Brief report: The differential roles of mTORC1 and mTORC2 in mesenchymal stem cell differentiation
Stem Cells, 2015; 33(4):1359-1365

© 2014 AlphaMed Press

Which has been published in final form at http://dx.doi.org/10.1002/stem.1931

PERMISSIONS
http://olabout.wiley.com/WileyCDA/Section/id-828037.html

Funder Policies
Australian Research Council (ARC) and National Health and Medical Research Council (NHMRC)

ARC and NHMRC funded authors may self-archive the author accepted version of their paper (authors manuscript) after a 12-month embargo period from publication in an open access institutional repository. If articles are made open access following payment of an article publication fee, it is not necessary to archive the author's manuscript, but the metadata must be available in the institutional repository with a link to the published article of record on Wiley Online Library. For more details please see the ARC and NHMRC open access pages at http://www.arc.gov.au/applicants/open_access.htm and http://www.nhmrc.gov.au/grants/policy/dissemination-research-findings

1 July, 2016

http://hdl.handle.net/2440/99585
The differential roles of mTORC1 and mTORC2 in mesenchymal stem cell differentiation.

Sally K. Martin¹²³, Stephen Fitter¹²³, Ankit K. Dutta¹, Mary P. Matthews¹, Carl R. Walkley⁴, Michael N. Hall⁵, Markus A. Ruegg⁵, Stan Gronthos³⁶, Andrew C.W. Zannettino¹²³

¹Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, Australia; ²Centre for Cancer Biology, SA Pathology, Australia; ³Centre for Stem Cell Research, University of Adelaide, Australia; ⁴Stem Cell Regulation Laboratory, St Vincent’s Institute, Melbourne, Australia; ⁵Biozentrum, University of Basel, Switzerland; ⁶Mesenchymal Stem Cell Laboratory, School of Medical Sciences, University of Adelaide, Australia.

Running title: The Role of mTORC1 and mTORC2 in MSC Differentiation.

Keywords: mesenchymal stem cell, mTOR, raptor, rictor

Author contributions: Conceived and designed the experiments: SKM, SF, ACWZ. Performed the experiments: SKM, SF, AKD, MPM. Analysed the data: SKM, SF, AKD, MEM. Contributed reagents, expertise and materials: CRW, MAR, MNH, SG. Wrote the paper: SKM. All authors were involved in the final approval of this manuscript.

Corresponding Author: Dr Sally Martin, Myeloma Research Laboratory, South Australian Health and Medical Research Institute (SAHMRI), PO Box 11060, Adelaide, South Australia, 5001, AUSTRALIA. Phone: +61 8 8128 4694. E-mail: sally.martin@adelaide.edu.au
ABSTRACT

Adipocytes (AdCs) and osteoblasts (OBs) are derived from mesenchymal stem cells (MSCs) and differentiation toward either lineage is both mutually exclusive and transcriptionally controlled. Recent studies implicate the mammalian target of rapamycin (mTOR) pathway as important in determining MSC fate, with inhibition of mTOR promoting OB differentiation and suppressing AdC differentiation. mTOR functions within two distinct multiprotein complexes, mTORC1 and mTORC2, each of which contains the unique adaptor protein, raptor or rictor, respectively. While compounds used to study mTOR signalling, such as rapamycin and related analogues, primarily inhibit mTORC1, prolonged exposure can also disrupt mTORC2 function, confounding interpretation of inhibitor studies. As a result, the relative contribution of mTORC1 and mTORC2 to MSC fate determination remains unclear.

In this study, we generated primary mouse MSCs deficient in either Rptor (RapKO) or Rictor (RicKO) using the Cre/loxP system. Cre-mediated deletion of Rptor or Rictor resulted in impaired mTORC1 and mTORC2 signalling, respectively. Under lineage-inductive culture conditions, RapKO MSC displayed a reduced capacity to form lipid-laden AdCs and an increased capacity to form a mineralised matrix. In contrast, RicKO MSC displayed reduced osteogenic differentiation capacity and enhanced adipogenic differentiation potential. Taken together, our findings reveal distinct roles for mTORC1 and mTORC2 in lineage commitment of MSCs.
INTRODUCTION

Mesenchymal stem cells (MSCs) are multipotent progenitor cells that, in response to extracellular factors and environmental cues, differentiate into several specialised cell types including adipocytes (AdCs) and osteoblasts (OBs). In vitro, lineage specification can be guided by inductive culture conditions. Murine MSC cultures stimulated with glucocorticoid, insulin and indomethacin differentiate into mature lipid-laden AdCs, whereas cultures supplemented with a source of inorganic phosphate and glucocorticoid differentiate into mineralised matrix-producing OBs.

