LINKED BETA-CYCLODEXTRIN TRIMERS: From Molecular Recognition to Polymer Network Hydrogels

Hanh-Trang Nguyen
(Nguyễn Thị Hạnh Trang)

Thesis submitted for the degree of Doctor of Philosophy in The University of Adelaide School of Chemistry and Physics

November, 2013
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>vii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>viii</td>
</tr>
<tr>
<td>PUBLICATIONS AND PRESENTATIONS</td>
<td>ix</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xi</td>
</tr>
<tr>
<td>CHAPTER 1. INTRODUCTION FROM CYCLODEXTRINS TO NANOMATERIALS</td>
<td></td>
</tr>
<tr>
<td>AND POLYMER HYDROGELS</td>
<td>1</td>
</tr>
<tr>
<td>1.1. CYCLODEXTRINS</td>
<td>2</td>
</tr>
<tr>
<td>1.1.1. Introduction and General Overview of Cycloextrin Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>1.1.2. Host-guest Complexation</td>
<td>5</td>
</tr>
<tr>
<td>1.1.3. Cyclodextrin Modification</td>
<td>8</td>
</tr>
<tr>
<td>1.1.4. Metallo-Cyclodextrins</td>
<td>8</td>
</tr>
<tr>
<td>1.1.5. Cyclodextrin Oligomers</td>
<td>9</td>
</tr>
<tr>
<td>1.1.6. CD Based Metal-Organic Frameworks</td>
<td>13</td>
</tr>
<tr>
<td>1.1.7. Linked CD Metal Nanoparticles.</td>
<td>14</td>
</tr>
<tr>
<td>1.1.8. Cyclodextrin Based Molecular Devices</td>
<td>15</td>
</tr>
<tr>
<td>1.2. POLYMER HYDROGELS</td>
<td>17</td>
</tr>
<tr>
<td>1.2.1. General</td>
<td>17</td>
</tr>
<tr>
<td>1.2.2. Cross-links by Hydrogen Bonding</td>
<td>18</td>
</tr>
<tr>
<td>1.2.3. Cross-links by Hydrophobic Interaction</td>
<td>20</td>
</tr>
<tr>
<td>1.2.4. Cross-links through Metal-Ligand Interaction</td>
<td>21</td>
</tr>
<tr>
<td>1.2.5. Cross-links by Host-Guest Interaction</td>
<td>23</td>
</tr>
<tr>
<td>1.3. CYCLODEXTRIN BASED POLYMER HYDROGELS</td>
<td>23</td>
</tr>
<tr>
<td>1.3.1. General</td>
<td>23</td>
</tr>
<tr>
<td>1.3.2. Interaction of CD Substituted Polymers and Guest Substituted Polymers</td>
<td>24</td>
</tr>
<tr>
<td>1.3.3. Interaction of Guest Substituted Polymers and Linked CD Dimers</td>
<td>27</td>
</tr>
<tr>
<td>1.4. RESEARCH OBJECTIVES</td>
<td>28</td>
</tr>
<tr>
<td>1.4.1. General</td>
<td>28</td>
</tr>
<tr>
<td>1.4.2. Aims of This Research</td>
<td>29</td>
</tr>
<tr>
<td>1.5. REFERENCES</td>
<td>31</td>
</tr>
</tbody>
</table>
CHAPTER 2. COMPLEXATION OF CRYSTAL VIOLET, PYRONINE B AND
RHODAMINE B BY LINKED β-CYCLODEXTRIN TRIMERS

2.1. INTRODUCTION

2.1.1. Structure and Properties of Crystal Violet
2.1.2. Structure and Properties of Pyronine B
2.1.3. Structure and Properties of Rhodamine B
2.1.4. Dimerisation of CV⁺, PB⁺ and RB
2.1.5. Complexation of CV⁺, PB⁺ and RB by β-CD

