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Experimental verification of pipeline frequency response extraction and leak 

detection using the inverse repeat signal 

ABSTRACT 

This paper presents the original design of a side-discharge valve based transient generator that can generate 

two types of pseudorandom binary signals: the maximum length binary signal and the inverse repeat signal 

(IRS). These two signals are both wide bandwidth, persistent and periodic, but the IRS has the 

advantageous property that it is antisymmetric within each period. The two signals are used to extract the 

frequency response function (FRF) of a single water pipeline in the laboratory. The experimental results 

demonstrate that the FRF extracted by the IRS is closer to the theoretical linear results as obtained from the 

transfer matrix method due to it being able to cancel the effect of even-order nonlinearities. The customised 

transient generator is then applied to a pipeline with a leak. The location of the leak is successfully 

determined using the first three resonant peaks as extracted by the IRS.  

Keywords: fluid transient; frequency response function; leak; pipeline; pseudorandom binary 

signal; water hammer. 

1. Introduction 

The analysis of the dynamic response of pressurised pipeline systems is essential for the design, 

operation and also for the integrity monitoring of the system. In hydraulic pipeline systems, 

dynamic analysis is typically conducted by introducing a transient or water hammer wave into the 

system and then measuring and analysing the pressure response at a given location. The system 

response function, which is known as the frequency response function (FRF) in the frequency 

domain (Ljung, 1999), gives information about the physical characteristics of a pipeline system.  

Frequency-domain analysis is of particular interest since it allows the study of the 

frequency dependent effects, such as fluid-structure interaction (Tijsseling, 1996) and unsteady 

friction (Vítkovský, Stephens, Bergant, Simpson, & Lambert, 2006). In the last decade, the 

analysis of the FRF of pipeline systems under linear system theory has also been used in integrity 

monitoring of water pipelines, such as the detection of leaks (Covas, Ramos, & de Almeida, 

2005; Duan, Lee, Ghidaoui, & Tung, 2011; Gong, Lambert, Simpson, & Zecchin, 2013, 2014; 

Lee, Vítkovský, Lambert, Simpson, & Liggett, 2005a, 2005b; Mpesha, Gassman, & Chaudhry, 

2001; Sattar & Chaudhry, 2008), discrete blockages (Lee, Vítkovský, Lambert, Simpson, & 

Liggett, 2008; Sattar, Chaudhry, & Kassem, 2008), extended blockages (Duan, Lee, Ghidaoui, & 



 

Tung, 2012, 2013), and general parameter identification (Zecchin, White, Lambert, & Simpson, 

2013).  

Experimental verifications of the FRF-based techniques, however, are limited. One 

important factor that impedes the application is that the linear system FRF of a real pipeline is 

difficult to obtain. The generation of an appropriate excitation transient signal is challenging 

because of high back-pressure in the pipeline and limitations in the manoeuvrability of valves or 

other hydraulic components that are used as the signal generator (Lee, Vítkovský, Lambert, & 

Simpson, 2008). In early studies, the extraction of the FRF of a pipeline was conducted through 

oscillating specially designed valves or hydraulic components at a number of frequencies in 

sequence, which is known as a frequency sweep (or sine-sweep) (Svingen, 1996). An alternative 

to the time-consuming frequency sweeping technique is to extract the FRF within a single 

operation using a wide bandwidth input signal. Side-discharge valves are typically used to 

generate pulse or step signals in pressurised pipelines (Lee, Lambert, Simpson, Vítkovský, & 

Liggett, 2006). The pulse signal needs to be sharp and its amplitude has to be large enough to 

ensure a sufficient signal-to-noise ratio (SNR) in the high frequency components. However, the 

large amplitude requirements of the pulse signal may also risk damage to the pipeline system 

(Lee, Vítkovský, Lambert, & Simpson, 2008). 

 A desirable transient excitation signal for the linear system FRF extraction should have a 

wide bandwidth, high SNR and low amplitude. Developments in other disciplines have shown 

that the pseudorandom binary signal (PRBS), which is a sequence with values of 1 and 0, has 

these desired characteristics (Godfrey, 1993; Tan & Godfrey, 2002). The PRBS is predetermined 

and periodic. Its spectrum has a wide bandwidth. When repeated period by period, the periodicity 

enables the SNR to be increased by synchronous averaging of the response periods, and the 

persistency allows the energy to be distributed over a long time period so that the amplitude of the 

signal can be small.  

