Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/105633
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: High-coherence electron and ion bunches from laser-cooled atoms
Author: Sparkes, B.
Thompson, D.
McCulloch, A.
Murphy, D.
Speirs, R.
Torrance, J.
Scholten, R.
Citation: Microscopy and Microanalysis, 2014; 20(4):1008-1014
Publisher: Cambridge University Press
Issue Date: 2014
ISSN: 1431-9276
1435-8115
Statement of
Responsibility: 
Ben M. Sparkes, Daniel J. Thompson, Andrew J. McCulloch, Dene Murphy, Rory W. Speirs, Joshua S. J. Torrance, and Robert E. Scholten
Abstract: Cold atom electron and ion sources produce electron bunches and ion beams by photoionization of laser-cooled atoms. They offer high coherence and the potential for high brightness, with applications including ultra-fast electron-diffractive imaging of dynamic processes at the nanoscale. The effective brightness of electron sources has been limited by nonlinear divergence caused by repulsive interactions between the electrons, known as the Coulomb explosion. It has been shown that electron bunches with ellipsoidal shape and uniform density distribution have linear internal Coulomb fields, such that the Coulomb explosion can be reversed using conventional optics. Our source can create bunches shaped in three dimensions and hence in principle achieve the transverse spatial coherence and brightness needed for picosecond-diffractive imaging with nanometer resolution. Here we present results showing how the shaping capability can be used to measure the spatial coherence properties of the cold electron source. We also investigate space-charge effects with ions and generate electron bunches with durations of a few hundred picoseconds. Future development of the cold atom electron and ion source will increase the bunch charge and charge density, demonstrate reversal of Coulomb explosion, and ultimately, ultra-fast coherent electron-diffractive imaging.
Keywords: Ion beam; electron beam; electron diffraction; space charge; cold atom physics; coherence
Rights: © Microscopy Society of America 2014
DOI: 10.1017/S1431927614000774
Published version: http://dx.doi.org/10.1017/s1431927614000774
Appears in Collections:Aurora harvest 3
Physics publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.