Identification and Location Derivation of Grapevine Features through Point Clouds

BY

DI GAO

A THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF ENGINEERING SCIENCE

AT

SCHOOL OF MECHANICAL ENGINEERING

THE UNIVERSITY OF ADELAIDE

APRIL 2014
Contents

DECLARATIONS .. I
ACKNOWLEDGEMENT .. II
PUBLICATIONS .. III
ABSTRACT .. IV
LIST OF FIGURES .. V
LIST OF TABLES .. VIII

CHAPTER 1 INTRODUCTION .. 1
 1.1 The Grapevine ... 1
 1.1.1 Annual Growth Cycle of The Grapevine ... 1
 1.1.2 Grapevine Training System ... 2
 1.2 Grapevine Pruning .. 3
 1.2.1 Reasons for Grapevine Pruning .. 3
 1.2.2 Methods of Grapevine Pruning ... 3
 1.2.2.1 Manual Pruning .. 3
 1.2.2.2 Semi-Automatic Pruning .. 5
 1.3 Motivation ... 7
 1.4 Research Purpose .. 8
 1.5 Thesis Synopsis ... 9

CHAPTER 2 LITERATURE REVIEW .. 11
 2.1 Applications of Machine Vision ... 11
 2.2 Feature Extraction From Point Clouds ... 15
 2.2.1 Basic Features ... 15
 2.2.2 Cylinder Features ... 16
 2.2.3 Skeleton Extraction of Point Clouds ... 20
 2.2.3.1 Simple Structure Skeleton .. 20
 2.2.3.2 Tree-like Structure Skeleton .. 20
 2.2.3.3 Tree Structure Skeleton .. 21
 2.2.3.4 Curve Skeleton .. 24
 2.3 Summary .. 25
 2.4 Gap .. 25
 2.5 Aims and Objectives ... 26

CHAPTER 3 SEGMENTATION .. 27
CHAPTER 5 EXPERIMENTAL WORK

5.1 Experimental Setup

5.1.1 Kinect

5.1.2 Data Capturing Program

5.1.3 Field Configurations

5.1.4 Method Testing Program

5.2 Experimental Results

5.2.1 Data Set One

5.2.1.1 Data Set One Input
Declarations

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Name: Di Gao

Signature:

Date:
Acknowledgement

This is an acknowledgement to those who have given me direction, guidance and who have helped me in my master’s studies.

I would like to take this opportunity to express my deepest and most sincere thanks and expressions of gratitude to my supervisors, Dr. Tien-Fu Lu and Dr. Steven Grainger. Their broad knowledge and logical pattern of thought combined with their generous and friendly manner have been of the greatest assistance to me. Their encouragement, guidance, and mentorship have enabled the presentation of this thesis.
Publications

Conference:

Journal:

Abstract

An automatic pruning machine is desirable due to the limitations and drawbacks of current labor intensive grapevine pruning methods. Automation mitigates the issue of skilled worker shortages and reduces overall labor cost. To achieve autonomous grapevine pruning accurately and effectively, it is crucial to identify and locate some key features including post, trunk, cordon and cane in order to open/close the cutter and adjust the height of the cutter appropriately. In this thesis, a new method is proposed to automatically identify these features and derive their locations using point clouds. This method combines the advantages of cylinder extraction, density clustering and skeleton extraction for identification purposes. More importantly, it fills the gap of non-uniformed feature extraction in vineyards using point clouds. The results of applying this method to different data sets obtained from vineyards are presented and its effectiveness is demonstrated.
List of Figures

Figures of Chapter One

Figure 1. 1 Structure of Grapevine ... 1
Figure 1. 2 Structure of Grapevine Training System ... 2
Figure 1. 3 Mechanical and Electrical Secateurs ... 4
Figure 1. 4 Before and After Manual Pruning .. 4
Figure 1. 5 Two Stages of Semi-Automatic Pruning Method 6
Figure 1. 6 Pre-pruning Machine with One Arm and Two Cutters 7

Figures of Chapter Two

Figure 2. 1 Stereo Vision System .. 12
Figure 2. 2 Weed and Trunk Separation Method .. 12
Figure 2. 3 Wires and Trunk of Long Wood Grapevine 14
Figure 2. 4 Cutting Positions of Canes ... 14
Figure 2. 5 Result of Gauss map clustering method applied to cube-with-hole sample 16
Figure 2. 6 Sharp edge detection result for fan disk model 16
Figure 2. 7 Result of Cylinder Extraction based on Hough Transform 18
Figure 2. 8 Point Clouds of Post in Vineyard ... 19
Figure 2. 9 Tree-like skeleton extraction - Lobster ... 20
Figure 2. 10 Collapsing and Merging Procedures in Octree-graphs (CAMPINO) 22
Figure 2. 11 Test Result of Skeleton Extraction Method (Liny et al. 2010) Applied to Data of This Thesis ... 24

Figures of Chapter Three

Figure 3. 1 Flow Chart of Segmentation ... 28
Figure 3. 2 The Five Parameters Cylinder Model .. 31
Figure 3. 3 Hough Transform of Line Detection .. 33
Figure 3. 4 Gaussian Sphere ... 36
Figure 3. 5 Spherical Coordinates ... 37
Figure 3. 6 Hough Gaussian Sphere ... 38
Figure 3. 7 The Results of Cylinder Feature Extraction 40
Figure 3. 8 Clusters Obtained via Density Clustering .. 44