2.2. SYNTHESIS AND MOLECULAR MODELLING OF LINKED β-CD
TRIMERS

2.2.1. Synthesis of Two Linked β-CD Trimers
2.2.2. Molecular Modelling of β-CD Trimers

2.3. COMPLEXATION OF CV⁺, PB⁺ AND RB BY β-CD AND LINKED β-CD
TRIMERS

2.3.1. UV-Vis Studies
2.3.2. 2D ROESY ¹H NMR Studies
2.3.3. Molecular Modelling Studies

2.4. CONCLUSIONS

2.5. REFERENCES

2.6. APPENDIX

2.6.1. UV-Vis Titration Data for CV⁺
2.6.2. UV-Vis Titration Data for PB⁺
2.6.3. UV-Vis Titration Data for RB

CHAPTER 3. COMPLEXATION OF HYDROPHOE SUBSTITUTED
POLY(ACRYLATE)S BY β-CYCLODEXTRIN DIMERS AND TRIMERS IN
AQUEOUS SOLUTION

3.1. INTRODUCTION

3.1.1. General
3.1.2. Aims of This Study

3.2. SYNTHESE

3.3. 2D NOESY ¹H NMR SPECTROSCOPY
5.1.1. General 200
5.1.2. Aims of This Study 201
5.2. SYNTHESIS 203
5.3. 2D NOESY 1H NMR SPECTROSCOPY 203
5.4. FLUORESCENCE TITRATION STUDIES 207
 5.4.1. Isothermal Titration Calorimetry Results 211
 5.4.2. Entropy – Enthalpy Linear Relationship 218
5.5. DYNAMIC LIGHT SCATTERING 219
5.5.1. Isothermal Titration Calorimetry Results 211
5.5.2. Entropy – Enthalpy Linear Relationship 218
5.6. DYNAMIC LIGHT SCATTERING 219
5.7. TIME RESOLVED FLUORESCENCE STUDIES 223
5.8. RHEOLOGICAL STUDY 227
5.9. SUMMARY AND CONCLUSIONS 229
5.10. REFERENCES 233
5.11. APPENDIX 238
 5.11.1. 2D NOESY 1H NMR (600 MHz) Spectra 238
 5.11.2. Fluorimetric Titration Data 242
 5.11.3. Isothermal Titration Calorimetry Data 247
 5.11.4. Light-Scattering - Hydrodynamic Diameter Distributions 251
 5.11.5. Time Resolved Fluorescence Data 257

CHAPTER 6. EXPERIMENTAL 261
6.1. GENERAL 262
 6.1.1. Instrumental 262
 6.1.2. Materials 265
6.2. EXPERIMENTAL 266
 6.2.1. Syntheses 266
 6.2.2. Sample preparation 272
6.3. REFERENCES 274

APPENDIX 277
ABSTRACT

The thesis describes the construction and characterisation of a variety of polymer network hydrogels based on β-cyclodextrin (β-CD) trimers and modified poly(acrylate)s.

Chapter 1 extensively reviews in cyclodextrin (CD) fields from its history from beginning in 1981 until 2013. The most significant work is highlighted as well as the field of polymer hydrogel, including the novel field of CD based polymer hydrogel.

In Chapter 2, a UV-vis and 1H NMR spectroscopic study of the host-guest complexation by β-cyclodextrin (β-CD), 1,3,5-N,N,N-tris-(6Δ-deoxy-6Δ-β-cyclodextrin)-benzene (β-CD3bz), and 1,3,5-N,N,N-tris(6Δ-(2-aminoethyl)amino-6Δ-deoxy-6Δ-β-cyclodextrin)-benzene (β-CDen3bz) of cationic crystal violet (CV+) and pyronine B (PB+) and zwitterionic rhodamine B (RB) in aqueous phosphate buffer at pH 7.0 and I = 0.10 mol dm⁻³ is described. The complexation constants and the associated ΔH11 and TΔS11 for all nine complexes coincide with an entropy-enthalpy compensation plot for the formation of a wide range of β-CD and modified β-CD host-guest complexes reported in the literature. Crystal violet also forms (β-CD)₂.CV⁺, (β-CD3bz)₂.CV⁺ and (β-CDen3bz)₂.CV⁺ complexes characterized by 10²K₂₁ (298.2 K) = 2.14, 4.57 and 3.86 dm³ mol⁻¹ and analogous (β-CD)₂.PB⁺, (β-CDen3bz)₂.PB⁺ and (β-CDen3bz)₂.RB complexes also form, but the (β-CD3bz)₂.PB⁺, (β-CD)₂.RB, and (β-CD3bz)₂.RB complexes were not detected. The effects of the structures of the hosts and guests on the complexation processes are discussed.

