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ABSTRACT 14 

The importance of reducing greenhouse gas (GHG) emissions, which have been linked to 15 

human-induced climate change, is gradually being recognized by water utilities. While multi-16 

objective optimization has been applied by previous literature to minimize cost and GHG 17 

emissions associated with water distribution systems (WDSs), this has mainly been achieved 18 

by considering design options of pipe size and pump type. Little consideration has been given 19 

to the appropriate sizing of storage tanks. As such, this paper aims to investigate the effect of 20 

storage tank size on the minimization of cost and GHG emissions associated with WDSs. 21 

Increases in storage tank size are considered by increasing the tank reserve size (TRS); the 22 

portion of the storage tank available for system balancing purposes. As storage tanks are 23 

mailto:Christopher.stokes@adelaide.edu.au


critical to the operation of a WDS, it is necessary to accurately model the operation of a 24 

WDS. While electricity tariffs (ETs) are used to consider the time-dependency of pumping 25 

operational cost, no such consideration has been given to pumping operational GHG 26 

emissions. As such, time-dependent emissions factors are used to calculate pumping 27 

operational GHG emissions. In order to investigate the effect of TRS on the minimization of 28 

cost and GHG emissions associated with a WDS, the multi-objective optimization of two 29 

case study WDSs is performed. The results show that using different TRSs can affect the 30 

optimal pumping operational management of a WDS, and that increasing the TRS can result 31 

in GHG emissions reductions. However, using a very large TRS is likely to be associated 32 

with prohibitive costs. 33 

 34 

  35 



1 INTRODUCTION 36 

As water distribution systems (WDSs) can emit significant amounts of greenhouse gases 37 

(GHGs), they are contributors to human-induced climate change. In order to minimize this 38 

impact, the objective of minimizing greenhouse gas (GHG) emissions has recently been 39 

incorporated into the optimization of WDSs (Stokes et al. 2014b). This can be achieved both 40 

directly (Basupi et al. 2013; Basupi et al. 2014; Du et al. 2013; Kang and Lansey 2012; 41 

MacLeod and Filion 2011; Marchi et al. 2014; Roshani et al. 2012; Wu et al. 2010a; Wu et al. 42 

2012a; Wu et al. 2013; Wu et al. 2010b; Wu et al. 2012b) and indirectly by considering GHG 43 

emissions as part of a wider array of environmental objectives (Herstein et al. 2011; Herstein 44 

and Filion 2011; Herstein et al. 2009). 45 

 46 

When optimizing WDSs, previous literature has focused on using pipe sizes and pump types 47 

as decision variables in order to find solutions of minimized cost and GHG emissions (Basupi 48 

et al. 2013; Basupi et al. 2014; Dandy et al. 2006; Du et al. 2013; Herstein et al. 2011; 49 

Herstein and Filion 2011; Herstein et al. 2009; Kang and Lansey 2012; MacLeod and Filion 50 

2011; Marchi et al. 2014; Roshani et al. 2012; Wu et al. 2010a; Wu et al. 2012a; Wu et al. 51 

2013; Wu et al. 2010b; Wu et al. 2012b). Both pipe size and pump type are important factors 52 

to consider, as they not only explicitly affect the cost and GHG emissions associated with a 53 

WDS’s design, but also affect the hydraulic performance of a system, affecting pumping 54 

electrical energy requirements and therefore the cost and GHG emissions associated with the 55 

pumping operation of a WDS (Dandy et al. 2006; Herstein et al. 2011; Herstein et al. 2009; 56 

Roshani et al. 2012; Wu et al. 2010a; Wu et al. 2012a; Wu et al. 2013; Wu et al. 2010b; Wu 57 

et al. 2012b). 58 

 59 



However, available storage is also an important factor that can affect the cost and GHG 60 

emissions associated with a WDS. Storage tanks, as well as providing emergency water 61 

storage for fires and system failures, are a critical link between a system’s water source and 62 

demand. Without adequate storage, pumps must be operated to coincide with the occurrence 63 

of water demands, which may not be desirable when attempting to reduce pump energy usage 64 

(Batchabani and Fuamba 2012; Walski 2000). Hence, adequate storage size can benefit the 65 

minimization of cost and GHG emissions due to the greater flexibility and control of 66 

pumping operations they are able to provide. 67 

 68 

An increased storage tank size can allow pumping to occur during low electricity tariff (ET) 69 

times, reducing the cost associated with electricity usage when a time-of-use pricing system 70 

is in place. However, using fewer pumps but for a greater proportion of the day is one way to 71 

reduce GHG emissions; reducing pump flow can reduce pipe velocities, leading to reduced 72 

pipe friction. This can reduce pump energy usage and therefore also reduce GHG emissions. 73 

Thus the need for larger storage sizes is diminished, as the difference between pump flow and 74 

system demand is reduced. Hence, the sizing of storage tanks can be critical when 75 

considering the minimization of, and trade-offs between, cost and GHG emissions, as the 76 

optimal size of a storage tank may be different when considering either cost or GHG 77 

emissions. Furthermore, storage tanks must be adequately sized to take full advantage of 78 

possible cost and GHG emissions reductions, while decreasing the likelihood of negative 79 

effects associated with over-sizing, such as increased tank capital cost and reduced water 80 

quality (Farmani et al. 2006; Gibbs et al. 2009). 81 

 82 



However, while storage tank size has been considered with respect to minimizing WDS costs 83 

(Batchabani and Fuamba 2012; Farmani et al. 2006; Farmani et al. 2005; Lansey and Mays 84 

