Modelling Hydrogen Storage in Novel Nanomaterials

Wei Xian Lim

Thesis submitted for the degree of
Doctor of Philosophy
in
Applied Mathematics
at
The University of Adelaide
(Faculty of Engineering, Computer and Mathematical Sciences)

School of Mathematical Sciences

October 2, 2015
Contents

Abstract x

Signed Statement xii

Acknowledgements xiv

List of Publications xv

1 Introduction 1

1.1 Hydrogen storage . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Metal-organic frameworks . . . . . . . . . . . . . . . . . . . 3
1.3 Porous aromatic frameworks . . . . . . . . . . . . . . . . . . 6
1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Analytical formulations of nanospace in porous materials 9

2.1 Molecular interactions with building blocks . . . . . . . . . 10
   2.1.1 Interaction with a point . . . . . . . . . . . . . . . . . 13
   2.1.2 Interaction with a line . . . . . . . . . . . . . . . . . . 13
   2.1.3 Interaction with a plane . . . . . . . . . . . . . . . . . 15
   2.1.4 Interaction with a ring . . . . . . . . . . . . . . . . . . 16
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.5</td>
<td>Interaction with a spherical surface</td>
<td>19</td>
</tr>
<tr>
<td>2.1.6</td>
<td>Interaction with an infinite cylindrical surface</td>
<td>21</td>
</tr>
<tr>
<td>2.2</td>
<td>Gas adsorption model</td>
<td>24</td>
</tr>
<tr>
<td>2.3</td>
<td>Materials represented by building blocks</td>
<td>27</td>
</tr>
<tr>
<td>2.3.1</td>
<td>A carbon atom</td>
<td>29</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Polyacetylene</td>
<td>29</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Graphene sheet</td>
<td>31</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Benzene ring</td>
<td>32</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Fullerene</td>
<td>35</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Carbon nanotube</td>
<td>35</td>
</tr>
<tr>
<td>2.4</td>
<td>Example of interactions with porous materials</td>
<td>38</td>
</tr>
<tr>
<td>2.5</td>
<td>Summary</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>Beryllium based metal-organic frameworks</td>
<td>42</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>Metal-organic frameworks performance at room temperature</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>Modelling methodology</td>
<td>48</td>
</tr>
<tr>
<td>3.3.1</td>
<td>TIMTAM formulation</td>
<td>49</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Thermodynamic energy optimisation</td>
<td>53</td>
</tr>
<tr>
<td>3.4</td>
<td>Results and discussion</td>
<td>55</td>
</tr>
<tr>
<td>3.5</td>
<td>Pore size analysis</td>
<td>57</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Fractional free volume</td>
<td>58</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Optimal storage and delivery conditions</td>
<td>60</td>
</tr>
<tr>
<td>3.6</td>
<td>Conclusion</td>
<td>67</td>
</tr>
</tbody>
</table>
4 Porous aromatic frameworks

4.1 Introduction ............................................. 70
4.2 Methodology ............................................. 72
  4.2.1 Porous aromatic frameworks ......................... 72
  4.2.2 Lithiated porous aromatic frameworks .............. 74
  4.2.3 Impregnated porous aromatic frameworks .......... 75
  4.2.4 Parameter values .................................. 76
4.3 Results and Discussion .................................. 78
  4.3.1 Gravimetric and volumetric uptake ................. 81
  4.3.2 Potential energy .................................. 87
  4.3.3 Free volume for adsorption ......................... 90
4.4 Conclusion ............................................. 92

5 Summary .................................................. 95

5.1 Analytical formulations of nanospace in porous materials ... 96
5.2 Beryllium based metal-organic frameworks ................ 97
5.3 Porous aromatic frameworks ................................ 98

6 Appendix ................................................. 101

6.1 Evaluation of Equations in Chapter 2 .................... 101
  6.1.1 Interaction with a line .............................. 101
  6.1.2 Interaction with a plane ............................ 102
  6.1.3 Interaction with the top or bottom of a ring .. 103
List of Figures

1.1 The schematic representation of MOFs. . . . . . . . . . . . . . 4
1.2 Structure of (a) PAF-301 and (b) PAF-302. . . . . . . . . . . 7