In the application to pressurised water pipeline systems, Liou (1998) conducted numerical 

studies on IRF extraction of a pipeline using the maximum length binary signal (MLBS) which is 

the most commonly used type of PRBS. Lee, Vítkovský, Lambert, & Simpson (2008) designed 

and fabricated the first side-discharge valve-based transient generator for the extraction of the 

FRF of a pipeline in the laboratory using MLBS (referred to as PRBS in that paper). The valve 

was electronically controlled by a single solenoid to produce discrete pulse sequences that follow 

a MLBS-based pattern. A pulse was generated by abruptly opening and then closing the side-

discharge valve when a digit ‘1’ was encountered in a MLBS sequence. However, the discrete 



 

pulse sequence is not the standard signal form for PRBS-based system identification, where the 

continuous form is desired.   

Another particular challenge for the application of FRF-based pipeline fault detection is 

the linearisation error. All the existing FRF-based pipeline fault detection techniques were 

developed using linear systems theory. However, like most systems in the real world, pipeline 

systems also have nonlinearities. For unsteady pipe flow, the friction term is nonlinear, and the 

governing equations of some hydraulic components, such as oscillating valves, orifices and leaks, 

are also nonlinear (Chaudhry, 1987; Wylie & Streeter, 1993). The nonlinearity is constant in 

repeated tests and different from experimental uncertainties or measurement noise that is more 

stochastic in nature and can be reduced by averaging the results of multiple tests. Linearisation is 

used in the development of FRF-based pipeline fault detection techniques, and as a result, 

linearisation error is introduced. The linearisation error can have great impact on the accuracy of 

the FRF-based pipeline integrity assessment, because discrepancies are expected between the 

FRF as predicted by the linear model and that measured from real pipeline systems. The 

linearisation error associated with an oscillating valve was discussed in Lee, Vítkovský, Lambert, 

Simpson, & Liggett (2002), Lee et al. (2005a), Lee and Vitkovsky (2010), Lee (2013), Gong, 

Lambert, Zecchin, & Simpson (2011) and Gong, Lambert et al. (2013) by numerical analysis, and 

it was found that the linearisation error is proportional to the normalised amplitude of the valve 

oscillation. However, until now, there has no experimental study on how to reduce the effects of 

nonlinearity on the extracted pipeline FRF. 

This research addresses the challenge of FRF extraction of real pipelines and the 

linearisation error in FRF-based pipeline fault detection. It proposes a practical technique for 

extracting the linear system FRF of pressurised pipelines for the purpose of leak detection. A 

side-discharge valve controlled by two solenoids has been designed and fabricated as a transient 

generator for FRF extraction using persistent MLBS and inverse repeat binary signal (IRS), 

which is obtained by doubling the MLBS and inverting every other digit of the double sequence. 

Research in other disciplines shows that IRS is more suitable for extracting the linear dynamics of 

a system, especially when the system has some nonlinearities (Godfrey, 1993). Laboratory 

experiments were conducted in a reservoir-pipeline-valve (RPV) system, with three different 

values of the amplitude of valve perturbation, to determine the FRF. In each case study, 

experimental FRF results extracted by MLBS and IRS respectively were compared with the 

theoretical linear system FRF obtained from the transfer matrix method. The experimental results 

verify that the IRS is better than MLBS in terms of extracting the linear FRF of a pipeline system. 

An orifice is then placed on the pipe wall to simulate a leak and IRS is used to extract the FRF. 



 

The location of the leak is successfully determined from the first three resonant responses, which 

verifies the usefulness of the proposed pipeline linear FRF extraction technique. 

2. Inverse repeat binary signal  

Research in other disciplines has shown that, compared to the MLBS, the antisymmetric inverse 

repeat binary signal (IRS) can yield to a better estimation of the linear dynamics of a system when 

some nonlinearities are present (Godfrey, 1993; Roinila, Vilkko, & Suntio, 2010). To illustrate 

this, the output signal of a sampled nonlinear system can be represented as a Volterra series 

expansion (Godfrey, 1993): 

 
1 2

1

1
0

2 1 2 1 2
0 0

1 1
0 0

( ) ( ) ( )

( , ) ( ) ( )

( , , ) ( ) ( )
i

M

k

M M

k k

M M

i i i
k k

y n s k x n k

s k k x n k x n k

s k k x n k x n k



 

