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ABSTRACT 
 

Cyclodextrin oligomers are non-toxic and biodegradable hosts for a wide array of potential 

guest molecules. Consequently, they are currently being used in a range of applications for 

small molecule and polymer-based drug delivery systems. As it stands, the majority of these 

oligomer systems are derived from α- and β-cyclodextrin. However, cyclodextrin oligomers 

derived from γ-cyclodextrin are relatively unknown. Oligomer systems derived from γ-

cyclodextrins may have the capability to form stable host-guest complexes with larger drug 

targets such as porphyrins. In order to develop applications for these new γ-cyclodextrin 

oligomer systems fundamental studies on their host-guest complexes must be performed. A 

literature review on cyclodextrins as supramolecular hosts as well as some key guest 

molecules and applications are outlined in Chapter 1.  

Chapter 2 investigates the complexation of a known photosensitiser, 5,10,15,20-tetra(p-

sulfonatophenyl)porphyrinate, H2TSPP
4-

, with γ-CD and five of its modified oligomers in 

aqueous solutions. Two previously reported succinimide-linked γ-CD dimers (33γ-CD2suc 

and 66γ-CD2suc) were prepared as well as two new oxalate-linked γ-CD dimers (33γ-CD2ox 

and 66γ-CD2ox) and a novel benzene linked γ-CD trimer (666γ-CD3bz). The host-guest 

complexation of H2TSPP
4-

 by the cyclodextrin hosts was investigated by 2D 
1
H NOESY 

NMR, variable temperature UV-Vis spectroscopy and molecular modelling. The experiments 

are designed to investigate the effects of the cyclodextrin oligomer subunit orientation (3,3-, 

6,6- or 6,6,6-) as well as the variation in length of the covalent bridge. Additionally, the study 

is intended to give insight into the various host-guest complexes and complex conformers in 

the H2TSPP
4-

. γ-CD oligomer equilibria.  

Chapter 3 investigates the host-guest complexation of a less water-soluble porphyrin, 

5,10,15,20-tetra(p-carboxyphenyl)porphyrinate, H2TCPP with γ-CD and its oligomers. The 
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complexation of H2TCPP
 
in its multiply ionised states H3TCPP

3-
/H2TCPP

4-
 by native γ-CD, 

33γ-CD2suc, 66γ-CD2suc, 33γ-CD2ox, 66γ-CD2ox and 666γ-CD3bz was investigated by 2D 

1
H NOESY

 
NMR spectroscopy, UV-Vis spectroscopy and molecular modelling. The 

experiments are designed to investigate the effects the ionic porphyrin substituents, porphyrin 

aggregation and the cyclodextrin oligomer subunit orientation (3,3-, 6,6- or 6,6,6-) as well as 

the variation in length of the covalent bridge on the host-guest complexation of H3TCPP
3-

/H2TCPP
4-

 by the cyclodextrin hosts.  

In Chapter 4, a 3% randomly substituted sodium 5-(p-β-alanylaminophenyl)-10,15,20-tris(p-

sulfonatophenyl)-porphyrin poly(acrylate) (PAATSPPala) was prepared. The complexation 

of the polymer substituents of PAATSPPala (TSPPala) by native γ-CD, 33γ-CD2suc, 66γ-

CD2suc, 33γ-CD2ox, 66γ-CD2ox and 666γ-CD3bz was investigated by 2D 
1
H NOESY

 
NMR 

spectroscopy, variable temperature UV-Vis spectroscopy and rheology. The experiments 

were designed to give insight into the effects of the different cyclodextrin hosts on the 

relative strengths of host-guest complexation and the formation of inter-strand poly(acrylate) 

cross-links in forming photoactive hydrogels. 

In Chapter 5, PAA was 3 % randomly substituted with 1- or 2- modified naphthalene to give 

isomeric poly(acrylate)s PAA1NSen, PAA1NShn, PAA2NSen and PAA2NShn, respectively. 

The complexation of the polymer substituents by native β-CD or γ-CD and four succinamide-

linked cyclodextrin dimers (33β-CD2suc, 66β-CD2suc, 33γ-CD2suc and 66γ-CD2suc) was 

investigated by 2D 
1
H NOESY

 
NMR spectroscopy, fluorescence spectroscopy and rheology. 