In Chapter 3 the characterisation stability of constants and thermodynamic patterns in polymer hydrogels based on host-guest complexation of the linked β-CD trimers with the dodecyl (C12) and octadecyl (C18) 3% randomly substituted poly(acrylate)s PAAC12 and PAAC18 in aqueous solution are discussed. These studies compare hydrophobic interactions of the C12 and C18 substituted poly(acrylate)s and their interaction with β-CD and linked β-CD trimers. The complexation processes were studied by 2D NOESY ¹H NMR spectroscopy, ITC, dynamic light scattering and rheology. These data are used to establish the extent to which these interactions influence hydrogel formation in more concentrated solutions.

In Chapter 4 the supramolecular chemistry of polymer hydrogel based on host-guest chemistry of the linked β-cyclodextrin trimers and four adamantyl substituted
poly(acrylate)s with different linker tether lengths is discussed. 2D NOESY 1H NMR spectroscopy, isothermal titration calorimetry and rheological studies show that the β-CD groups of the two linked β-cyclodextrin trimers, β-CD$_3$bz and β-CDen$_3$bz, complex the adamantyl substituents and their tethers in 3.0% substituted poly(acrylate)s to form intra- and inter-poly(acrylate)s strand cross-links in aqueous solution. The structures of the linked-β-cyclodextrin trimers and the length of the tether between the adamantyl substituent and the poly(acrylate)s backbone have substantial effects on the complexation constants, K_{11}, and the associated thermodynamic parameters. This is partially shown for the complexation by β-CD$_3$bz of the adamantyl substituents as tether length varies from -CONH- (3.45 x 104) through -CONH(CH$_2$)$_n$NHCO- where $n = 2$ (2.09 x 105), 6 (3.17 x 105) or 12 (7.46 x 105) in 0.13 – 0.37 wt.% substituted poly(acrylate)s solutions and the figures in brackets are the K_{11} in dm3 mol$^{-1}$ at 298.2 K. For the same sequence of substituted poly(acrylate)s the variation of viscosity is: 0.03, 3.78, 3.48, and 2.03 Pa s$^{-1}$ at 500 s$^{-1}$ shear rate at 298.2 K for 5.0 wt.% substituted poly(acrylate)s solutions in which the β-CD groups of β-CD$_3$bz and the adamantyl substituents are equimolar at 1.5 x 10$^{-2}$ mol dm$^{-3}$. The eight data sets for the β-CD$_3$bz and β-CDen$_3$bz systems are discussed in terms of host-guest interactions between the host β-CD groups and the guest adamantyl substituents of the substituted poly(acrylate)s and are compared with those for the analogous β-CD systems.

In chapter 5, the supramolecular chemistry of the poly(acrylate)s hydrogels based on host-guest complexations of the linked β-CD$_3$bz and β-CDen$_3$bz trimers with the dansyl substituent guests (DS) attached through tethers of three different lengths containing 2, 6 and 12 methylene groups in 3.0 % randomly substituted, PAADSen, PAADShn and PAADSddn are discussed. The six systems have been characterized at the molecular level by 2D NOESY 1H NMR, isothermal titration calorimetry, fluorescence spectroscopy and time-resolved fluorescence, and at the macroscopic level by dynamic light scattering and rheology. The data gathered are consistent with individual dansyl substituents forming aggregates and being complexed by the linked β-CD$_3$bz and β-CDen$_3$bz trimers in within poly(acrylate)s strands in dilute solutions and between poly(acrylate)s strands in hydrogels. The trends in β-CD$_3$bz and β-CDen$_3$bz complex stability constants fluorescence life times and viscosities of six systems are discussed.

Chapter 6 describes the experimental methodology deployed in the study.
DECLARATION

This is to declare that the work presented within this thesis is original and was carried out at the University of Adelaide during the period 2010-2013. This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference is given.

