Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/102342
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Search for pair-produced third-generation squarks decaying via charm quarks or in compressed supersymmetric scenarios in pp collisions at √s = 8 TeV with the ATLAS detector
Other Titles: Search for pair-produced third-generation squarks decaying via charm quarks or in compressed supersymmetric scenarios in pp collisions at root s = 8 TeV with the ATLAS detector
Author: Aad, G.
ATLAS Collaboration,
Citation: Physical Review D (particles, fields, gravitation, and cosmology), 2014; 90(5):052008-1-052008-36
Publisher: American Physical Society
Issue Date: 2014
ISSN: 2470-0010
2470-0029
Statement of
Responsibility: 
G. Aad … P. Jackson … L. Lee … A. Petridis … N. Soni … M. White .. The ATLAS Collaboration
Abstract: Results of a search for supersymmetry via direct production of third-generation squarks are reported, using 20.3  fb−1 of proton-proton collision data at s√=8  TeV recorded by the ATLAS experiment at the LHC in 2012. Two different analysis strategies based on monojetlike and c-tagged event selections are carried out to optimize the sensitivity for direct top squark-pair production in the decay channel to a charm quark and the lightest neutralino (t˜1→c+χ˜01) across the top squark–neutralino mass parameter space. No excess above the Standard Model background expectation is observed. The results are interpreted in the context of direct pair production of top squarks and presented in terms of exclusion limits in the (mt˜1, mχ˜01) parameter space. A top squark of mass up to about 240 GeV is excluded at 95% confidence level for arbitrary neutralino masses, within the kinematic boundaries. Top squark masses up to 270 GeV are excluded for a neutralino mass of 200 GeV. In a scenario where the top squark and the lightest neutralino are nearly degenerate in mass, top squark masses up to 260 GeV are excluded. The results from the monojetlike analysis are also interpreted in terms of compressed scenarios for top squark-pair production in the decay channel t˜1→b+ff′+χ˜01 and sbottom pair production with b˜1→b+χ˜01, leading to a similar exclusion for nearly mass-degenerate third-generation squarks and the lightest neutralino. The results in this paper significantly extend previous results at colliders.
Rights: © 2014 CERN, for the ATLAS Collaboration
DOI: 10.1103/PhysRevD.90.052008
Grant ID: ARC
Published version: http://dx.doi.org/10.1103/physrevd.90.052008
Appears in Collections:Aurora harvest 3
Chemistry and Physics publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.