Several signalling pathways have been shown to regulate MSC differentiation in vitro (1-5). The mammalian target of rapamycin (mTOR) pathway is the primary nutrient-sensing pathway that controls cell growth and metabolism. mTOR plays an important role in the adipogenic program, as rapamycin, an allosteric mTOR inhibitor, inhibits adipogenesis (6-10) whilst deletion of TSC2, a negative regulator of mTOR, promotes adipogenesis (10).

The role of mTOR in MSC commitment to other lineages is less clear. Most notably, rapamycin studies have shown to have both inhibitory (11-16) and stimulatory (17-20) effects on osteogenesis, a disparity which may reflect the nature of the target cells used. Furthermore, rapamycin sequesters FKBP12 (21), a negative regulator of TGFβ1 signalling, and thus the pro-osteogenic effects of rapamycin may be the indirect result of TGFβ1 activation.

mTOR exists in two distinct complexes, mTORC1 and mTORC2, each of which is defined by the unique adaptor proteins raptor and rictor, respectively. mTORC1 controls protein synthesis, ribosome biogenesis and nutrient transport (22,23) whereas mTORC2 regulates cell survival, metabolism and cytoskeletal organisation (24). While rapamycin primarily inhibits mTORC1, prolonged exposure can also disrupt mTORC2 function (25,26),
confounding data interpretation with respect to MSC differentiation and the role played by mTORC1 and mTORC2 in osteogenesis.

In the current study we utilised a genetic approach to specifically delete Rptor or Rictor in primary MSCs and examine the roles of mTORC1 and mTORC2 in osteogenic and adipogenic MSC differentiation.

RESULTS

Generation of Rptor and Rictor knockout MSCs. Primary compact bone-derived MSCs were isolated from Rptor^{fl/fl} or Rictor^{fl/fl} mice, and infected with a tamoxifen-inducible self-deleting Cre recombinase (CreER^{T2}) or empty vector as a control. Tamoxifen (4-OHT) treatment induced the nuclear translocation of CreER^{T2}, resulting in Rptor or Rictor deficient MSCs, termed RapKO and RicKO, respectively (Fig. 1A).

Protein levels of RPTOR and RICTOR and the activation status of mTORC1 and mTORC2 downstream effectors was assessed by western immunoblotting. As previously reported (27-29), low levels of residual RPTOR or RICTOR protein expression in RapKO and RicKO cells were observed (Fig. 1B). Consistent with disruption of mTORC1 function, Rptor deletion resulted in decreased S6K phosphorylation, and hyperphosphorylation of Akt_{Thr308}, IRS-1 and FOXO1/3a (Fig. 1B). Rictor deletion resulted in ablation of Akt_{Ser473} phosphorylation, in keeping with mTORC2 substrate specificity (Fig. 1B).

Loss of Rptor, but not Rictor, impairs MSC proliferation. The effect of Rptor or Rictor knockout on MSC growth was examined using WST-1 and BrdU assays. RapKO cells displayed a significant decrease in growth after 3, 5 and 7 days compared to controls (Fig. 1C). In contrast, no difference in proliferation was observed in response to Rictor deletion (Fig. 1D).
To determine whether the inhibition of RapKO cell proliferation was associated with an induction of apoptosis, RapKO and control MSCs were stained with Annexin V and 7-AAD. Whilst no significant difference in Annexin V labelling was observed, a 2-fold increase in 7-AAD positive cells was evident in RapKO MSCs compared to controls (Fig. 1E).

The roles of Rptor and Rictor in osteogenic and adipogenic MSC differentiation. We next examined the ability of RapKO and RicKO cells to differentiate into mature OBs and form a mineralised extracellular matrix (30,31). Under osteoinductive conditions, RapKO cells displayed a 5-fold increase in mineral formation relative to controls (Fig. 2A), whereas RicKO cells displayed a 2-fold decrease in mineral formation (Fig. 2B).