I give consent to this copy of my thesis, when deposited in the University of Adelaide Library, being made available for loan and photocopying, subject to the provisions of Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses program (ADT) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Hanh-Trang Nguyen
06 / 11 / 2013
ACKNOWLEDGEMENT

It would not have been possible to write this PhD thesis without the help and support of the kind people, who have been very helpful to me during the course of my PhD. I would like to express my thanks to these people here.

I would like to express my special appreciation and thanks to my supervisor, Professor Stephen Lincoln, for allowing me to carry out this thesis and for encouraging my research. I also thank for his scientific advice and his encouragements for over last few years. He has always been a dedicated supervisor during the course of my PhD.

I am most grateful to Dr. Tara Pukala for her good comments and suggestions for my thesis.

I wish to thanks Dr. Duc-Truc Pham for his advice and a lot of help. I also would like to thanks everyone in the Lincoln Group (Hillary, Tien, Hamish, Noby, Jianjia, Liang, Yang, Charlotte, Annelie, Luke, Andrew and Quan) for their friendship and supports through the years.

I would especially like to thank the research group of Prof. Xuhong Guo, in particular Dr. Jie Wang at East China University of Science and Technology, Shanghai, China; the research group of Dr. Tak Kee, in particular Mr Scott Clafton at the University of Adelaide; the research group of Prof. Christopher Easton, Australian National University and the research group of Prof. Robert Prud’homme, Princeton University, USA for collaboration.

I would like to acknowledge the financial, academic and technical support of the Chemistry Department, the University of Adelaide, particularly in the award of a Postgraduate Research Studentship that provided the necessary financial support for this research. I also wish to thank Mr Phil Clements who ran my numerous 1D and 2D 600 MHz NMR spectra.

A special thanks to my family, relatives and friends, who have encouraged me throughout my studies. In particular, thanks to my parents, my brother, my husband and my little kids for their endless love and support.
PUBLICATIONS AND PRESENTATIONS

Journal Articles:

- **Nguyen, Hanh-Trang**: Pham, Duc-Truc; Lincoln, Stephen Frederick; Wang, Jie; Guo, Xuhong; Easton, Christopher J.; Prud’homme, Robert K. Host–Guest Chemistry of Linked β-Cyclodextrin Trimers and Adamantyl Substituted Poly(acrylate)s in Aqueous Solution. *Polymer Chemistry*, **2013**, 4(3), 820-829. DOI: 10.1039/C2PY20746J

- **Nguyen, Hanh-Trang**: Pham, Duc-Truc; Lincoln, Stephen Frederick; Wang, Jie; Guo, Xuhong; Easton, Christopher J.; Prud’homme, Robert K. Complexation of Hydrophobe Substituted Poly(acrylate)s by β-Cyclodextrin Dimers and Trimers in Aqueous Solution and Hydrogels. *Ready to submit*, 2013.

Conference Items:

- **Nguyen, Hanh-Trang**: Pham, Duc-Truc; Lincoln, Stephen Frederick; Wang, Jie; Guo, Xuhong; Easton, Christopher J.; Prud’homme, Robert K. Supramolecular Chemistry of Beta-Cyclodextrin Trimers and Adamantyl Substituted Polyacrylates. *16th International Cyclodextrin Symposium*. Tianjin, China 6-10 May, 2012: pp.IL-01.
• **Nguyen, Hanh-Trang;** Pham, Duc-Truc; Wang, Jie; Guo, Xuhong; Lincoln, Stephen Frederick; Easton, Christopher J. Synthesis of β-cyclodextrin trimers for novel polymer networks. *Asian Cyclodextrin Conference* (6th: 2011: Canberra, Australia) ACC2011
ABBREVIATIONS