The experiments are designed to give insight into the effects of naphthyl substitution position, 

the length of the tether attaching the naphthalene substituent to the poly(acrylate) back-bone 

and the size and geometry of the cyclodextrin hosts. These factors are expected to determine 

the relative strengths of host-guest complexation and the formation of inter-strand 

poly(acrylate) cross-links to form hydrogels. 
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Chapter 6 describes the experimental methodology employed in these studies. The 

information in this thesis hopes to provide greater insight into the formation of γ-CD 

oligomer host-guest complexes and may lead to the better design of drug delivery systems, 

host-guest polymer networks and intrinsically therapeutic hydrogels.  
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ABBREVIATIONS 

1. General 

Å   angstrom (10
-10

 m) 

Ar   aryl 

d   Density (g cm
-3

) 

δ   chemical shift (ppm) 

ΔG   Gibbs free energy change 

ΔH   enthalpy change 

ΔS   entropy change 

ε   molar absorptivity (mol
-1

 dm
-3

 cm
-1

) 

Ε   heat of formation (kJ mol
-1

) 

FL   fluorescence spectroscopy 

et al.   et alia 

GC-MS  gas chromatography- mass spectrometry 

Hz   Hertz 

HPLC   high-performance liquid chromatography 

I   ionic strength (mol dm
-3
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IF   fluorescence intensity 

J   coupling constant (Hz) 

K   stability constant (dm
-3

 mol
-1
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Ka   acid dissociation constant 

K11   stability constant for 1:1 host-guest complexes (dm
-3

 mol
-1

) 

K21   stability constant for 2:1 host-guest complexes (dm
-3

 mol
-1

) 

KD   dimerisation constant 

m/z   mass/charge ratio 
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MS   mass spectrometry 

MALDI TOF  matrix-assisted laser desorption-ionisation time-of-flight 

NMR   nuclear magnetic resonance 

NOE   nuclear Overhauser enhancement 

NOESY  nuclear Overhauser enhancement spectroscopy 

PDT   photodynamic therapy 

pH   -log[H
+
] 

pKa   -log[Ka] 

ppm   parts per million 

PS   photosensitiser 

Rf   retention factor 

Rc   relative retention factor to native cyclodextrins (in TLC) 

T   temperature (K) 

TLC   thin-layer chromatography 

UV-Vis  ultraviolet-visible 

wt   weight 

 

2. Chemicals 

α-, β-, γ-CD  α-, β-, γ-cyclodextrin 

33β-CD2suc  N,N′-Bis((2
A
S,3

A
S)-3

A
-deoxy-β-cyclodextrin-3

A
-yl) 

succinamide 

66β-CD2suc  N,N′-bis(6
A
-deoxy-β-cyclodextrin-6

A
-yl) succinamide 

C18   octadecyl 

DCC   N,N’-dicyclohexylcarbodiimide 

DCM   dichloromethane 
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DMAP   4-(dimethylamino)pyridine 

DMF   N,N-dimethylformamide 

DMSO   dimethylsulfoxide 

EDC   1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

en   1,2-diaminoethane 

33γ-CD2ox  N,N′-Bis((2
A
S,3

A
S)-3

A
-deoxy-γ-cyclodextrin-3

A
-yl) oxalamide 

66γ-CD2ox  N,N′-Bis(6
A
-deoxy-γ-cyclodextrin-6

A
-yl) oxalamide 

33γ-CD2suc  N,N′-Bis((2
A
S,3

A
S)-3

A
-deoxy-γ-cyclodextrin-3

A
-yl) succinamide 

66γ-CD2suc  N,N′-Bis(6
A
-deoxy-γ-cyclodextrin-6

A
-yl) succinamide 

666γ-CD3bz  1,3,5-N,N,N-tris(6
A
-deoxy-6

A
-γ-cyclodextrin)-benzene 

hn   1,6-diaminohexane 

HP   hydroxypropyl  

TCPP
   

5,10,15,20-tetra(p-carboxyphenyl)porphyrin
 

TSPP   5,10,15,20-tetra(p-sulfonatophenyl)porphyrin
 

NMP   N-methylpyrrolidin-2-one 

1NSen   N-(2-aminoethyl)-1-naphthyl-sulfonamide 

1NShn   N-(6-aminohexyl)-1-naphthyl-sulfonamide 

2NSen   N-(2-aminoethyl)-2-naphthyl-sulfonamide 

2NShn   N-(6-aminohexyl)-2-naphthyl-sulfonamide 

PAA   poly(acrylate) 

PAA1NSen  3% randomly 1NSen substituted PAA 

PAA1NShn  3% randomly 1NShn substituted PAA 

PAA2NSen  3% randomly 2NSen substituted PAA 

PAA2NShn  3% randomly 2NShn substituted PAA 

PAATSPPala  3% randomly TSPPala substituted PAA 
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PAM   poly(acrylamide) 

TSPPala 5-(p-β-alanylaminophenyl)-10,15,20-tris(p-sulfonatophenyl)-

porphyrin 

TFA   trifluoroacetic acid 

THF   tetrahydrofuran 
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