1989; Ostfeld and Tubaltzev 2008; Prasad 2010; Vamvakeridou-Lyroudia et al. 2007; 85 

Vamvakeridou-Lyroudia et al. 2005; Walters et al. 1999; Wu et al. 2010b), less consideration 86 

has been given to this issue when considering the minimization of GHG emissions (Basupi et 87 

al. 2013; Basupi et al. 2014; Herstein et al. 2011; Herstein and Filion 2011; Marchi et al. 88 

2014; Wu et al. 2010b). Additionally, little consideration has been given to the GHG 89 

emissions directly associated with storage tanks (Herstein et al. 2011; Herstein and Filion 90 

2011).   91 

 92 

As noted above, the minimization of GHG emissions can be achieved by operating pumps at 93 

a consistent rate, thereby reducing excessive pipe velocities and frictional energy losses. 94 

However, the emissions intensity associated with electricity is not always static. Like ETs, 95 

emissions factors (EFs) that are used to calculate the GHG emissions associated with the use 96 

of electricity can also be time-dependent (Stokes et al. 2014a; Stokes et al. 2014b). This is 97 

due to the nature of the electricity grid used to supply a WDS with electricity during 98 

operation. Generally, an electricity grid is connected to multiple electricity generation 99 

sources, each with their own emissions intensity (e.g. high intensity fossil fuel electricity 100 

sources and low or zero intensity renewable energy electricity sources). As the contribution 101 

of each electricity generation source differs, the emissions intensity of electricity changes 102 

over time. With the increasing usage of renewable energy, such as wind farms, which are the 103 

fastest growing non-hydro renewable energy type, the emissions intensity of electricity can 104 

fluctuate to a significant extent (Stokes et al. 2014a). Currently, many regions globally use 105 

significant amounts of wind generation, including Denmark (28% of total electricity 106 

generation), Spain (22%), South Australia (27%) and several states in Germany (over 40%) 107 



and the United States of America (up to 27%) (Stokes et al. 2014a). If the minimization of 108 

GHG emissions associated with the operation of a WDS is to be considered, then it is 109 

necessary to consider the time-dependency of EFs, as this can possibly affect the optimal 110 

operation of pumps and, as discussed previously, the optimal sizing of storage tanks. 111 

However, there has been little consideration to either long-term reductions of EFs, such as 112 

over the life of a WDS in response to climate change policies (Roshani et al. 2012; Wu et al. 113 

2012a), or the short term time-dependency of EFs, such as the fluctuation of EFs occurring 114 

each day (Ramos et al. 2011; Stokes et al. 2014a; Stokes et al. 2014b), with no application 115 

considering the optimal sizing of storage tanks. 116 

 117 

In order to address the research gaps discussed above, there is a need to consider both optimal 118 

operational management and system design together with tank sizing options when 119 

considering the minimization of costs and GHG emissions associated with WDSs. 120 

Additionally, there is a need to consider the time-dependency of emissions factors associated 121 

with electricity used for pumping purposes. In order to address these shortcomings, the aims 122 

of this study are: 123 

Aim 1. To investigate the effect of changing the storage tank balancing volume on 124 

optimal design and operational options when minimizing both the cost and GHG 125 

emissions for two case study WDSs with different levels of complexity.  126 

Aim 2. To investigate the effect that using either time-varying EFs, represented by the 127 

use of an estimated 24-hour EF curve, or an average EF to calculate operational GHG 128 

emissions, has on both the options chosen during optimization and the cost and GHG 129 

emissions of the non-dominated solutions for the two case study WDSs used for 130 

objective 1. 131 



 132 

The remainder of the paper is organized as follows. Two case study WDSs, which are 133 

minimized for costs and GHG emission while considering tank size variations and the use of 134 

time-dependent emissions factors, are introduced in the next section. This is followed by an 135 

outline of the methodology and specific details about the optimization algorithm used; the 136 

objectives of minimizing cost and GHG emissions; time-dependent emissions factors and 137 

storage tank sizing. Finally, the results from the optimization of the two case studies are 138 

presented and discussed, and conclusions are drawn.       139 

  140 



2 CASE STUDIES 141 

The first case study uses a two pump, single storage tank WDS (Figure 1) and considers the 142 

minimization of costs and GHG emissions associated with a new WDS. Therefore, the 143 

optimization of both design (pipes, pumps and storage tank) and operational management 144 

(pump schedule) options are considered. As shown in Figure 1, the pumping main is 600m 145 

long, the tank main is 300m long and the distribution network consists of 19x200m long 146 

pipes and 2x280m long (diagonal) pipes. This system is chosen as its single pressure zone, 147 

relative simplicity due to its small number of pipes, and single storage tank make it ideal for 148 

analyzing the complexity of design and operational control trade-offs, while still 149 

incorporating the fundamental complexity of a pumped WDS. The relatively small search 150 

space also makes the simultaneous optimization of both design and operational control 151 

options feasible. As shown in Figure 1, the first case study WDS consists of 23 pipes, one 152 

pumping station with two pumps and one storage tank.  153 

 154 

The second case study uses a modified version of the D-town network from the Battle of the 155 