In parallel experiments, the potential of RapKO, RicKO and control MSCs to differentiate into functional AdCs was also assessed. Quantitation of lipid-laden, Nile Red-stained adipocytes, relative to total cell number, showed that deletion of Rptor induced a 1.8-fold decrease in AdC formation, whereas deletion of Rictor resulted in a 1.8-fold increase in AdC formation (Fig. 2C and Fig. 2D).

Loss of Rptor promotes osteogenesis and inhibits adipogenesis. To gain insight into the molecular mechanisms by which Rptor deletion promotes osteogenic MSC differentiation, temporal gene expression analyses were performed. Loss of Rptor induced a strong up-regulation of genes involved in OB differentiation including the osteogenic transcription factors Cbfa-1 (Runx2) and osterix (Sp7), and the marker of OB function, alkaline phosphatase (Alpl) (Fig. 3A). In inductive differentiation media, Rptor deletion was also associated with an increase in the expression of BMP-2 and other osteogenic TGFβ superfamily members such as inhibinβ A chain (Inhba) and inhibinβ E chain (Inhbe). In contrast, expression of integrin binding sialoprotein (Ibsp) was strongly down-regulated in RapKO cultures, as was the expression of noggin (Nog), a negative regulator of BMP signalling (Fig. 3A).
In parallel experiments, the effect of Rptor deletion on molecular markers of AdC differentiation and function was also examined. Consistent with the marked inhibition of AdC formation in RapKO MSCs (Fig. 2C), the expression of Cebpα and Pparg, transcription factors essential for adipogenesis, and adiponectin (Adipoq), a marker of mature adipocytes, was down-regulated in RapKO MSCs at all time points examined (Fig. 3B).

Loss of Rictor promotes adipogenesis and inhibits osteogenesis. We also examined the temporal regulation of adipogenic genes in RicKO and control MSCs during adipogenic differentiation. Consistent with the induction of AdC formation in RicKO MSCs (Fig 2D), the expression of Cebpα, Pparγ and Adipoq was strongly up-regulated in RicKO MSCs at all time points examined (Fig. 4A). Under osteoinductive culture conditions, loss of Rictor was associated with a down-regulation of Runx2, Sp7, Alpl, Bmp2 and Inhba expression (Fig. 4B), consistent with the inhibition of osteogenesis observed in RicKO cells (Fig. 2B).

DISCUSSION

Using Cre-mediated gene deletion and well-established *in vitro* differentiation assays, we have shown that mTORC1 and mTORC2 have distinct roles in MSC fate determination. Consistent with previous studies (reviewed in (32)), deletion of Rptor in MSCs reduced their adipogenic potential. Under osteoinductive conditions however, Rptor deletion promoted osteogenic differentiation. This switching between differentiation programs could reflect the mutual exclusivity of these programs (i.e. enhanced osteogenesis in the absence of mTORC1-mediated PPARγ activation). Alternatively, loss of mTORC1 may maintain the osteogenic potential of MSCs, in line with studies showing that rapamycin attenuates stem cell aging, maintaining their self-renewal and osteogenic potential (33-36), and with *in vivo* studies showing that deletion of p70S6K (mTORC1 effector) protects against age-related bone loss (37).
While further studies are required to characterise the precise mechanism(s) by which mTORC1 inhibition promotes osteogenesis, our PCR data suggests that BMP signalling is involved. Many BMPs are strongly pro-osteogenic (reviewed in (38)), however their role in osteogenesis is complex (39,40), influenced by variables such as dose (41) and BMP receptor subtype (39,42).

In contrast to RapKO cells, Rictor deletion promoted adipogenesis and inhibited osteogenesis, which is consistent with a recent siRNA study which showed that mTORC2 regulation of cytoskeletal organisation plays a role in MSC fate determination in response to mechanical stress (43). These findings suggest that the decreased osteogenic potential of RicKO cells may be associated with impaired cytoskeletal organisation.

Overall, these findings provide new insight into the role of mTOR signalling in MSC lineage commitment.

