Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/103848
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Improved analysis of GW150914 using a fully spin-precessing waveform model
Author: Abbott, B.
Abbott, R.
Abbott, T.
Abernathy, M.
Acernese, F.
Ackley, K.
Adams, C.
Adams, T.
Addesso, P.
Adhikari, R.
Adya, V.
Affeldt, C.
Agathos, M.
Agatsuma, K.
Aggarwal, N.
Aguiar, O.
Aiello, L.
Ain, A.
Ajith, P.
Allen, B.
et al.
Citation: Physical Review X, 2016; 6(4):041014-1-041014-19
Publisher: American Physical Society
Issue Date: 2016
ISSN: 2160-3308
2160-3308
Statement of
Responsibility: 
B. P. Abbott … Won Kim … Eleanor J. King … Jesper Munch … David J. Ottoway … Peter J. Veitch … et al. (LIGO Scientific Collaboration and Virgo Collaboration)
Abstract: This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-onebody (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessingspin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016).], and we quote updated component masses of 35þ5 −3 M⊙ and 30þ3 −4 M⊙ (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate < 0.65 and a secondary spin estimate < 0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.
Keywords: Astrophysics; gravitation
Rights: Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
RMID: 0030058561
DOI: 10.1103/PhysRevX.6.041014
Appears in Collections:Physics publications

Files in This Item:
File Description SizeFormat 
hdl_103848.pdfPublished version1.37 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.