Water Networks II (Marchi et al. 2014; Salomons et al. 2012) (Figure 2) and considers the 156 

minimization of costs and GHG emissions associated with an existing WDS. Consequently, 157 

only operational management (pump scheduling) options of storage tanks of different sizes 158 

are considered as decision variables. As shown in Figure 2, the second case study WDS 159 

consists of 348 non-zero demand nodes, 443 pipes, 7 storage tanks and 12 pumps in 5 160 

pumping stations. The original BWN-II problem called for the infrastructure upgrade and 161 

operational management optimization of the WDS. As this paper is concerned only with the 162 

operational management of the system, the original D-Town WDS has been altered to 163 

accommodate the increased water demands of the upgrade problem, allowing the network to 164 



be used without significant design issues that may influence pumping operations. The 165 

alterations include increasing the diameters of 4 pipes (IDs P22, P23, P100 and P995), which 166 

heavily restrict flows in the original design; placing an extra pump in addition to the original 167 

3 pumps in pumping station 1, which uses the same pump curve as the original pumps; and 168 

increasing the size of 3 of the 7 storage tanks (IDs T4, T5 and T7) to allow a minimum 169 

balancing storage size equivalent to 12 hours under average day water demand loadings. Pipe 170 

P22 is changed in diameter from 406mm to 610mm, pipe P23 from 508mm to 610mm, pipe 171 

P100 from 406mm to 610mm and pipe P995 from 152mm to 203mm. The increase in 172 

diameter is from 11.64m to 26.03m for tank T4, from 11.89m to 16.82m for tank T5 and from 173 

7.14m to 17.48m for tank T7. These alterations are among the most widely made changes by 174 

the participants of the BWN-II competition (Marchi et al. 2014). This system is chosen for its 175 

real-world complexity of having multiple tanks supplying multiple pressure zones, with the 176 

subsequent need to control multiple pump stations.  177 

 178 

Water demand curves for both case studies are available as supplementary material. While 179 

pipe and storage tank requirements for fire and power outage scenarios are an important part 180 

of the design of a WDS, this study is concerned with the tradeoffs between costs and GHG 181 

emissions. Therefore, the additional pipe size and storage tank size requirements of fire and 182 

power outage were not taken into account. 183 

  184 



3 METHODOLOGY 185 

The methodology used to meet the aims outlined in the Introduction is outlined in Figure 3 186 

and is based on the Water distribution system Cost-Emissions Nexus (WCEN) conceptual 187 

framework introduced by Stokes et al. (2012; 2014b). As can be seen, the computational 188 

structure consists of a number of components that follow the traditional steps of evolutionary 189 

optimization, including the selection of design (O1) and operational (O2) options (i.e. 190 

decision variable values (Op2)), which have an impact on the water distribution system 191 

(WDS) and electrical energy generation (EEG) infrastructure components. The magnitude of 192 

these impacts on the objectives and constraints is then quantified in the analysis component 193 

(OF1, OF2, Cstr1, Cstr2), which drives the selection of the next generation of decision 194 

variable values via the selected multi-objective optimization algorithm (Op3) in the 195 

optimization component. 196 

 197 

The impact of changing the storage tank balancing volume (Aim 1) and time-varying 198 

emissions factors (Aim 2) on the Pareto optimal solutions (Op4) is investigated via a number 199 

of scenarios / cases, which alter some of the inputs to the optimization, options and 200 

infrastructure components (Figure 3).  In relation to Aim 1, different storage tank balancing 201 

volumes are represented by four different tank reserve size (TRS) scenarios (TRS1-TRS4) in 202 

order to observe the effect of tank volume for a set of known size intervals.  In relation to 203 

Aim 2, two different emissions factor cases, including an estimated 24-hour (typical) time-204 

varying EF curve (EEF), which represents the average diurnal change in emissions factors 205 

intensity over the time period of time-varying EFs, and an average EF (AEF), which 206 

represents the average value of the time-varying EFs, are used. Further details of the 207 



optimization process, the way objectives and constraints are calculated and the TRS scenarios 208 

/ EF cases are given in subsequent sections. 209 

 210 

3.1 Optimization Approach 211 

In order to find solutions of minimized costs and greenhouse gas (GHG) emissions, the state-212 

of-the-art Borg Multi-Objective Evolutionary Algorithm (MOEA) (Hadka and Reed 2013) is 213 

used. Borg MOEA has been employed for its previously demonstrated superior performance 214 

when compared with more traditionally used evolutionary algorithms for a range of problems  215 

(Hadka and Reed 2013). Each case study WDS is optimized for each TRS scenario/EF case 216 

combination using a maximum solution evaluation limit of 100,000 evaluations (Eval, Figure 217 

3). Initial testing showed this maximum evaluation limit to allow for solution convergence. 218 

As a general recommendation made by Hadka and Reed (2013), initial and minimum 219 

population sizes of 100 solutions are used. (Pop, Figure 3). Initial testing showed that these 220 

values allow for solution convergence for both case studies. As the seed (Seed, Figure 3), 221 

which is used to initialize the pseudo random number generator to generate the initial 222 

population of solutions, influences the ability of the optimization algorithm to find non-223 

dominated solutions, each case study WDS using each TRS scenario/EF case combination is 224 

optimized thirty times using thirty randomly chosen seeds, resulting in a total of 480 225 

optimization runs. All dominated solutions are disregarded from the final non-dominated set 226 

of solutions for each scenario. 227 

 228 

For the first case study WDS, the design is optimized for the minimization of construction 229 

costs and GHG emissions. As part of this case study, 24 discrete decision variables are 230 

considered, including 23 pipes (pumping main, tank main and distribution system) and one 231 



pump (with both pumps being restricted to the same type). Design options for these decision 232 

variables include 12 pipe diameters and 11 pump types. For both case studies, the operations 233 

of the WDSs are optimized for the minimization of operational costs and GHG emissions. 234 