Figures of Chapter Four

Figure 4. 1 Flow Chart of Objects Identification and Location Derivation 45
Figure 4. 2 Post Cluster Extraction .. 47
Figures of Chapter Five

Figure 5. 1 The Kinect ... 55
Figure 5. 2 Data Capturing Program User Interface – Initializing Mode ... 57
Figure 5. 3 Data Capturing Program User Interface – Capturing Mode ... 57
Figure 5. 4 Field View ... 58
Figure 5. 5 Original Input of Data Set One ... 59
Figure 5. 6 Data Set One Pre-processing ... 60
Figure 5. 7 Gaussian Sphere of Data Set One ... 61
Figure 5. 8 Hough Gaussian Sphere of Data Set One ... 61
Figure 5. 9 Cylinder Feature Extraction of Data Set One ... 62
Figure 5. 10 Density Clustering of Data Set One ... 62
Figure 5. 11 Cubic Extraction of Data Set One ... 63
Figure 5. 12 Clusters of the Pre-processed Input Points of Data Set One ... 63
Figure 5. 13 The Post Cluster (red colour) of Data Set One ... 64
Figure 5. 14 Close View of the Post Cluster of Data Set One ... 64
Figure 5. 15 Skeleton Extraction of the Post Cluster of Data Set One ... 65
Figure 5. 16 The Trunk Cluster of Data Set One (blue colour) ... 65
Figure 5. 17 Close View of the Trunk Cluster of Data Set One ... 66
Figure 5. 18 Skeleton of the Trunk of Data Set One ... 66
Figure 5. 19 Cordon Extraction of Data Set One (yellow colour) ... 67
Figure 5. 20 Cane Extraction of Data Set One (green colour) ... 67
Figure 5. 21 Final Result of Data Set One ... 68
Figure 5. 22 Results with Different Threshold Values ... 70
Figure 5. 23 Final Results Extracted for Different Thresholding Outcomes ... 71
Figure 5. 24 Original Input of Data Set Two ... 72
Figure 5. 25 Data Set One Pre-processing ... 73
Figure 5. 26 Gaussian Sphere of Data Set Two ... 73
Figure 5. 27 Hough Gaussian Sphere ... 74
Figure 5. 28 Cylinder Feature Extraction of Data Set Two ... 74
Figure 5. 29 Density Clustering ... 75
Figure 5. 30 Cubic Extraction ... 75
Figure 5. 31 Clusters of the Pre-processed Input Points ... 76
Figure 5. 32 The Post Cluster of Data Set Two (red colour) ... 77
Figure 5. 33 Close View of the Post Cluster of Data Set Two ... 77
Figure 5. 34 Skeleton Extraction of the Post Cluster of Data Set Two ... 78
Figure 5. 35 The Key Joint of the Post Cluster of Data Set Two ... 78
Figure 5. 36 The Main Component of the Post Cluster of Data Set Two ... 79
Figure 5. 37 The Rotating Operation of the Post Cluster of Data Set Two ... 79
Figure 5. 38 Threshold Filtering of the Post Cluster of Data Set Two 80
Figure 5. 39 Post Identification Result of Data Set Two .. 80
Figure 5. 40 The Trunk Cluster of Data Set One (blue colour) ... 81
Figure 5. 41 Skeleton of the Trunk of Data Set Two ... 81
Figure 5. 42 The Key Joint of the Trunk Cluster of Data Set Two ... 82
Figure 5. 43 Trunk Identification of Data Set Two ... 82
Figure 5. 44 Cordon Extraction of Data Set One (yellow colour) ... 83
Figure 5. 45 Cane Extraction of Data Set One (green colour) .. 83
Figure 5. 46 Final Result of Data Set Two ... 84
Figure 5. 47 Original Input of Data Set Three ... 85
Figure 5. 48 Data Set One Pre-processing .. 86
Figure 5. 49 Cylinder Feature Extraction of Data Set Three ... 86
Figure 5. 50 Clusters of the Pre-processed Points of Data Set Three .. 87
Figure 5. 51 The Post Cluster of Data Set Three (red colour) ... 87
Figure 5. 52 Final Result of Data Set Three ... 88
Figure 5. 53 Pre-processed inputs of Data Set Four ... 89
Figure 5. 54 The Post Cluster of Data Set Four ... 90
Figure 5. 55 Final Result of Data Set Four .. 91
Figure 5. 56 Pre-processed Input of Data Set Five ... 92
Figure 5. 57 Clusters of Two Trunks of Data Set Five .. 92
Figure 5. 58 Pre-process Input of Data Set Six ... 93
Figure 5. 59 Final Result of Data Set Six .. 93
Figure 5. 60 Post Cluster of Data Set Five .. 94
Figure 5. 61 Skeleton Extraction of Post Cluster of Data Set Five ... 95
Figure 5. 62 Post Refinement of Data Set Five ... 96
Figure 5. 63 Final Result of Data Set Two with Post and Trunk Refinement 98
Figure 5. 64 Final Result of Data Set Two without Post and Trunk Refinement 98
List of Tables

Table 1 Time Consumption of Proposed Method...97