. Point A indicates the position at which the bullet has a significant upward yaw angle, indicating a loss of stability just prior to the commencement of the temporary cavity.

Figure 25 Test 1A. Shows the temporary cavity forming, including backwards along the shot line, and the high upward departure angle of the ASF1 ball bullet as it exits the bare gelatine block.
Figure 26 Test 1A. Point at which the maximum temporary cavity has formed within the bare gelatine block.

Figure 27 Test 2. Shows the ASF1 ball bullet having exited the rear of the bare gelatine plate and in flight within the 250mm air gap with no significant yaw angle at this time.

Figure 28 Test 2. Point at which maximum temporary cavitation has occurred within the bare gelatine block.

Figure 29 Test 4. Skin simulant attached to the anterior surface of the bare Gelatine block. Also shows the ASF1 ball bullet entry point relative to the aim point drawn in black.

Figure 30 Test 5. Shows the damage to the back of the gelatine plate containing the skin simulant and embedded bone composite. Also shows the ASF1 ball bullet in flight within the 250mm air gap with an angled upward trajectory.

Figure 31 Test 5. Shows maximum temporary cavitation and the upward departure angle of the ASF1 ball bullet.

Figure 32 Test 5. Shows the entry point of the ASF1 ball bullet into the gelatine block and the permanent cavity that was formed.

Figure 33 Test 5. Bone composite that was embedded within the gelatine plate showing a large area of damage.

Figure 34 Test 6. The ASF1 ball bullet in flight after exiting the gelatine plate, which has kin simulant attached to the anterior surface and bone composite embedded within it. Also shows the exit hole and the slight downward trajectory and yaw angle of the bullet.

Figure 35 Test 6. Maximum temporary cavitation is shown, as well as the dynamic nature of this cavitation extending backwards along the shot line into the air gap. The resting position of the ASF1 ball bullet is also shown.

Figure 36 Test 6. Damage sustained by the bone composite embedded within the gelatine plate.
Figure 37 Test 7. The ASF1 ball bullet in flight within the air gap after exiting the anterior gelatine plate, which has skin simulant attached to the anterior surface and bone composite embedded within it. Also shown is the exit point through the gelatine plate and the high yaw angle of the ASF1 ball bullet just prior to entering the posterior gelatine plate.

Figure 38 Test 7. An overhead view of the immediate temporary cavitation which occurred in the gelatine block.

Figure 39 Test 7. A side view of the dynamic nature of the damage caused by the ASF1 ball bullet.

Figure 40 Test 7. Entry point of the ASF1 ball bullet through the bone composite embedded within the anterior gelatine plate.

Figure 41 Test 7. Exit point of the ASF1 ball bullet through the bone composite which was embedded within the anterior gelatine plate. Also shows the remote damage caused by the transfer of kinetic energy.

Figure 42 Test 7. The extensive damage caused by the ASF1 ball bullet to the bone composite embedded within the posterior gelatine plate.

Figure 43 Test 7. The extensive damage caused by the ASF1 ball bullet at maximum yaw as it exited the skin simulant attached to the back of the posterior gelatine plate.

Figure 44 Test 7. Shows the permanent cavity and the upward trajectory of the ASF1 ball bullet through the gelatine block.

Figure 45 Unfired ASF1 ball bullet with its features described.

Figure 46 Test 2. Recovered ASF1 ball bullet showing damage.

Figure 47 Test 6. Recovered ASF1 ball bullet showing damage.

Figure 48 Test 7. Recovered ASF1 ball bullet showing damage.

Figure 49 Temporary cavitation commencement depths for each anatomical simulant model compared to the two gelatine control blocks.

Figure 50 Bullet penetration depths for each of the anatomical simulant models compared to the two gelatine control blocks.
Figure 51 Comparison of the volume (L) of the temporary cavity for those anatomical model tests where the volume could be determined, compared to gelatine control block 1A.
TABLES

Table 1 Results of published tissue and simulant penetration tests.

Table 2 Comparison between the published densities of some biological tissues and simulant media.

Table 3 Scale of values used for the AIS severity code classification.

Table 4 Bullet path through victims from the homicide study.

Table 5 The approximate distances over which shootings occurred in the homicide study.

Table 6 Number of bullet impacts to the sternum and each rib from the homicide study.

Table 7 Statistical significance (p<0.05)* of the FBI gelatine formulation compared to the NATO gelatine formulation, Simulant ‘A’ and the pig organs/tissues at room temperature, 37°C and 4°C.

Table 8 Statistical significance (p<0.05)* of the NATO gelatine formulation compared to Simulant ‘A’ and the pig organs/tissues at room temperature, 37°C and 4°C.

Table 9 Statistical significance (p<0.05)* of Simulant ‘A’ compared to the pig organs/tissues at room temperature, 37°C and 4°C.

Table 10 Statistical significance (p<0.05)* of pig organs/tissues compared to each other at room temperature, 37°C and 4°C.