2.1 Atomic representation of structures that can be described by building blocks. An atom can be described by a point (a), benzene by a ring (b), fullerene as a spherical surface (c), carbon chain by a line (d), graphene sheets by planes (e), and carbon nanotube by a cylindrical surface (f). . . . . . . . . . . 10
2.3 Structure of polyacetylene. . . . . . . . . . . . . . . . . . . . . 30
2.8 Contour plots of H₂ interacting the outer walls of a fullerene. . 36
2.9 Contour plots of H₂ interacting with the inner walls of a fullerene. 36
2.10 Contour plots of H₂ interacting with the inner walls of an infinite carbon nanotube. . . . . . . . . . . . . . . . . . . . . . . . . 37
2.11 Contour plots of H₂ interacting with the outer walls of an infinite carbon nanotube. . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1 Total H$_2$ uptake at room temperature and high pressures (more than 35 bar) for MOFs with and without open metal sites. (a) H$_2$ uptake versus heat of adsorption; (b) H$_2$ uptake versus BET surface area; (c) H$_2$ uptake vs pore volume. 46

3.2 Structure of Be-BTB. The spheres and cylinders represent ideal building blocks for adsorption cavities in the structure. 49

3.3 Total H$_2$ uptake at 77 K and 298 K for TIMTAM, GCMC [1] and experimental data [2]. Solid lines show the density of compressed H$_2$ gas in a tank at 77 K and 298 K. Circles represent experimental data, squares represent GCMC model results and dotted lines represent TIMTAM predictions for Be-BTB. 56

3.4 Potential energy for the ideal Be-BTB building blocks consisting of spherical cavities (red dashed line) and cylindrical Be-ring cavities (blue solid line) that were constructed for the TIMTAM approximation. Shaded area represents heat of adsorption measured experimentally [2]. 57

3.5 Fractional free volume for adsorption ($V_{ad}/V$) at 77 K and 298 K within Be-ring cylindrical cavity building block. The yellow cylinder illustrates the variation in pore size around the Be-ring. 59

3.6 The optimum gravimetric H$_2$ uptake at 233 K for a pressure-swing adsorption process. 63

3.7 The optimum gravimetric H$_2$ uptake at 12 bar for a temperature-swing adsorption process. 64
3.8 H$_2$ gravimetric uptake with respect to temperature and pressure. (a) H$_2$ uptake for Be-BTB. (b) H$_2$ uptake for MOF-5. (c) H$_2$ uptake for MOF-177. The yellow diamond and green circle denote the TEO optimised desorption and adsorption conditions, respectively, that maximises the net energy. The bar on the right describes the value gravimetric uptake in wt%. 66

4.3 Gravimetric uptake for (a) PAF-302 and (b) PAF-303 with respect to pressure at 77 K and 298 K. The plots shows the comparison between our results (solid lines) with simulation (crosses) and experimental results (circles) from Lan et al. [3] and simulation (dotted line) from Konstas et al. [4]. 81

4.4 Gravimetric and volumetric uptakes for Li-PAF-302 and Li-PAF-303. The figures show gravimetric uptake comparison plots for (a) 77 K and (b) 298 K and volumetric uptake comparison plots for (c) 77 K and (d) 298 K respectively where the blue and red lines represent PAF-302 and PAF-303. The solid, dashed, and dotted lines represents the bare PAFs, 2%Li-PAFs, and 5%Li-PAFs. 83

4.5 Gravimetric uptake comparison plots for (a) 77 K and (b) 298 K. Volumetric uptake comparison plots for (c) 77 K and (d) 298 K. The blue, red and green lines represent uptakes by PAF-302 and PAF-303, lithiated PAF-302 and PAF-303, and fullerene impregnated lithiated PAF-303. 84
4.6 Potential energy for Li-PAF-302 in (a) and (b), Li-PAF-303 in (c) and (d), and C60@Li-PAF-303 in (e) and (f) with respect to the distance from cavity centre. The contour plots on the right depict the depth of the potential energy with varying Li atoms and distance from cavity centre. . . . . . . . . . . . . . 88

4.7 Fractional free volume for adsorption (%) calculated at (a) 77 K and (b) 298 K with varying cavity size. The dimensions for available ligands are depicted in the molecular diagrams. . . . . 90
List of Tables

2.1 Numerical values of various parameters (C-H₂ denotes the interaction between a hydrogen molecule with a carbon atom, and C-H₂ denotes the interaction between a hydrogen molecule with a hydrogen atom).......................................................... 28

3.1 Data for hydrogen gas sorption for metal-organic frameworks with and without open metal sites at 298 K.......................................................... 45

3.2 Coefficient of determination (R²) for the correlation of total H₂ uptake with heat of adsorption, BET surface area and pore volume at high pressure (more than 35 bar).......................................................... 47