 

 

   

  





 



  

 (1) 

where ( )y n  and ( )x n  are system output and input, respectively; M is the length of total data 

sequence of interest; 1s is the linear kernel of system dynamics and 2 , , is s are the nonlinear 

kernels. The cross-correlation function ( )xy n  between the input and the output can then be 

written as: 
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where 1( ) ( )xx xx in k n k    represents the i th order autocorrelation function of the input and it 

can be described by  
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Under linear time invariant systems theory, the FRF is the ratio of the Fourier transform 

of the cross-correlation between the input and the output [ ( )xy n ] to that of the autocorrelation of 



 

the input [ ( )xx n ].The even kernel components shown in Eq. (2) are cancelled out if the input 

signal is periodic and antisymmetric, i.e. ( ) ( / 2)x n x n P    where P  is the number of digits in 

one period (Godfrey, 1993; Roinila et al., 2010). Once the nonlinear effect caused by the second-

order kernel ( 2s ) is removed, which is usually the dominating nonlinear kernel, the FRF as 

calculated is close to the linear part of the system dynamics. Because the linear system FRF is 

required in the FRF-based pipeline fault detection, the antisymmetric IRS is believed to be more 

suitable for extracting the linear system FRF of a pipeline system for this purpose. 

3. Experimental apparatus 

A customised side-discharge valve-based transient generator was developed in the laboratory to 

generate MLBS and IRS transient pressure signals within a pressurised pipeline for the purpose of 

FRF extraction. A schematic diagram of this transient generator is given in Fig. 1. A brass block 

with a small diameter hole (2 mm as the minimum) drilled through the long axis forms the 

conduit for the water to escape from the pipeline. A rod with 3 mm diameter and connected with 

the shaft of the two solenoids controls the valve opening. Compared to the single solenoid design 

in Lee, Vítkovský, Lambert, and Simpson (2008), the use of two solenoids acting in different 

directions enables a much faster manoeuvre for both opening and closure. The rod is also 

connected with a linear voltage displacement transducer (LVDT) at the top to measure its 

movement during signal generation. The calibrated equivalent opening of the valve ( d VC A ), 

when fully open, is 62.7 10  m2. The opening of the side-discharge valve is very small 

compared to the cross sectional area of any municipal water pipelines so that the valve would not 

have any significant effects on the resonant frequencies of a pipeline system. 
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Figure 1 (a) Customized transient generator used for generating MLBS and IRS, and (b) cross-

section of the conduit where the vertical rod locates. 

The two solenoids, which are electronically controlled by an external PRBS signal 

generator, drive the rod to oscillate between two positions (valve fully open and partially closed). 

The rod moves only when there is a shift in the binary value of the PRBS. When the MLBS or 

IRS changes from 1 to 0, the solenoids drive the valve from fully open to partially closed and the 

valve remains partially closed until the binary value changes back to 1, which triggers the 

solenoids to open the valve fully. For example, if the binary sequence is ‘1101’, the valve 

presented in this paper will remain open for the first two steps, became partially closed in the 

third step, then open and keeps open until another ‘0’ is encountered. As a result, the opening of 

the valve follows a continuous form of MLBS or IRS, which is the desirable form of signal for 

system identification.  

The movement of the rod is converted into an equivalent dimensionless valve opening 

coefficient, which is defined as  d V d V s
C A C A  , where the subscript s  represents steady-state 

reference value (Chaudhry, 1987). The average value of   during the steady oscillatory condition 

is represented by 0 . The normalised   perturbation, 0 0( ) /   , is used as the input to the 

pipeline system. The normalised amplitude of the valve oscillation, 0 0max( ) /inA     , is 

adjustable (i.e. the maximum displacement of the oscillating rod is adjustable). 
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The MLBS is generated by a 10-stage shift register based on a clock frequency of 100 Hz. 

As a result, its period is 10.23 s. The IRS is obtained by doubling the MLBS and reversing every 

other digit, so that the period of the IRS is 20.46 s. The bandwidth of the MLBS and the IRS 

(where the power of the signal drops to half the maximum) are both 44.3 Hz. The MLBS and the 

IRS can be generated continuously to produce a persistent MLBS or IRS perturbation in the 

opening of the valve.    

