Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/101303
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Analysis of gold(I/III)-complexes by HPLC-ICP-MS demonstrates gold(III) stability in surface waters
Author: Ta, C.
Reith, F.
Brugger, J.
Pring, A.
Lenehan, C.
Citation: Environmental Science and Technology (Washington), 2014; 48(10):5737-5744
Publisher: American Chemical Society
Issue Date: 2014
ISSN: 0013-936X
1520-5851
Statement of
Responsibility: 
Christine Ta, Frank Reith, Joël Brugger, Allan Pring, and Claire E. Lenehan
Abstract: Understanding the form in which gold is transported in surface- and groundwaters underpins our understanding of gold dispersion and (bio)geochemical cycling. Yet, to date, there are no direct techniques capable of identifying the oxidation state and complexation of gold in natural waters. We present a reversed phase ion-pairing HPLC-ICP-MS method for the separation and determination of aqueous gold(III)-chloro-hydroxyl, gold(III)-bromo-hydroxyl, gold(I)-thiosulfate, and gold(I)-cyanide complexes. Detection limits for the gold species range from 0.05 to 0.30 μg L⁻¹. The [Au(CN)₂]⁻ gold cyanide complex was detected in five of six waters from tailings and adjacent monitoring bores of working gold mines. Contrary to thermodynamic predictions, evidence was obtained for the existence of Au(III)-complexes in circumneutral, hypersaline waters of a natural lake overlying a gold deposit in Western Australia. This first direct evidence for the existence and stability of Au(III)-complexes in natural surface waters suggests that Au(III)-complexes may be important for the transport and biogeochemical cycling of gold in surface environments. Overall, these results show that near-μg L⁻¹ enrichments of Au in environmental waters result from metastable ligands (e.g., CN⁻) as well as kinetically controlled redox processes leading to the stability of highly soluble Au(III)-complexes.
Keywords: Surface water stability
Rights: © 2014 American Chemical Society
DOI: 10.1021/es404919a
Grant ID: http://purl.org/au-research/grants/arc/LP100200102
Appears in Collections:Aurora harvest 3
Earth and Environmental Sciences publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.