Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Passive coherent discriminator using phase diversity for the simultaneous measurement of frequency noise and intensity noise of a continuous-wave laser
Author: Michaud-Belleau, V.
Bergeron, H.
Light, P.
Hébert, N.
Deschênes, J.
Luiten, A.
Genest, J.
Citation: Metrologia, 2016; 53(5):1154-1164
Publisher: IOP Publishing
Issue Date: 2016
ISSN: 0026-1394
Statement of
V Michaud-Belleau, H Bergeron, P S Light, N B Hébert, J D Deschênes, A N Luiten and J Genest
Abstract: The frequency noise and intensity noise of a laser set the performance limits in many modern photonics applications and, consequently, must often be characterized. As lasers continue to improve, the measurement of these noises however becomes increasingly challenging. Current approaches for the characterization of very high-performance lasers often call for a second laser with equal or higher performance to the one that is to be measured, an incoherent interferometer having an extremely long delay-arm, or an interferometer that relies on an active device. These instrumental features can be impractical or problematic under certain experimental conditions. As an alternative, this paper presents an entirely passive coherent interferometer that employs an optical 90° hybrid coupler to perform in-phase and quadrature detection. We demonstrate the technique by measuring the frequency noise power spectral density of a highly-stable 192 THz (1560 nm) fiber laser over five frequency decades. Simultaneously, we are able to measure its relative intensity noise power spectral density and characterize the correlation between its amplitude noise and phase noise. We correct some common misconceptions through a detailed theoretical analysis and demonstrate the necessity to account for normal imperfections of the optical 90° hybrid coupler. We finally conclude that this passive coherent discriminator is suitable for reliable and simple noise characterization of highly-stable lasers, with bandwidth and dynamic range benefits but susceptibility to additive noise contamination.
Rights: © 2016 BIPM & IOP Publishing Ltd
RMID: 0030053401
DOI: 10.1088/0026-1394/53/5/1154
Grant ID:
Published version:;
Appears in Collections:IPAS publications

Files in This Item:
File Description SizeFormat 
hdl_102588.pdfAccepted version1.42 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.