The customised valve is connected to an experimental pipeline in the Robin Hydraulics 

Laboratory in the University of Adelaide. A schematic diagram of the experimental pipeline 

system is given in Fig. 2. The pipeline is made of copper and has a length of 37.53 m and an 

internal diameter of 22 mm. The pipeline is bounded by a closed in-line valve at one end and a 

pressurised tank with a head of 38.50 m at the other end, forming a reservoir-pipeline-valve 

(RPV) system. For a RPV system, the upstream side of the valve is the optimal excitation and 

observation point (Lee et al., 2006). The customised side-discharge valve-based generator is 

located 145 mm upstream from the closed in-line valve, and it has an elevation of 2.0 m above the 

upstream end of the pipeline. The head response of the pipeline system is measured upstream of 

the generator by a pressure transducer (Druck PDCR 810) mounted on the main pipe. The output 

of the transducer is connected to a customised amplifier and then collected by a data acquisition 

card (Measurement Computing USB-1608FS). The output of the LVDT (movement of the rod) is 

also recorded by the data acquisition card. The data acquisition is controlled by LabView 

software installed on a laptop computer. The sampling frequency used in this research is 5 kHz.  

 

Figure 2 Schematic diagram of the experimental pipeline used in this research. 

4. Experimental extraction of the FRF using MLBS and IRS 

Three case studies have been conducted in the laboratory with a range of amplitudes of the 

relative dimensionless valve perturbation, inA . In each case study, both the MLBS and the IRS 
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input signals were used, and the experimental FRF of the pipeline was estimated and compared 

with the theoretical linear theory FRF determined from the transfer matrix method (Chaudhry, 

1987). The repeatability was confirmed by conducting multiple tests in each case study. When the 

side-discharge valve was fully open, the steady-state flow through the side-discharge valve was 

57.4 10 m3s-1.  The corresponding Reynold’s number is calculated as approximately 4268 and 

the flow regime is smooth pipe turbulent flow. As a result, the frequency-domain unsteady 

friction model developed by Vítkovský et al. (2003) was used in the numerical simulations to 

derive the theoretical FRD. This unsteady friction model is based on the smooth pipe unsteady 

friction weighting function proposed by Vardy and Brown (2003).  

In the experimental study conducted, each individual experiment lasted for 10 minutes. 

The first few seconds of data were measured under steady state (with the side-discharge valve 

open) to observe the initial steady-state head variation of the system. Then the IRS, or MLBS, 

excitation was started. It was observed that the pressure in the pressurised tank became relatively 

stable after approximate 150 s of the start of the IRS or MLBS excitation. This is the time needed 

for the pressure regulator on the tank to adapt to the new condition imposed by the oscillating 

valve. As a result, in the process of the experimental FRF estimation, the first 245.52 s of data (24 

periods of MLBS or 12 periods of IRS) in each test were removed to ensure that the data used in 

FRF calculation were under steady oscillatory flow conditions.  

4.1. Case study No.1: input signal amplitude 0.5inA   

Discharge from the valve was measured using a volumetric method during each test. In this case 

study, the steady-state discharge when the valve was at its most closed position was 52.7 10

m3s-1, and the mean discharge out of the valve during MLBS or IRS excitation was measured as 

54.8 10 m3s-1. The Darcy-Weisbach friction factor was estimated as 0.04 by the mean discharge 

and it was used in the determination of the theoretical linear FRF using the transfer matrix 

method.  

The normalised IRS   perturbation (input) and the corresponding head perturbation 

(output) are given in Figs. 3 and 4. The envelopes of the power spectrum of these two signals are 

given in Figs. 5a and 5b. The measurements of the MLBS   perturbation and its corresponding 

head response are not shown in the paper (for any of the three case studies) for the sake of 

brevity. 



 

 

Figure 3 Normalised IRS   perturbation (input) in the case study No.1. 

 

 

Figure 4 Head perturbation (output) in the case study No.1. 
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Figure 5 Envelope of power spectrum: (a) the normalised IRS   perturbation (input); and (b) the 

head perturbation (output) for case study No.1. 

