Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/103064
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Correlations between morpho-anatomical changes and radial hydraulic conductivity in roots of olive trees under water deficit and rewatering
Author: Tataranni, G.
Santarcangelo, M.
Sofo, A.
Xiloyannis, C.
Tyerman, S.
Dichio, B.
Citation: Tree Physiology, 2015; 35(12):1356-1365
Publisher: Oxford University Press
Issue Date: 2015
ISSN: 0829-318X
1758-4469
Statement of
Responsibility: 
Giuseppe Tataranni, Michele Santarcangelo, Adriano Sofo, Cristos Xiloyannis, Stephen D. Tyerman and Bartolomeo Dichio
Abstract: The effects of prolonged drought were studied on olive (Olea europaea L.; drought-sensitive cultivar Biancolilla and droughttolerant cultivar Coratina) to examine how morpho-anatomical modifications in roots impact on root radial hydraulic conductivity (Lpr). Two-year-old self-rooted plants were subjected to a gradual water depletion. The levels of drought stress were defined by pre-dawn leaf water potentials (Ψw) of −1.5, −3.5 and −6.5 MPa. After reaching the maximum level of drought, plants were rewatered for 23 days. Progressive drought stress, for both cultivars, caused a strong reduction in Lpr (from 1.2 to 1.3 × 10−5 m MPa−1 s−1 in unstressed plants to 0.2–0.6 × 10−5 m MPa−1 s−1 in plants at Ψw = −6.5 MPa), particularly evident in the more suberized (brown) roots, accompanied with decreases in stomatal conductance (gs). No significant differences in Lpr and gs between the two olive cultivars were observed. Epifluorescence microscopy and image analyses revealed a parallel increase of wall suberization that doubled in white stressed roots and tripled in brown ones when compared with unstressed plants. In drought-stressed plants, the number of suberized cellular layers from the endodermis towards the cortex increased from 1–2 to 6–7. Recovery in Lpr during rewatering was correlated to the physical disruption of hydrophobic barriers, while the time necessary to obtain new mature roots likely accounted for the observed delay in the complete recovery of gs. Radial hydraulic conductivity in olive roots was strongly influenced by soil and plant water availability and it was also modulated by structural root modifications, size, growth and anatomy. These findings could be important for maintaining an optimal water status in cultivated olive trees by scheduling efficient irrigation methods, saving irrigation water and obtaining yield of high quality.
Keywords: apoplastic barriers; drought stress; microscopic analyses; stomatal conductance; suberin lamellae; water relations
Rights: © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. Copyright of Tree Physiology is the property of Oxford University Press / USA and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.
RMID: 0030037148
DOI: 10.1093/treephys/tpv074
Appears in Collections:Agriculture, Food and Wine publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.