Operational optimization of pumping schedules consists of 8 continuous, independent 235 

decision variables for each pump (4 on times and 4 off times). For each pump scheduling 236 

decision variable, options range from 0 to 86,400 (seconds per day). This form of scheduling 237 

allows each pump to be switched on and off a maximum of 4 times each day (chosen as a 238 

compromise between an efficient number of decision variables and pumping flexibility for 239 

effective objective function optimization), without the need to discretize pump scheduling 240 

options into specific time segments. For the first case study, the operation of both of the 241 

system’s pumps is optimized, while the operation of eight of the second case study’s 12 242 

pumps are optimized, with the remaining 4 pumps running continuously. 243 

 244 

3.2 Calculation of Objectives and Constraints 245 

As stated previously, the two objective functions include (1) the economic cost and (2) the 246 

climate change impact, measured as the released mass of GHG emissions, associated with the 247 

water distribution system (WDS). In order to enable these objective function values to be 248 

calculated, an extended period simulation, using the EPANET 2.0 (Rossman 2000) hydraulic 249 

simulation program (EPS, Figure 3), is performed. For the first case study where 24 hour (one 250 

day) long water demand curve, time-dependent emissions factors and electricity tariff 251 

structures are used, a 24 hour long EPS is employed. For the second case study where 168 252 

hour (one week) long water demand curve and electricity tariff structures are used, a 168 hour 253 

long EPS is employed. For both case studies, an additional 24 hour “warm up” time is 254 

employed to reduce the effects of initial conditions. This allows calculation of pump 255 



electrical energy usage, which is then converted into costs and GHG emissions associated 256 

with (i) pumping operations, using operational cost analysis (OCA, Figure 3) and emissions 257 

factor analysis (EFA, Figure 3) respectively, and (ii) design, using design cost analysis 258 

(DCA, Figure 3) and embodied energy analysis (EEA, Figure 3), respectively. 259 

Hydraulic simulation (EPS, Figure 3) is also used to calculate any violation of constraints 260 

(Cstr1 and Cstr2, Figure 3). A solution is deemed feasible if: 261 

1. The zero and non-zero demand node pressures are maintained above 0m (Marchi et al. 262 

2014) and 20m (Water Services Association of Australia 2002), respectively, during 263 

the EPS period (Cstr1, Figure 3). These pressure limits are chosen to prevent 264 

cavitation in the pipe network and to allow for the operation of most water demanding 265 

appliances (e.g. washing machines), respectively. 266 

2. The total volume of water pumped into the system from the source is equal to or 267 

above the total volume consumed by all demand nodes during the EPS period (Cstr2, 268 

Figure 3). 269 

 270 

3.2.1 Calculation of Economic Costs 271 

For the first case study, where design optimization is performed, construction costs are 272 

associated with the cost of pipes, pumps and storage tank used to construct the WDS. For the 273 

second case study, where only operational optimization is considered, the construction costs 274 

associated with increasing the storage tanks (for each TRS scenario) are considered as the 275 

sole construction cost component. For the first case study, pipes are priced according to their 276 

length and chosen diameter and pump costs incorporate both the initial pump station cost and 277 

pump replacement cost. Both pipe and pump costs used in this study can be found in Wu et al 278 



(2010b). For the first case study, pump replacement is considered every 20 years (Wu et al. 279 

2010b). For both case studies, costs associated with each TRS are based on investigation 280 

costs for ground level concrete storage tanks used by South Australia’s primary water utility 281 

company, SA Water (SA Water, unpublished data, January 2014). Refer to Table 1 for 282 

storage tank cost information for each TRS scenario. 283 

 284 

For both case studies, operational costs associated with the WDSs are evaluated, and are due 285 

to the cost of electricity being used for pumping. In order to calculate electricity costs, an 286 

electricity tariff (ET, Figure 3) is used to convert the amount of electrical energy consumed 287 

into an economic cost. A peak/off-peak ET is used for both case studies. The peak ET, used 288 

between the hours of 7am and 11pm, is valued at 0.121 AUD per kilowatt hour ($/kWh). The 289 

off-peak ET, used between 11pm and 7am, is valued at 0.037 $/kWh. As the electricity tariff 290 

paid by the water utility in South Australia is undisclosed, applicable peak/off-peak ET rates 291 

used in this paper are taken from the SA Power Networks’ (previously ETSA Utilities) 292 

Network Tariffs for FY2009 rate 2 business rate for South Australia (SA) (ETSA Utilities 293 

2009). The cost of electricity is calculated by multiplying the energy (kWh) consumed for 294 

pumping purposes over the extended period simulation (EPS) by the appropriate ET rate 295 

($/kWh). 296 

 297 

3.2.2 Calculation of GHG Emissions 298 

For the first case study, construction GHG emissions associated with the pipes and storage 299 

tank used to construct the WDS are considered. For the second case study, where operational 300 

optimization only is considered, the only construction GHG emissions considered are those 301 



associated with the embodied energy of increasing the storage tank sizes. In order to calculate 302 

construction GHG emissions, embodied energy analysis is used (EEA, Figure 3). The 303 

embodied energy, as megajoules per kilogram (MJ/kg), of a product is multiplied by an 304 

appropriate emissions factor (EF), as metric tonnes of carbon dioxide equivalents per 305 

megajoule (t CO2-e/MJ), and the product’s mass (t), to calculate its associated GHG 306 

emissions (t CO2-e). 307 

 308 

For the first case study, pipe unit mass data from Wu et al. (2010b) are used and an embodied 309 

energy value of 40.2 MJ/kg for ductile iron cement mortar lined (DICL) pipes is used 310 

