Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/101303
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTa, C.-
dc.contributor.authorReith, F.-
dc.contributor.authorBrugger, J.-
dc.contributor.authorPring, A.-
dc.contributor.authorLenehan, C.-
dc.date.issued2014-
dc.identifier.citationEnvironmental Science and Technology (Washington), 2014; 48(10):5737-5744-
dc.identifier.issn0013-936X-
dc.identifier.issn1520-5851-
dc.identifier.urihttp://hdl.handle.net/2440/101303-
dc.description.abstractUnderstanding the form in which gold is transported in surface- and groundwaters underpins our understanding of gold dispersion and (bio)geochemical cycling. Yet, to date, there are no direct techniques capable of identifying the oxidation state and complexation of gold in natural waters. We present a reversed phase ion-pairing HPLC-ICP-MS method for the separation and determination of aqueous gold(III)-chloro-hydroxyl, gold(III)-bromo-hydroxyl, gold(I)-thiosulfate, and gold(I)-cyanide complexes. Detection limits for the gold species range from 0.05 to 0.30 μg L⁻¹. The [Au(CN)₂]⁻ gold cyanide complex was detected in five of six waters from tailings and adjacent monitoring bores of working gold mines. Contrary to thermodynamic predictions, evidence was obtained for the existence of Au(III)-complexes in circumneutral, hypersaline waters of a natural lake overlying a gold deposit in Western Australia. This first direct evidence for the existence and stability of Au(III)-complexes in natural surface waters suggests that Au(III)-complexes may be important for the transport and biogeochemical cycling of gold in surface environments. Overall, these results show that near-μg L⁻¹ enrichments of Au in environmental waters result from metastable ligands (e.g., CN⁻) as well as kinetically controlled redox processes leading to the stability of highly soluble Au(III)-complexes.-
dc.description.statementofresponsibilityChristine Ta, Frank Reith, Joël Brugger, Allan Pring, and Claire E. Lenehan-
dc.language.isoen-
dc.publisherAmerican Chemical Society-
dc.rights© 2014 American Chemical Society-
dc.source.urihttp://dx.doi.org/10.1021/es404919a-
dc.subjectSurface water stability-
dc.titleAnalysis of gold(I/III)-complexes by HPLC-ICP-MS demonstrates gold(III) stability in surface waters-
dc.typeJournal article-
dc.identifier.doi10.1021/es404919a-
dc.relation.granthttp://purl.org/au-research/grants/arc/LP100200102-
pubs.publication-statusPublished-
Appears in Collections:Aurora harvest 3
Earth and Environmental Sciences publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.