Please use this identifier to cite or link to this item:
Type: Theses
Title: The effect of stress regime, pre-existing natural fracture geometric and hydraulic parameters and stimulation design parameters on fracture stimulation and fluid flow dimensions in the Otway Basin
Author: Benson, Robert
Issue Date: 2014
School/Discipline: Australian School of Petroleum
Abstract: The development of unconventional oil and gas resources is becoming increasingly important as conventional reserves start to decline. In order to make the recovery of unconventional resources from low permeability reservoirs economically viable, the process of hydraulic fracturing is critical. At present, only engineering measures are implemented in the design phase to enhance the stimulation process as there is very little understanding of how the geometry and properties of pre-existing natural fractures influences hydraulic fracturing. This study analyses the effect of the in-situ stress regime and pre-existing natural fracture intensity, orientation, hydraulic parameters and stimulation treatment design parameters on fracture stimulation and fluid flow dimensions. Wellbore image logs from 6 wells in the Otway Basin were used for the analysis of fracture orientation, intensity and size distribution. This was used to generate a model of the natural fracture network for simulation and evaluation of pressure transient testing and fracture stimulation. Discrete fracture network modelling is an effective approach for evaluating hydraulic fracturing and fluid flow dimensions in naturally fractured reservoirs. It was found that hydraulic fractures do not necessarily propagate as a symmetrical bi-wing fracture exactly parallel to the direction of maximum principal stress. Propagation occurs in the direction of maximum principal stress, in a complex manner, involving initiation, connectivity and reactivation of the fractures. The microseismic-event density, percolation zone size and stimulated reservoir volume, as a result of fracture stimulation is directly correlated to pre-existing natural fracture intensity, fracture compressibility and stimulation pump rate, pump pressure and slurry density. Pressure derivatives show very different characteristics and therefore fluid flow dimensions with different fracture intensity and fracture orientation.
Advisor: Abul Khair, Hani
Dissertation Note: Thesis (M.Sc.(Petrol.Geosc.) -- University of Adelaide, Australian School of Petoleum, 2014.
Keywords: coursework
Description: Title page, abstract and table of contents only. The complete thesis in print form is available from the University of Adelaide Library.
Provenance: Master of Science (Petroleum Geoscience) by coursework
Appears in Collections:Australian School of Petroleum

Files in This Item:
File Description SizeFormat 
09smb4742.pdfTitle page, abstract and table of contents only208.44 kBAdobe PDFView/Open
Restricted_1Archival - Library staff access only6.22 MBAdobe PDFView/Open
Restricted_2Archival - Library staff access only1.9 MBMicrosoft PowerpointView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.