(Ambrose et al. 2002). An EF of 0.16 kg CO2-e/MJ is used to calculate pipe GHG emissions. 311 

This value is based on the average emissions factor value for electricity generation sources in 312 

South Australia for the period of January 2011 to February 2012 (converted from t CO2-313 

e/MWh to t CO2-e/MJ). This value is used as no up-to-date pipe production specific 314 

emissions factor data are available for SA. Pipe GHG emissions are an estimate only, as other 315 

factors besides the manufacturing of the materials (e.g. transportation and installation) are not 316 

considered. It is noteworthy that pipe materials account for 35-45% of embodied energy, with 317 

trenching material, excavation and transportation accounting for the remainder (Prosser et al. 318 

2013).  319 

 320 

For both case studies, GHG emissions associated with the TRS are based on the balancing 321 

volume of the storage tank/s, and are calculated by considering the mass of reinforced 322 

concrete required for each TRS. Each storage tank is assumed to be circular in plan, with a 323 

200mm thick reinforced concrete base and a 150mm thick reinforced concrete wall. The 324 

dimensions of each tank are based on standard reinforced concrete storage tank designs from 325 



several Australian tank manufacturers for tanks with similar applied hydrostatic forces. As 326 

for pipes, the TRS GHG emissions are an estimate only, as other factors besides the 327 

manufacturing of the materials (e.g. transportation and installation) are not considered. 328 

 329 

As with the calculation of GHG emissions associated with DICL pipes, TRS GHG emissions 330 

are calculated using embodied energy. An embodied energy value of 0.95 MJ/kg is used, 331 

based on the value given for general strength construction concrete by Hammond and Jones 332 

(2008). As with the calculation of GHG emissions for DICL pipes (discussed above), an EF 333 

of 0.16 kg CO2-e/MJ is used to calculate TRS GHG emissions. Refer to Table 1 for TRS 334 

scenario GHG emissions information. 335 

 336 

For both case studies, GHG emissions associated with the operation of the WDSs are 337 

evaluated, and are due to generation of electricity used for pumping purposes (EEG, Figure 338 

3). In order to calculate operational GHG emissions, an emissions factor (t CO2-e/MWh) (EF, 339 

Figure 3) is used to convert the amount of electrical energy consumed into associated GHG 340 

emissions. Operational GHG emissions are calculated by multiplying the energy (kWh) 341 

consumed for pumping purposes over the extended period simulation (EPS) by the 342 

appropriate EF (t CO2-e/MWh). A detailed discussion of the operational EFs used in this 343 

study is provided below. 344 

 345 

In order to be able to directly compare design and operations, present value analysis (PVA) is 346 

used to convert all future values (being either costs or GHG emissions) to a present value. In 347 

order to use PVA, a discount rate must be selected. Previous WDS GHG emissions 348 



optimization literature has used a conventional economic rate of 8% and a GHG emissions 349 

discount rate of zero (Roshani et al. 2012; Wu et al. 2010a; Wu et al. 2010b; Wu et al. 350 

2012b). Consequently, these values are chosen for this study. It is noted that, while GHG 351 

emissions are a physical and not an economic property, their production does lead to both 352 

present benefits (e.g. the production of electricity) and future costs (e.g. the increase in 353 

atmospheric CO2 levels). Hence, PVA can be used to weight the desire between increasing 354 

present benefits and reducing future costs (Simpson 2008). As with the calculation of GHG 355 

emissions for DICL pipes (discussed above), an EF of 0.16 kg CO2-e/MJ is used to calculate 356 

TRS GHG emissions. Based on values used in previous studies (Wu et al. 2010a; Wu et al. 357 

2012a; Wu et al. 2013; Wu et al. 2010b; Wu et al. 2012b), a project life of 100 years is 358 

assumed for pipes, and is consistent with industry practice in Australia (Water Services 359 

Association of Australia 2002) and is used for calculating both electricity costs and GHG 360 

emissions and pump replacement costs. It is noted that a design life of 100 years may be 361 

considered excessive and may increase the level of uncertainty in the results. 362 

 363 

3.3 Emissions Factor Cases 364 

As stated previously, two emissions factor (EF) cases, using an estimated 24-hour EF curve 365 

(EEF, Figure 3) and an average EF (AEF, Figure 3), are used for the evaluation of operational 366 

GHG emissions. The estimated 24-hour EF curve case considers the diurnal time-dependency 367 

of emissions factors associated with the use of electricity. The average EF case represents the 368 

current standard of operational GHG emissions evaluation in the WDS optimization 369 

literature, where the time-dependency of emissions factors associated with the use of 370 

electricity is not considered. Both the estimated 24-hour EF curve and average EF (see Figure 371 

4) are obtained using time-varying EF data that are developed from raw electrical energy 372 



generation data collected for each generation source supplying electrical energy to the South 373 

Australian electricity grid from February 2011 to January 2012 (Australian Energy Market 374 