The measured valve perturbation (Fig. 3) follows an IRS pattern, but with small 

variations due to the mechanics of the side-discharge valve. Those small variations are considered 

as part of the input signal in the FRF determination so the effects resulting from them are not 

significant. The measured head response (Fig. 4) shows little visible structure in the time domain, 

and the maximum magnitude is approximate 28 m. The power spectrum of the input (Fig. 5a) 

shows the frequency components included and their strength. Note that, for IRS, theoretically 

power shall be nil at half the clock frequency (Godfrey, 1993). The experimental spectrum as 

shown in Fig. 5a is very low at the 50 Hz (clock frequency is 100 Hz), which is consistent with 

the theory. The power spectrum of the output (Fig. 5b) demonstrates that the frequency response 

of the system reaches peaks at the odd harmonics of the fundamental frequency, and the 

responses at the first three harmonics are relatively strong. 

The pipeline FRF is determined using linear systems theory from the data measured in the 

IRS and the MLBS experiments. The results of the experimental FRF in this case study are shown 

in Fig. 6 with comparison to the theoretical linear system FRF. Each FRF is normalised by 

dividing it by the corresponding peak value around the first resonant frequency. The horizontal 

axis is normalised by dividing the frequency values by the fundamental frequency of the pipeline, 

which was estimated as 8.94 Hz from the extracted FRF. 
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Figure 6 Comparison between the experimental FRF induced by IRS and MLBS excitation with 

the theoretical FRF in case study No.1. 

It can be seen from Fig. 6 that the experimental FRF results show significant variations 

when compared with the smooth theoretical linear FRF. In the experimental FRF determined 

from MLBS, the third peak is greater than the second peak, while the theoretical FRF shows that 

the third peak should be the smallest one. Note that the relative sizes of the resonant responses are 

important in FRF-based pipeline leak or blockage detection. Experimental FRF with such degree 

of variation would lead to significant error in fault detection. A major source of these variations is 

attributed to the nonlinearity associated with the oscillating valve. In this case study, the 

amplitude of the normalised   perturbation ( inA ) is approximately 0.5, which can introduce a 

significant linearisation error in the linearised frequency-domain analysis (Lee & Vitkovsky, 

2010; Lee et al., 2005a), because the linearised transfer matrix for an oscillating valve is just first-

order accurate for small valve perturbations given that 1inA � .  

It is important to compare the FRF results between the MLBS and the IRS. From Fig. 6, 

the FRF induced by IRS is much smoother when compared with that obtained from MLBS. In 
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addition, the resonant frequencies as shown in the FRF from IRS are closer to the theoretical 

resonant frequencies. The FRFs from MLBS and from IRS were obtained using the same 

experimental apparatus and the same FRF calculation algorithm. The only difference was in the 

properties of the input signal: the IRS is antisymmetric but the MLBS is not. The discrepancy 

between the two experimental FRFs indicates that the properties of the input signal can have great 

influence on the FRF extracted, and the IRS is better in estimating the linear system FRF of a 

pipeline system.   

4.2. Case study No.2: input signal amplitude 0.2inA   

In the second case study, the maximum allowable displacement of the rod in the customised side-

discharge valve was reduced to lessen the nonlinear effects as imposed by the valve perturbation. 

The steady-state discharge when the valve was at its most closed position was 55.9 10 m3s-1, and 

the mean discharge out of the valve was 56.5 10 m3s-1 under steady-oscillatory flow condition. 

The Darcy-Weisbach friction factor was 0.041. Sections of the normalised IRS   perturbation 

(input) and its corresponding head perturbation (output) in this case study are shown in Figs. 7 

and 8 respectively. 

 

Figure 7 Normalised IRS   perturbation (input) in the case study No.2. 
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Figure 8 Head perturbation (output) in the case study No.2.  

In the second case study, the magnitude of the head perturbation was decreased to 

approximately 11 m (Fig. 8). This indicates that the magnitude of the head perturbation under 

PRBS excitation is controllable by the value of inA , and thus it can be adjusted to cater for 

various situations to eliminate the risk of damaging the pipeline. This experimental finding is 

consistent with the theoretical analysis presented in Lee et al. (2005b), which concludes that the 

magnitude of the resonant head response induced by an oscillating valve is proportional to the 

amplitude of valve perturbation. 

The experimental FRF induced by the IRS and the MLBS are estimated and compared 

with the theoretical linear FRF in Fig. 9. The amplitude of valve oscillation in Case No. 2 is much 

smaller than that in Case No.1, thus theoretically the nonlinearity induced by the oscillating valve 

should be smaller (Lee & Vitkovsky, 2010; Lee et al., 2005a). The results of Case No. 2 show 

that both the experimental FRFs are close to the theoretical linear results in terms of the peak 

values and the resonant frequencies, and they are much smoother than those in Case No.1 (Fig. 