3.3 Lennard-Jones parameter values.......................................................... 51

3.4 Numerical values of constants used.......................................................... 52

3.5 Values of constants used to calculate optimum storage (ads) and delivery (des) conditions within constraints of U.S. DOE delivery conditions (5 – 12 bar, 233 – 358 K).......................................................... 55

3.6 Maximum energy generation at optimised storage (ads) and delivery (des) conditions restricted to DOE operating range for a pressure-swing only cycle.......................................................... 62
3.7 Maximum energy generation at optimised storage (ads) and
delivery (des) conditions restricted to the DOE operating range
for a temperature-swing only cycle. . . . . . . . . . . . . . . . . 64

3.8 Maximum energy generation at optimised storage (ads) and
delivery (des) conditions restricted to the DOE operating range
for a combined pressure-swing and temperature-swing cycle. . 67

4.1 Van der Waals force field parameters between H₂ and PAF. . 77
4.2 Constants used for the potential energy calculation. . . . . . 79
4.3 Gravimetric Uptake (wt%) at 100 bar, 77 K and 298 K. . . . 86
4.4 Volumetric Uptake (g/L) at 100 bar, 77 K and 298 K. . . . . 87
Abstract

Gas storage using nanomaterials has been researched as possible enhancement of gas tanks in fuel cell vehicles. The structures of nanomaterials and its interaction with gases are often explored using computer simulations and experiments which are both time consuming and expensive. In this thesis, we overcome these problems by performing these investigations through a simplified mathematical modelling approach.

In this approach, we first develop simple solutions to calculate the interaction energies between hydrogen gas and the materials using symmetric building blocks to represent the cavity of the structure. The gas uptake in the nanomaterial can then be calculated using these solutions to identify the quantity of gas stored in the adsorbed and bulk states. We also introduce a novel method, the thermodynamic energy optimisation (TEO) model, to calculate the energy produced by a hydrogen fuel cell coupled with a materials storage device.

In this thesis these models are used to explore beryllium linked with benzene tribenzoate (Be-BTB) and porous aromatic frameworks (PAF). The models are able to identify reasons why these materials have demonstrated potential for gas storage and suggest ways to improve and optimise the struc-
Our investigation into Be-BTB reveals that the beryllium rings contribute strongly to the hydrogen interaction with the framework. We propose that beryllium rings of 10 Å at 298 K and 15 Å at 77 K will optimise the fractional free volume for adsorption within the material. Investigations using the TEO method demonstrate that current high performing MOFs are unable to outperform gas tanks for fuel cell vehicles. To improve uptake capacity further improvements are required to decrease specific heat capacity and heat of adsorption while also ensuring that the material possesses optimal cavity sizes to maximise the fractional free volume.

Another application of the mathematical model is undertaken on PAFs, in particular PAF-302 and PAF-303. Using analytical methods, three possible modifications on PAFs are adopted to investigate their effects on gas uptake; (i) fullerene impregnation, (ii) lithium doping, and (iii) a combination of methods (i) and (ii). Results show that lithiation strengthens the interaction energy whilst fullerene impregnation doubles the number of attractive surfaces. The final results indicate that 8%Li-PAF-303 provides the highest gravimetric uptake at 77 K and 298 K, and 8%Li-PAF-302 provides the highest volumetric uptake at 77 K and 298 K.
Signed Statement

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

In addition, I certify that no part of this work will, in the future, be used in a submission in my name for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made avail-
able on the web, via the University’s digital research repository, the Library
catalogue, and also through web search engines, unless permission has been
granted by the University to restrict access for a period of time.

SIGNED: ....................... DATE: .........................
Acknowledgements

I would like to thank Prof. Jim Hill for encouraging me to pursue a PhD and for his guidance throughout my candidature. I would also like to thank Dr. Barry Cox for assisting me with curly mathematical problems and for his warm welcome whenever I drop by his office unannounced with questions. In addition, I would like to thank Dr. Aaron Thornton for being a driving force for my publications. Working with him has taught me critical thinking and to explore new ideas.

I wish to express gratitude to Robbie for all his love, support and advice with the editing of my thesis. I would like to also thank my friends in the maths office for keeping me sane with their wonderful and unforgettable company: Kate, Stephen, Rhys, Alice, Jo, Adam, Chris, Lyron, Ty, David, Jess, Paul, Farah and Ewan. Special mention to Prof. Nigel Bean for his advice during my PhD blues.

Finally I would also like to thank my colleagues at CSIRO including Dr. Anita Hill and Dr. Matt Hill for their contributions and the opportunity to collaborate and work with them.

This thesis is dedicated to my family.

xiv
List of Publications