Operator 2013). As discussed by Stokes et al. (2014a), the magnitude and timing of wind 375 

energy, which effects the time-variations of EFs, can affect the optimal operation of a WDS 376 

when considering the minimization of GHG emissions. The proportion of wind energy 377 

considered in this study is representative of wind energy penetration in several regions 378 

globally where wind generation has been widely adopted (Stokes et al. 2014a). For this study, 379 

the time-varying EFs, with an average value of 0.574 t CO2-e per MWh, are calculated from 380 

electricity generated by wind farms (27%), gas-turbines (open-cycle, combined cycle) and 381 

gas fired steam turbines (49%) and coal fired steam turbines (24%). The proportion of 382 

electricity being produced by each generation type is responsible for the temporal fluctuations 383 

in the time-varying EF data. On average over the period from January 2011 to February 2012, 384 

the proportions of generation fuel sources at low EF times (between 20:00 and 8:00) were 385 

from wind (30%), gas (45%) and coal (25%) and at high EF times (between 8:00 and 20:00) 386 

were from wind (22%), gas (54%) and coal (24%). A detailed methodology for the 387 

calculation of time-dependent emissions factors is presented by Stokes et al. (2014a) and is 388 

therefore used in this paper.  389 

 390 

3.4 Tank Reserve Size Scenarios 391 

As stated previously, the TRS is the volume of water in the storage tank/s able to be used for 392 

system balancing purposes. Each storage tank’s TRS is calculated as the volume of water 393 

required to supply the system under average-day demand for a specified length of time (e.g. 394 

the 6 hour TRS will hold enough balancing storage to supply the WDS for 6 hours). For the 395 

second case study, which uses multiple storage tanks, the TRS for each tank is the volume 396 



required to supply the demand for that tank’s district metering area (DMA). The TRS 397 

volumes and associated cost and GHG emissions for each TRS scenario used for each case 398 

study are detailed in Table 1. The TRS volumes are altered by changing the diameter of each 399 

tank. The lower and upper water levels of each tank are not altered, as this would alter the 400 

hydraulic properties of the system. 401 

  402 



4 RESULTS & DISCUSSION 403 

 404 

4.1 Effect of Tank Reserve Size on Optimal System Design and Operation while using 405 

the Estimated 24-hour Emissions Factor Curve 406 

 407 

4.1.1 Minimization of Costs and GHG emissions 408 

The results for both case studies show that, when using the estimated 24-hour EF curve 409 

(EEF), increasing the tank reserve size (TRS) can result in reduced total GHG emissions. For 410 

case study 1, using the 12 hour TRS results in solutions with lower GHG emissions and 411 

similar costs, compared to using either the 3 or 6 hour TRSs (Figure 5a). For example, while 412 

solution EEF12.18 (12 hour TRS, lower GHG emissions solution) and solution EEF3.13 (3 413 

hour TRS, lower GHG emissions solution) have similar costs ($6.48M and $6.49M 414 

respectively), solution EEF12.18 has GHG emissions 1.7 kt CO2-e (3.7%) lower than those 415 

for solution EEF3.13, with GHG emissions of 42.9 kt CO2-e and 44.6 kt CO2-e respectively. 416 

For case study 2, using the 6 hour TRS results in solutions with reduced GHG emissions 417 

compared to using the original TRS (Figure 6a). However, using a TRS that is too large can 418 

also result in increased costs. For case study 1, using the 24 hour TRS results in significantly 419 

increased costs, with little benefit to reducing GHG emissions, compared to using the 12 hour 420 

TRS. For case study 2, using the 12 or 24 hour TRSs results in significantly increased costs, 421 

with no additional reductions in GHG emissions (Figure 6a). Component costs and GHG 422 

emissions for the optimal solutions for both case studies are available as supplementary 423 

material. 424 

 425 



4.1.2 Optimal Pumping Operational Management  426 

When a sufficiently large TRS is used, pumping operational optimization can help to 427 

minimize pumping operational costs and GHG emissions by moving pump usage to off-peak 428 

electricity tariff (ET)/lower EF times of the day. This effect is seen when both cost 429 

minimization (Figures 7a and 8a) and GHG emissions minimization (Figures 7c and 8c) are 430 

prioritized. Conversely, when using the 3 hour TRS (case study 1, Figures 7a and 7c) or 431 

original TRS (case study 2, Figures 8a and 8c), the developed solutions for both case studies 432 

have pump schedules that show less regard to the off-peak ET/low EF times of the day. 433 

Instead, pump usage is maintained in order to stop the small storage tank/s from emptying. 434 

These results suggest that moving pumping to the off-peak ET/low EF times of the day is an 435 

effective way to reduce pumping operational costs/GHG emissions, respectively. However, 436 

for the presented case studies, while this strategy works to reduce total GHG emission, it does 437 

not reduce total costs. Instead, increasing the TRS and hence storage tank cost can result in 438 

increased total costs. 439 

 440 

As a zero GHG emissions discount rate is used, the small increase in construction GHG 441 

emissions associated with an increase in TRS is outweighed by the high present value of 442 

pumping operational GHG emissions reductions. However, as a high (8%) economic discount 443 

rate is used, the increase in construction costs associated with an increase in TRS outweighs 444 

the low present value of pumping operational cost reductions. Therefore, the values of both 445 

GHG emissions and economic discount rates used to evaluate the present worth of pumping 446 

operational GHG emissions and costs, respectively, may significantly alter the benefits of 447 

increasing the TRS. 448 

 449 



4.1.3 Optimal Design 450 

The results for the first case study show that while the choice of pipe diameters has a 451 

significant effect on the costs and GHG emissions of solutions, pipe sizes do not change 452 

significantly when using different TRSs. As such, the results suggest that the choice of TRS 453 

does not have a significant effect on the choice of pipe diameters. Additionally, the results 454 

show that the same pump type is chosen for all solutions, regardless of TRS, suggesting that 455 

pump type is not a significant factor to utilizing different TRSs. For the lower cost solutions, 456 

smaller pipe diameters are used to reduce construction costs at the expense of a small 457 

increase in pumping operational costs (an effect of the previously discussed high economic 458 