ACKNOWLEDGEMENTS

The authors thank Dr Kristoffer Riecken (University Medical Centre Hamburg) for the LeGO-iG2 vector and Dr Pierre Chambon (IGBMC, France) for the Cre-ERT2 expression vector. This work was supported by grants awarded by the National Health and Medical Research Council of Australia (APP1030528), a Royal Adelaide Hospital Mary Overton Early Career Fellowship (SKM) and an Australian Postgraduate Award (MPM). The authors gratefully acknowledge the assistance of Kate Pilkington and Rebecca Salmon (Detmold Family Imaging Facility, SA Pathology) with cell sorting.
REFERENCES

FIGURE LEGENDS

Figure 1. Cre-mediated loss of Rptor and Rictor expression in RapKO and RicKO MSCs. (A) Workflow illustrating the generation of RapKO, RicKO and control MSC lines. (B) Rptor^{fl/fl} and Rictor^{fl/fl} MSCs infected with the CreER^{T2} lentivirus were treated with 4-OHT, to induce Rptor or Rictor knockout, or vehicle as a control. Lysates were prepared from control, RapKO and RicKO MSCs and western blot analysis performed using antibodies directed against the proteins indicated. (C, D) RapKO, RicKO and control MSCs were cultured for 7 days and proliferation assessed using WST-1 and BrdU assays. Both cumulative WST-1 data (left) and BrdU data from the Day 7 time point (right) are shown, expressed as the mean ± SD of quintuplicate wells from a representative experiment of three. **p<0.005, ****p<0.0001, t-test. (E) RapKO cells were stained for the apoptotic markers Annexin V and 7-AAD, and analysed immediately by flow cytometry.

Figure 2. Differential roles for Rptor and Rictor in osteogenic and adipogenic MSC differentiation. Rptor^{fl/fl} and Rictor^{fl/fl} MSCs infected with the CreER^{T2} lentivirus or empty vector were treated for 8 days with 4-OHT (+) or vehicle (-). (A, B) Treated cells were cultured under osteoinductive conditions for 21 days and the amount of acid-solubilised calcium was quantitated and normalised to cell number. Data are expressed as the mean ± SD of quadruplicate wells from a representative experiment of three. Representative images of Alizarin Red-stained wells are shown. (C, D) Treated cells were cultured under adipogenic conditions for 8 days. Adipocytes were visualised using Nile Red, and the number of adipocytes quantitated and normalised to total cell number. Data are expressed as the mean ± SD of quadruplicate wells from a representative experiment of three. *p<0.05, **p<0.005, ***p<0.0005, ****p<0.0001, t-test.
Figure 3. Loss of Rptor promotes osteogenesis and inhibits adipogenesis. Raptor^{fl/fl} MSCs infected with the CreER^{T2} lentivirus were treated with vehicle (control) or 4-OHT (RapKO) for 8 days. (A) Treated cells were cultured under osteogenic conditions for 22 days and RNA harvested at the indicated time points. The mRNA level of osteogenic genes was examined by real-time PCR and data were normalised to β-actin. (B) Treated cells were cultured under adipogenic conditions for 8 days and RNA harvested at the indicated time points. The mRNA level of adipogenic genes was examined by real-time PCR and data were normalised to β-actin. *p<0.05, **p<0.005, ***p<0.0005, ****p<0.0001, t-test.

Figure 4. Loss of Rictor promotes adipogenesis and inhibits osteogenesis. Rictor^{fl/fl} MSCs infected with the CreER^{T2} lentivirus were treated with vehicle (control) or 4-OHT (RicKO) for 8 days. (A) Treated cells were cultured under adipogenic conditions for 8 days and RNA harvested at the indicated time points. The mRNA level of adipogenic genes was examined by real-time PCR and data were normalised to β-actin. (B) Treated cells were cultured under osteogenic conditions for 22 days and RNA harvested at the indicated time points. The mRNA level of osteogenic genes was examined by real-time PCR and data were normalised to β-actin. *p<0.05, **p<0.005, ***p<0.0005, ****p<0.0001, t-test.
MATERIALS AND METHODS