6). This finding is consistent with previous numerical studies in Gong, Simpson, et al. (2013) and 

it confirms that the significant variation in frequency responses in Case No. 1 is induced by the 

nonlinear response of the system. It also provides experimental verification that the amplitude of 

the valve perturbation can significantly affect the accuracy of the FRF estimation. A smaller 

amplitude in the valve perturbation yields a better estimate of the linear FRF (with less variation). 

The experimental FRF extracted using IRS is even more consistent than that induced by MLBS. 

This once again verifies that the IRS is better in estimating the linear dynamics of a pipeline 

system than the MLBS. 
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Figure 9 Comparison between the experimental FRF induced by IRS and MLBS excitation with 

the theoretical FRF in case study No.2. 

4.3. Case study No.3: input signal amplitude 0.06inA   

A third case study was considered with an even smaller amplitude of the valve perturbation (

inA  0.06). The steady-state discharge when the valve was at its most closed position was 

57.0 10 m3s-1, and the mean discharge out of the valve was 57.2 10 m3s-1 under steady-

oscillatory condition. The Darcy-Weisbach friction factor was 0.04. Sections of the normalised 

IRS   perturbation (input), and its corresponding head perturbation (output), in this case study, 

are shown in Figs. 10 and 11 respectively.  
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Figure 10 Normalised IRS   perturbation (input) in the case study No.3. 

 

Figure 11 head perturbation (output) in the case study No.3. 

In the third case study, the magnitude of the head perturbation (Fig. 11) was further 

decreased to approximately  3 m. The experimental FRF extracted by using the IRS and the 

MLBS are estimated and the results are compared with the theoretical FRF in Fig. 12. 
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Figure 12 Comparison between the experimental FRF induced by IRS and MLBS excitation with 

the theoretical FRF in case study No.3. 

Compared to the results obtained in the Case No.2 (Fig. 9), both the experimental FRF 

results extracted in Case No.3 show a greater discrepancy from the theoretical FRF. Other than 

the effects of nonlinearity, which is believed to be mild in this case study since inA  is small, the 

error in the experimental FRF is related to the low signal-to-noise ratio (SNR) in the 

measurement. The measurement noise is mainly from the background pressure fluctuations in the 

system resulting from the turbulence created at the side-discharge valve. When the side-discharge 

valve was fully open and remained fully open, the background pressure fluctuations observed by 

the transducer were approximately ±1 m in magnitude. In comparison, the transient pressure 

waves used in Case 3 (induced by oscillating the valve), were just approximately ±3 m. In the 

experimental FRF extracted by IRS, a spike is observed at 50 Hz. This is a false response and 

attributed to the low signal power of the IRS at this frequency (therefore low SNR), as discussed 

in Fig. 5a. 
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Overall, the experimental results of the three case studies verify that greater valve 

perturbation introduces greater nonlinearity. The IRS yields better estimation of the linear FRF of 

a pipeline than the MLBS when the nonlinear effect is significant. Because the linear system FRF 

is required in existing FRF-based pipeline integrity assessment techniques, the IRS is 

recommended to be used for extracting the linear system FRF of a pipeline system. 

5. Application to leak detection 

A free discharging orifice with a diameter of 2 mm was located at 31.21 m downstream from the 

tank to simulate a leak. The dimensionless leak location, which is defined as the ratio of the 

distance between leak and tank to the total length of the pipeline, is calculated as *
Lx  = 0.8316. 

IRS with an amplitude of inA  0.2 was used as the excitation signal to extract the experimental 

FRF, and the results are given in Fig. 13. It can be seen that the experimental FRF is close to the 

theoretical linear FRF as derived from the transfer matrix method with unsteady friction. 

 

Figure 13 Experimental and theoretical FRF for a pipeline with a leak. 

The leak detection technique proposed in Gong, Lambert, et al. (2013) is used to 

determine the location of the leak. This technique uses the relative sizes of the first three resonant 

peaks to determine the dimensionless leak location. When the FRF is normalised by the first 

resonant peak (i.e. the first peak is set to unity), the algorithm can be written as 
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where 
*

3
h  and 

*

5
h  are the values of the normalised frequency responses at the second and the 

third resonant peaks  (which are the third and the fifth harmonics of the fundamental frequency of 

the pipeline). The values are read as 
*

3
h = 1.25 and 

*

5
h = 1.54 from the experimental FRF. As 

*

3
h

>1, this indicates that the leak location * (0.5,1)Lx  . As a result, the experimental leak location as 

determined from Eq. (4) is 0.8115, which has an absolute error of 0.02 when compared with the 

real location 0.8316. The experimental results demonstrate that the customised PRBS transient 

generator is able to extract the linear system FRF of a pipeline system with enough accuracy for 

accurate leak detection.  