discount rate). For lower GHG emissions solutions, pipe diameters are increased to reduce 459 

pumping operational GHG emissions at the expense of a small increase in construction GHG 460 

emissions (an effect of the previously discussed zero GHG emissions discount rate). These 461 

results suggest that the selection of larger pipe diameters is more heavily influenced by the 462 

need to reduce pipe frictional losses in order to reduce pump electrical energy consumption 463 

and therefore pumping operational GHG emissions, instead of by the need to fill the storage 464 

tank more quickly to utilize the TRS balancing volume. 465 

 466 

4.2 Effect of Tank Reserve Size on Optimal System Design and Operation while using 467 

the Average Emissions Factor 468 

The results for both case studies suggest that using the average emissions factor (EF), instead 469 

of the estimated 24-hour EF curve, reduces the benefit of using a larger TRS in relation to 470 

minimizing GHG emissions. For the first case study, by using the average EF, increasing the 471 

storage tank beyond the smallest TRS results in similar or higher costs and GHG emissions 472 

(Figure 5b). For the second case study, by using the average EF, any benefits from increasing 473 



the TRS with regard to reducing GHG emissions are not as large as when the estimated 24-474 

hour EF curve is used (Figure 6b). For both case studies, similar to when the estimated 24-475 

hour EF curve is used to evaluate solutions, using the average EF to develop solutions while 476 

using the smallest TRS results in pump schedules that are developed to keep the storage 477 

tank/s from emptying (e.g. Figures 7b and 7d for case study 1 and Figures 8b and 8d for case 478 

study 2). For solutions developed while using the larger TRSs, pump usage is moved towards 479 

off-peak ET times of the day in an attempt to reduce pumping operational costs. However, 480 

pumping operational GHG emissions are minimized by pumping more consistently 481 

throughout the day in order to reduce pipe frictional energy losses (e.g. Figure 7d for case 482 

study 1 and Figure 8d for case study 2). This occurs because the average EF does not 483 

consider the time-dependency of EFs and hence the only way to reduce pumping operational 484 

GHG emissions is to reduce pump energy usage. As such, greater trade-offs between costs 485 

and GHG emissions and reduced benefits to reducing GHG emissions by using a larger TRS 486 

are seen when using an average EF than when using time-dependent EFs to evaluate pumping 487 

operational GHG emissions. 488 

 489 

4.3 Discussion of Real World Implications 490 

The general characteristics of the results suggest that increasing TRS can help to reduce GHG 491 

emissions. This is achieved by utilizing the larger water storage to move the majority of 492 

pumping operations to only the off-peak ET/low EF times of the day. However, this can only 493 

reduce GHG emissions to a certain extent, as past a certain TRS, the reduction in pumping 494 

operational GHG emissions will be outweighed by an increase in construction GHG 495 

emissions associated with the larger TRS itself. Additionally, using a larger TRS significantly 496 

increases construction costs, which in some cases could be prohibitively high. The general 497 



characteristics of the results also suggest that the selection of economic and GHG emissions 498 

discount rate values is important. In general, decreasing the economic/GHG emissions 499 

discount rate can increase the benefit of using a larger TRS with respect to minimizing cost 500 

and GHG emissions. 501 

 502 

However, the above findings are only applicable when the estimated 24-hour EF curve is 503 

used, as when the average EF is used, decreased or no benefits associated with using a larger 504 

TRS are seen. Instead, the results suggest that using a smaller TRS may be beneficial to the 505 

minimization of costs and GHG emissions. Additionally, the results suggest that using the 506 

average EF increases the trade-offs between costs and GHG emissions of the developed 507 

solutions, as pump schedules prioritizing the minimization of costs move pumping to off-508 

peak ET times, while pump schedules prioritizing the minimization of GHG emissions pump 509 

more consistently throughout the day. As such, it is suggested that when designing a WDS, 510 

the engineer should use the best available EF data when analyzing TRS requirements. 511 

 512 

The general characteristics of the results suggest that when the emissions intensity of 513 

electricity fluctuates on a daily basis, there may be benefit to selecting a larger TRS in order 514 

to reduce GHG emissions. These benefits are due to the larger TRSs’ ability to store water for 515 

longer periods without pumping, therefore allowing for an operational management strategy 516 

whereby pumping is moved to the low EF times of the day. As shown by Stokes et al. 517 

(2014a), the effectiveness of this strategy increases as the magnitude of time-dependent EF 518 

fluctuations increase, such as when large amounts of wind generation capacity are present 519 

within an electricity grid. As many regions around the world, such as in Denmark, Spain and 520 

several states in Germany and the United States of America, have wind generation capacity at 521 



similar or higher levels than the South Australian electricity grid used in this study (Stokes et 522 

al. 2014a), considering the use of increased tank volumes may be beneficial for reducing the 523 

carbon footprints of water utilities in these regions.  524 

 525 

It should be noted that the results presented in this paper are case study dependent. For 526 

example, this study is focused on the time-of-use of pumping, with the resultant minimization 527 

of costs and GHG emissions being dependent on the timing and structure of the electricity 528 

tariff and time-dependent emissions factors used. As these properties are regionally 529 

dependent, results are likely to be affected by the region where the study originates, and it is 530 

therefore important to consider this dependency. While timing of the case study time-531 

dependent emissions factors align with those of the electricity tariffs, this may not always be 532 

the case. Increased differences between these are likely to increase the tradeoffs between 533 

pumping costs and GHG emissions and potentially affect the optimal choice of storage tank 534 

size. Additionally, the costs and GHG emissions associated with the storage tank can affect 535 

the resulting minimization of costs and GHG emissions of using a different TRS, and must 536 

therefore be carefully considered. While the costs and GHG emissions associated with each 537 