Compact bone MSC isolation. Murine compact bone MSCs (CB MSCs) were derived from the long bones of 6-7 week old Rptor^{fl/fl} and Rictor^{fl/fl} mice (1) according to previously established protocols (2), with approval from SA Pathology/CALHN and University of Adelaide Animal Ethics Committees. Briefly, tibiae and femora from 8-12 mice were excised, cleaned thoroughly with a scalpel and epiphyses removed. The bones were then pooled, crushed in ice-cold PBS supplemented with 2% FCS and 2 mM EDTA, washed several times, chopped into small fragments and digested in 3 mg/mL Type 1 collagenase at 37°C (Worthington Biochemical Corporation, NJ, USA) for 45 minutes on a shaking platform. The resultant cell suspension was filtered through a 70 µm strainer, pelleted by centrifugation and lineage depletion performed using a cocktail of biotinylated antibodies to CD3, CD4, CD5, CD8, CD11b, Gr-1, B220, Ter-119 (BioLegend, CA, USA), followed by a streptavidin-APC conjugate (Invitrogen/ Life Technologies, VIC, Australia). Cells were also stained with CD51-PE, CD31-PerCP Cy5.5 (BioLegend), Sca-1-PeCy7 (BD Biosciences, NJ, USA), CD45-eF780 (eBioscience, CA, USA), and fluorogold (Invitrogen) to exclude non-viable cells. Fluorescence Activated Cell Sorting (FACS) was performed to collect Lin-CD45-CD31-CD51-Sca-1+ cells (FACSARia, Becton Dickinson).

FACS-isolated CB MSCs were cultured in α-MEM supplemented with 20% FCS, 2 mM L-glutamine, 100 µM L-ascorbate-2-phosphate, 50 IU/mL penicillin, 50 µg/mL streptomycin sulphate, 1 mM sodium pyruvate and 15 mM HEPES (Sigma Aldrich, NSW, Australia) in a hypoxic in vitro cabinet (5% O₂, 10% CO₂, 85% N₂, Coy Laboratory Products, MI, USA) at 37°C (2). Cells were passaged by detachment with a 0.05% trypsin-EDTA solution upon reaching 80-90% confluence.

Cre-mediated gene deletion. CB MSCs (passages 2-3) were infected with a lentivirus carrying a tamoxifen-inducible self-deleting Cre recombinase (LEGO-CreER^{T2-iG2}), or
empty vector control (LEGO-iG2) (3) in the presence of 4 µg/mL polybrene. CB MSCs with stable lentiviral integration were selected on the basis of GFP expression. Following *in vitro* expansion, cells were treated with 0.5 µM 4-hydroxytamoxifen (4-OHT, Sigma Aldrich) for 8 days to induce Rptor or Rictor deletion. Ethanol (0.05%) was used as a vehicle control. To exclude any 4-OHT-induced effects unrelated to the knockout of Rptor or Rictor, cells infected with a LEGO-iG2 vector control, were used in all studies.

Mineralisation Assay. CB MSCs (3.75x10⁴ cells/cm²) were seeded into quadruplicate wells of a 48-well plate in α-MEM and allowed to adhere overnight. The next day, media were replaced with α-MEM supplemented with 20% FCS, 10⁻⁸ M dexamethasone sodium phosphate, 100 µM ascorbate-2-phosphate, 4 mM KH₂PO₄ (Asia Pacific Speciality Chemicals, NSW, Australia), and cells were cultured under hypoxic conditions with media changed twice weekly for 22 days. Mineral content was quantified by measuring the concentration of Ca²⁺ in acid-solubilised matrix using the Arsenazo kit (Thermo Scientific, MA, USA), normalised to the number of cells per well using the Quant-iT™ Pico Green dsDNA assay (Invitrogen). To visualise calcium deposits, formalin-fixed cultures were stained with Alizarin Red S (Sigma Aldrich) for 1 hour, rinsed with water and allowed to air-dry.

Adipogenesis Assay. CB MSCs (3.75x10⁴ cells/cm²) were seeded into quadruplicate wells of a 48-well plate in α-MEM and allowed to adhere overnight. The next day, media were replaced with α-MEM supplemented with 20% FCS, 10⁻⁶ M dexamethasone sodium phosphate, 60 µM indomethacin (Sigma Aldrich) and 1 µg/mL insulin (Novo Nordisk, NSW, Australia), and cells were cultured under hypoxic conditions with media changed twice weekly for 8 days. To identify and enumerate lipid-laden fat cells, formalin-fixed cells were stained with 25 ng/mL Nile Red (Sigma Aldrich) and 300 nmol/L DAPI (Invitrogen) for 15 minutes. Nile
Red-labelled adipocytes and DAPI-stained cell nuclei were visualised using an inverted fluorescence microscope (CKX41; Olympus, Japan), and adipocytes and cell nuclei were enumerated from multiple images from each well (10x magnification) using Adobe Photoshop and Image J software, respectively.