6. Challenges in the field 

This research has proposed a technique for extracting the linear system FRF of a water pipeline 

for the purpose of leak detection, and it has been verified by laboratory experiments. However, 

challenges are expected in field applications.  

The customised side-discharge valve is a tool to extract the linear system FRF of a 

pipeline system. It can be applied to any pressurised pipelines with various materials.  A practical 

issue for the customised side-discharge valve itself is that a cooling system is required to ensure 

the solenoids do not overheat. In the laboratory, an air cooling system was used which blows air 

around the solenoids. A similar air cooling system can be developed and used in the field. 

Current FRF-based leak detection techniques require the pipeline system has a 

configuration equivalent to reservoir-pipeline-valve or reservoir-pipeline-reservoir. This 

requirement is sometimes difficult to meet in complex pipeline networks. A possible solution is to 

close an inline valve at one end of a branch and assuming the open boundary on the other end is 

acting as a reservoir (Lee et al., 2005a). The customised side-discharge valve and a pressure 

transducer can be connected to the upstream side of the closed inline valve to make excitation and 

take measurement.   

7. Conclusions 

This paper presents a technique for extracting the linear frequency response function (FRF) of a 

pressurised pipeline for the purpose of FRF-based pipeline leak detection. Both the persistent 

maximum length binary signal (MLBS) and the inverse-repeat signal (IRS) are used as the input. 

The original design of a dual-solenoid side-discharge valve-based transient generator has enabled 

the laboratory experiments.  



 

Three case studies, with different values of valve perturbation magnitudes, have been 

conducted in the laboratory to extract the linear FRF of an intact pipeline. The research provides 

the first experimental verification that greater amplitude of valve perturbation leads to greater 

head perturbations in the system and greater nonlinear responses. When the nonlinearity induced 

by the oscillating valve is significant (see case study No.1), the FRF determined under linear 

systems theory contains significant variations. The relative sizes of the resonant responses are 

difficult to determine accurately, and therefore, introducing error in the FRF-based leak detection.  

The experimental results also verify, for the first time, that the linear system FRF 

estimation of a real pipeline is affected by the properties of the input signal. Compared to the 

MLBS, the IRS can yield more accurate estimation of the linear system FRF (see Figs 6 and 9). 

The antisymmetric property of IRS enables part of the nonlinear responses of a system to be 

cancelled out in the calculation of the cross-correlation function of the input and the output. 

However, if the amplitude of valve perturbation and the magnitude of the corresponding head 

response are too small relative to the background pressure noise in the pipeline (see case study 

No.3), the signal-to-noise ratio could be poor and the estimated FRF can be affected by 

background pressure noise, which, in this research, is mainly resulting from the turbulence 

created at the side-discharge valve.  

IRS is used to extract the FRF of a pipeline with a leak. The location of the leak is 

successfully determined by applying the leak detection technique proposed by Gong, Lambert, et 

al. (2013) to the first three resonant peaks in the FRF, which verifies the usefulness of the linear 

FRF extraction technique and the leak detection algorithm. This customised side-discharge valve 

provides possibilities for accurate extraction of the linear FRF of pressurised water pipelines in 

practice. Although challenges are expected in the field, this research is a step forward to the 

practical application of FRF-based pipeline leak detection.  
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Notation 

inA = amplitude of the input (-) 

VA = area of valve orifice (m2) 

dC = coefficient of discharge for valve (-) 

k = integer 0, 1, 2 … (-) 

M = the length of total data sequence of interest (-) 

P = number of digits in one period of a signal (-) 

1s = linear kernel of a system (-) 

2, , is s = nonlinear kernels of a system (-) 

 x n = input signal (-) 

 y n = output signal (-) 

*
Lx = dimensionless leak location (-) 

 = dimensionless valve opening (-) 

0 = mean dimensionless valve opening (-) 

( )xx n = autocorrelation of the input (-) 

( )xy n = cross-correlation between the input and the output (-) 
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