1. General

Å angström (10^{-10} m)
Ar aryl
d Density ($g \text{ cm}^{-3}$)
δ chemical shift (ppm)
ΔG^0 Gibbs free energy
ΔH^0 enthalpy change
ΔS^0 entropy change
ε molar absorptivity ($mol^{-1} \text{ dm}^3 \text{ cm}^{-1}$)
Eqn. equation
et al. et alia
GC-MS Gas chromatography- mass spectrometry
Hz Hertz
I ionic strength ($mol \text{ dm}^{-3}$)
I_F fluorescence intensity
ITC isothermal titration calorimetry
J coupling constant (Hz)
K stability constant ($dm^3 mol^{-1}$)
K_d dimerisation constant ($dm^3 mol^{-1}$) e.g. 2 RB \rightleftharpoons (RB)$_2$
K_{11} stability constant for 1:1 (host:guest) complexes ($dm^3 mol^{-1}$), e.g. β-CD + Dye \rightleftharpoons β-CD.Dye
K_{12} stepwise stability constant for 1:2 (host:guest) complexes ($dm^3 mol^{-1}$) e.g. β-CD. Dye + Dye \rightleftharpoons β-CD. Dye$_2$
K_{21} stepwise stability constant for 2:1 (host:guest) complexes ($dm^3 mol^{-1}$) e.g. β-CD. Dye + β-CD \rightleftharpoons β-CD$_2$. Dye
m/z mass/charge ratio
MS mass spectrometry
MALDI TOF matrix-assisted laser desorption-ionisation
time-of-flight
NMR nuclear magnetic resonance
NOE nuclear Overhauser enhancement
NOESY nuclear Overhauser enhancement spectroscopy
pH $-\log[H^+]$
pK $-\log[K]$
ppm parts per million
R_f retention factor (in TLC)
R_c relative retention factor to native cyclodextrins (in TLC)
ROESY rotating frame Overhauser spectroscopy
T temperature (K)
TLC thin-layer chromatography
UV/Vis ultraviolet/visible
wt weight

2. Chemicals

α, β, γ-CD α, β, γ-cyclodextrin
6β-CDTs 6$^\Lambda$-O-(4-methylbenzenesulfonyl)-β-cyclodextrin
6β-CDNH$_3$ 6$^\Lambda$-amino-6$^\Lambda$-deoxy-β-cyclodextrin
6β-CDN$_3$ 6$^\Lambda$-azido-6$^\Lambda$-deoxy-β-cyclodextrin
6β-CDen 6$^\Lambda$-(2-aminoethyl)amino-6$^\Lambda$-deoxy-β-cyclodextrin
β-CD$_{2x}$ covalent linked β-cyclodextrin dimer, where x is a linker
66β-CD$_{2su}$ N,N'-bis-(6$^\Lambda$-deoxy-6$^\Lambda$-β-cyclodextrinyl)-succinamide
66β-CD$_{2ur}$ N,N'-bis(6$^\Lambda$-deoxy-6$^\Lambda$-β-cyclodextrinyl)-urea
β-CD$_{3x}$ covalent linked β-cyclodextrin trimer, where x is a linker
β-CD$_{3bz}$ 1,3,5-N,N,N-tris(6$^\Lambda$-deoxy-6$^\Lambda$-β-cyclodextrinyl)-benzene
β-CDen$_3$bz 1,3,5-N,N,N-tris(6$^\Lambda$-(2-aminoethyl)amino-6$^\Lambda$-deoxy-6$^\Lambda$-β-
cyclodextrinyl)-benzene
en 1,2-diamino ethane
hn 1,6-diamino hexane
ddn 1,12-diamino dodecane
C12 dodecyl
C18 octadecyl
AD adamantane
DS Dansyl
CV⁺ Crystal Violet
PB⁺ Pyronine B
RB Rhodamine B
ADNH₂ 1-amino-adamantane
ADen 1-(2-aminoethyl)amino-adamantane
ADhn 1-(6-aminohexyl)amino-adamantane
ADddn 1-(6-aminododecyl)amino-adamantane
DSen 1-(2-aminoethyl)amino-dansyl
DShn 1-(6-aminohexyl)amino-dansyl
DSddn 1-(6-aminododecyl)amino-dansyl
PAA poly(acrylic acids) or poly(acrylate)s
PAAC12 PAA with 3% substituents C12
PAAC18 PAA with 3% substituents C18
PAAAD PAA with 3% substituents AD
PAAADen PAA with 3% substituents ADen
PAAADhn PAA with 3% substituents ADhn
PAAADddn PAA with 3% substituents ADddn
PAADSen PAA with 3% substituents DSen
PAADShn PAA with 3% substituents DShn
PAADSddn PAA with 3% substituents DSddn
NMP N-methyl-2-pyrrolidinone
TFA trifluoroacetic acid
THF tetrahydrophuran