Cell Growth (WST-1). MSCs (1.25x10^4 cells/cm^2) were seeded into quintuplicate wells of a 96-well plate in α-MEM and allowed to adhere overnight. The number of viable cells present was assessed at the indicated time points using the colorimetric reagent WST-1 as per manufacturers’ instructions (Roche, NSW, Australia).

Cell Growth (BrdU). MSCs (1.25x10^4 cells/cm^2) were seeded into quintuplicate wells of a 96-well plate in α-MEM. The number of viable cells present after 7 days was assessed by incubating cells with 5-bromo-2'-deoxyuridine (BrdU) for 16 hours and then detecting the incorporated BrdU using a colorimetric assay as per manufacturer’s instructions (Roche).

Apoptosis. CB MSCs were stained with 5 uL Annexin V-PECy7 (eBioscience) and 20 uL 7-Aminoactinomycin (7-AAD, Invitrogen) for 15 minutes as per manufacturers’ instructions, and analysed immediately by flow cytometry (FC-500, Beckman Coulter, CA, USA). Cells incubated in either DMSO (100%) or ethanol (80%) for 10 minutes were used as positive controls.

Real-time PCR. Total RNA was isolated using Trizol reagent (Invitrogen) and cDNA prepared from 1 µg of total RNA using Superscript III as per manufacturers’ instructions (Invitrogen). Real-time PCR was performed using a Rotor-Gene 3000 (Corbett Research/Qiagen, VIC, Australia) using RT2 Real-time SYBR Green/ROX PCR master mix (Qiagen). Primer sets used in this study: β-actin: Fwd 5’-ttgctgacaggtgctgctc-3’; Rev 5’-aagggtaaaacgcaagctc-3’, C/ebpa: Fwd 5’-caagaacagcaacgagtaccg-3’; Rev 5’-gtcactggtcactecagcag-3’, Pparg: Fwd 5’-tttcgagagaactccagctc-3’; Rev 5’-atggcattgtgagacatcc-3’, Adipoq: Fwd 5’-ttctctctctctctctctc-3’; Rev 5’-

Western Immunoblot. Cell lysates were prepared as previously described (5) and equivalent amounts of protein (50 µg) were separated on 8% SDS-PAGE gels and transferred to PVDF membranes (GE Healthcare, UK). Immunoblotting was performed with the following antibodies: phospho-Akt (Thr308), phospho-Akt (Ser473), phospho-p70S6K (Thr389), phospho-IRS1 (Ser636/639), phospho-FOXO1(Thr24)/3a(Thr32), total Akt, total p70S6K, mTOR, Rictor, Raptor (Cell Signaling Technology, MA, USA), and HSP-90 (Santa Cruz, TX, USA). Following incubation with appropriate alkaline-phosphatase conjugated secondary antibodies, membranes were developed with enhanced chemiluminescence substrate (GE Healthcare). Quantitative analysis was performed using Image Quant software (Molecular Dynamics,).

Statistical Analyses. All experiments were performed in triplicate using separate MSC harvests, and data are presented as mean ± SD of a representative experiment containing quadruplicate (osteogenic and adipogenic differentiation assay) or quintuplicate (proliferation assay) wells. Statistical analyses were performed using unpaired t-tests using Microsoft GraphPad Prism 6 (GraphPad Software, CA, USA). In all cases, p<0.05 was considered statistically significant.
References

Figure 1

A

isolation of bone cells from Rapor^{6F} or Rictor^{6E} mice

isolation of Ln-CD31-CD31-

CD45-Scal¹⁺ MSCs containing a homozygous floxed rapor

or rictor allele

infection of MSCs with lentivirus carrying

a self-deleting 4-OHT-inducible Cre recombinase

(CreERT2) or empty vector control

GFP selection of MSCs with stable integration of

CreERT2 (or control) in the genome

4-OHT induction of CreERT2 (8 days) to generate RapKO,

RictKO and control cell lines

B

<table>
<thead>
<tr>
<th>ctrl</th>
<th>RapKO</th>
<th>ctrl</th>
<th>RictKO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raptor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rictor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mTOR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-S6K<sup>T546</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-4E-BP1<sup>T374/389</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-JAK<sup>2</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-FOXO1<sup>3A</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSP90</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

RAPTOR

D

RICTOR

E

vector + vehicle

vector + 4-OHT

CreERT2 + vehicle

CreERT2 + 4-OHT

222x293mm (300 x 300 DPI)