TRS used in this paper are calculated using the assumption of a ground level, circular 538 

reinforced concrete structure, other storage tank designs are in use by different water utilities 539 

and this can change the costs and GHG emissions associated with the storage tank.  540 

 541 

While the results of this study relate to the minimization of costs and GHG emissions, the 542 

effect of TRS on water quality and system reliability have not been considered. For example, 543 

longer water detention times associated with larger storage volume can increase water age 544 

and consequently reduce water quality, due to the degradation of residual disinfectant which 545 



can lead to microbiological growth (Walski 2000). Conversely, a larger storage volume can 546 

also increase the reliability of a WDS, due to additional water being available in the event of 547 

pump failure or pipe burst (Walski 2000). These factors are important and should also be 548 

considered when selecting the size of water storage tanks. 549 

  550 



5 SUMMARY 551 

In this paper, the effect of changing tank reserve size (the volume of water used for hydraulic 552 

balancing under normal conditions) on the optimal design and operational of water 553 

distribution systems for the minimization of costs and GHG emissions is considered (refer to 554 

Aim 1). Additionally, this effect is investigated when using either an estimated 24-hour 555 

emissions factor curve, which allows consideration of the time-dependency of EFs, or an 556 

average EF, which does not (refer to Aim 2). 557 

 558 

In summary, the results show that when the emissions intensity of electricity fluctuates during 559 

each day, using a larger TRS can help to reduce GHG emissions. While this reduction may 560 

not be large, with the results suggesting GHG emissions reductions of 2-4% for a new WDS, 561 

they occur with no increase in cost. This occurs because the larger TRS allows pumping to be 562 

moved to the low EF times of the day, which is also when the off-peak tariff is in effect. As 563 

previously discussed, when larger EF fluctuations are seen, such as when large amounts of 564 

wind generation capacity are installed within an electricity grid, the effect of moving 565 

pumping to low EF times of the day is intensified and therefore resulting reductions of GHG 566 

emissions could be increased (Stokes et al. 2014a). However, these results are not seen when 567 

an average EF is used to evaluate pumping operational GHG emissions. As such, the general 568 

characteristics of the results suggest that when time-varying EF fluctuations occur over each 569 

day, using a larger EF may help to reduce GHG emissions. However, when these fluctuations 570 

do not occur, or are not considered when evaluating pumping operational GHG emissions, no 571 

cost or GHG emissions reduction benefits will result from increasing the TRS. 572 

 573 



While water quality was not considered in this study, it is an important factor that can be 574 

affected by storage tank size. As such, water quality analysis could also be considered as an 575 

objective for selecting storage tank size. 576 
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 723 

Figure 1. The two pump, one tank WDS used for the first case study, with pipe identification 724 

numbers shown  725 

 726 

 727 



Figure 2. The D-town WDS, modified from the original Battle of the Water Networks II 728 

system, as used for the second case study  729 

 730 

 731 

Figure 3. Outline of the methodology used for the multi-objective optimization of the case 732 

study WDSs for the minimization of costs and GHG emissions 733 

 734 



 735 

Figure 4. Estimated 24-hour EF curve [taken from Stokes et al. (2014a)] used to calculate 736 

operational GHG emissions associated with the use of electricity (solid line). The average EF 737 

value is shown for comparison (dashed line).  738 

 739 

 740 

Figure 5. Case study 1 non-dominated solutions for each TRS scenario using (a) the 741 

estimated 24-hour EF curve and (b) the average EF to evaluate pumping operational GHG 742 

emissions 743 



 744 

 745 

Figure 6. Case study 2 non-dominated solutions for each TRS scenario using (a) the 746 

estimated 24-hour EF curve and (b) the average EF to evaluate pumping operational GHG 747 

emissions 748 

 749 

 750 



Figure 7. Pump utilization for lowest cost solutions (a, b) and lowest GHG emissions 751 

solutions (c, d) for the first case study, found while using the estimated 24-hour EF curve (a, 752 

c) and the average EF (b, d) 753 

 754 

 755 

Figure 8. Pump utilization for lowest cost solutions (a, b) and lowest GHG emissions 756 

solutions (c, d) for the second case study, found while using the estimated 24-hour EF curve 757 

(a, c) and the average EF (b, d) 758 

  759 



Table 1. Tank reserve size volumes and associated costs and GHG emissions for each tank 760 

reserve size scenario used for each case study. Tank volumes do not include emergency or 761 

fire storage. 762 

Case Study 1 Case Study 2 

TRS^ 

Scenario 

Tank 

Volume 

(m3) 

Estimated 

Cost ($M) 

Estimated 

Emissions^^ 

(kt CO2-e) 

TRS^ 

Scenario 

Vol. of 

Tank(s) 

(m3) 

Estimated 

Cost ($M) 

Estimated 

Emissions^^ 

(kt CO2-e) 

3 hour 754 0.93 0.02 Original* 9500 1.96 0.29 

6 hour 1496 1.02 0.04 6 hour 11083 2.15 0.34 

12 hour 3017 1.20 0.07 12 hour 14017 2.50 0.43 

24 hour 6026 1.55 0.12 24 hour 24560 3.74 0.69 

^Tank Reserve Size 

 

 

 

^^Based on the embodied energy of materials used to construct the storage tank 

*Based on tank sizes of the original D-town WDS for the Battle of the Water Networks II, which gives a TRS of 

2.5 hours 
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